
Abstract—Partial reconfiguration (PR) enhances
traditional FPGA-based high-performance reconfigurable
computing by providing additional benefits such as reduced
area and memory requirements, increased performance, and
increased functionality. However, since leveraging these
additional benefits requires specific designer expertise,
which increases design time, PR has not yet gained
widespread usage. Even though Xilinx’s PR design flow
significantly eases PR design, to fully leverage PR benefits
designers require extensive PR design flow knowledge, as
well as low-level architectural details of the target FPGA
device. In this paper, we present a PR design flow and
associated tool to automate PR design intricacies and design
space exploration. Our design flow and tool can significantly
reduce PR design time effort and make PR designs more
accessible and amenable to a wider range of PR designers.

I. INTRODUCTION AND MOTIVATION
Dynamic reconfiguration in SRAM-based FPGAs is an

extremely beneficial feature for high-performance embedded
designs. By dynamically reconfiguring FPGA configuration
memory with various design specifications (bitstreams),
hardware functionality can time-multiplex FPGA resources.

The dynamic reconfiguration method affects the bitstream
format. Full bitstreams, used for full reconfiguration (FR),
contain configuration information for the entire FPGA.
Partial bitstreams, used for partial reconfiguration (PR),
contain configuration information for a portion of the FPGA.
FR and PR expand FPGA resources to nearly an infinite
amount, resulting in reduced total resource requirements and
increased flexibility through on-demand design specification
loading/unloading. Additionally, since FR and PR can
potentially decrease the number of required devices or device
size, FPGA power consumption can also be reduced [10].

However, dynamic reconfiguration has several drawbacks.
Since FR requires reconfiguring the entire FPGA even for
small design changes, memory resources are wasted as
multiple large full bitstreams containing redundant
configuration information need to be stored. Additionally,
FR interrupts design execution during FPGA reconfiguration.
This interruption or reconfiguration time can impose
unacceptable performance overheads, especially for real-time
systems. Alternatively, PR mitigates FR’s drawbacks by
isolating reconfiguration to a portion of the FPGA while all
other remaining FPGA resources continue execution [11].

PR designs partition the FPGA into a static region and
several individually reconfigurable PR regions (PRRs). The
static region implements a PR design’s base functionality

and is never reconfigured, while the PRRs are
loaded/unloaded on demand with PR modules (PRMs). A
PRM constitutes a portion of a PR design’s functionality.

Since PR isolates the static region and PRRs, PR reduces
memory requirements by eliminating the need for multiple
full bitstreams containing redundant configuration
information. PR designs require only one full bitstream to
initialize a PR design’s initial static region and PRRs. During
execution, different PRM partial bitstreams can be loaded
into the PRRs on demand. Additionally, since partial
bitstreams are significantly smaller than full bitstreams, PR
reconfiguration time is faster than FR reconfiguration time
[9]. PR is particularly useful for designs that do not
simultaneously require all their functionality and can benefit
from uninterrupted reconfiguration (SDRs [10], JPEG [16]).

Despite PR’s enhancements over FR, PR designs have
several drawbacks. PR designs are primarily supported by
Xilinx’s Early-Access (EA) PR design flow [14], which
requires manual intervention and significant design time
effort. In addition to defining a PR design’s functionality and
partitioning the design into the PRMs, PR designers must
perform PR-specific tasks such as instantiating bus macro
[14] VHDL specifications. Thus, even with Xilinx’s EA PR
design flow, realizing PR benefits is challenging as lack of
sufficient expertise can result in poor design performance.

Currently, there exists little support for PR designers, and,
to the best of our knowledge, there exists no previous efforts
to completely automate the EA PR design flow’s design
space exploration. In this paper we present the Design
Automation for Partial Reconfiguration (DAPR) PR design
flow. The DAPR design flow reduces PR design time effort
and complexity, allowing rapid PR design prototyping and
making PR more amenable to a larger range of designers.

DAPR: Design Automation for Partially Reconfigurable FPGAs

Shaon Yousuf and Ann Gordon-Ross
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611
{yousuf, ann}@chrec.org

Figure 1: Xilinx's EA PR design flow (left side) and the DAPR design
flow (right side).

II. BACKGROUND AND RELATED WORK
A. Xilinx’s EA PR Design Flow

Figure 1 (left side) depicts Xilinx’s EA PR design flow
[14]. The EA PR design flow requires a hierarchical logical
partitioning of the VHDL design files into non-overlapping
PRMs. Next, the designer must: (1) synthesize each design
file separately; (2) create the PR design’s floorplan; (3)
implement separate non-PR designs for every PRM to PRR
combination and perform timing analysis on each design to
verify timing requirements; (4) generate place and route
information for the static region to create a static design with
“holes” (un-placed and un-routed regions) for the PRMs and
then generate place and route information for each respective
hole’s (PRR’s) PRM; and (5) merge the static design’s place
and route information with each PRM’s place and route
information to generate the PR design’s multiple full and
partial bitstreams. Each full bitstream contains configuration
information for different PRM to PRR combinations
allowing any startup PR design functionality and modifying
the functionality with partial bitstreams during runtime.

Xilinx ISE [14] utilities individually handle steps 1, 4, and
5 and Xilinx PlanAhead [14] aids step 2 (PR design
floorplanning). Floorplanning defines area constraints (set in
Xilinx’s user constraints file (.ucf)) that specify bus macro
and resource placements as well as each PRR’s location and
dimension (size and shape) on the FPGA. Although
PlanAhead provides useful floorplanning information, there
exists no formal process for determining optimal bus macro
and PRR placements. Additionally, FPGA manufacturer
provided bus macro placement “best practices” can produce
designs with suboptimal design performance [3].

Bus macro floorplanning depends on the target device
type. Xilinx Virtex-4 device bus macros are slice-based [14]
and span the static region and PRR boundaries. Bus macros
are Xilinx provided hardwired logical elements that lock wire
routing between the static design and PRMs. All signals
except global signals (e.g. clock signals) between the static
design and PRMs must pass through bus macros to ensure
communication between the static region and PRMs remains
established during reconfiguration. PRR floorplanning

ensures PRRs encompass enough hardware resources to
support the resource requirements of each PRM mapped to a
PRR. Proper floorplanning ensures correct placement of both
bus macros and PRRs but several correct placements exist
and not all placements will result in the same design
performance. For example, a PRR’s dimension can affect the
maximum attainable clock frequency [5].

Figure 2 (a) depicts a Virtex-4 LX25 FPGA fabric and
resource types including: configurable logic blocks (CLBs),
block RAMs (BRAMs), first-in first-out buffers (FIFOs),
digital signal processors (DSPs), digital clock managers
(DCMs), input/output buffers (IOBs), and global buffers
(BUFGs). CLBs, BRAMs, FIFOs, and DSPs are in the right
and left halves of the fabric, whereas DCMs and BUFGs are
in the center. CLBs consist of four slices and are the main
logic resource used for sequential and combinatorial circuits.
B. Previous work

Previous work proposes the special-purpose (SP) and
multipurpose (MP) [5] PR design methodologies. The SP PR
design flow creates custom PR designs tailored for a target
system and the MP design flow creates generalized PR
design templates for implementing a variety of systems.
Since a critical design flow stage is PRR floorplanning, the
authors proposed cost functions to evaluate PRR placement
quality with respect to the PRR aspect ratio (PRR height in
slices divided by PRR width), internal fragmentation,
position relative to IOBs, and routability.

Craven et al. [6] presented a high-level development
environment for implementing dynamically reconfigurable
hardware and used a simulated annealing based automated
floorplanner and a BusMacroHelper tool for PRR and bus
macro placement, respectively. No details were presented on
the mechanism or effectiveness of the BusMacroHelper tool.

Carver et al. [3] developed an automated simulated
annealing-based bus macro placement tool and evaluated the
tool using timing results generated by Xilinx’s PAR (place
and route) utility. However, PRR dimensions were fixed and
manually placed and timing evaluation was done for the
static and PRM designs separately. Alternatively, DAPR
automates PRR placement and evaluates the complete
design’s timing and partial bitstream size using the final
output bitstreams.

Much previous work focuses on floorplanning techniques
for reconfigurable designs [1][2][6]. Singhal et al. [13],
Cheng et al. [4], and Feng et al. [8] used simulated annealing
algorithms for automated PRR floorplanning, but these
methods did not automate bus macro placement nor apply
their floorplanning techniques to a PR design flow.

Even though there exists much research on bus macro and
PRR placement, to the best of our knowledge this is the first
attempt to circumvent PR design flow burdens and
complexities by automated design space exploration of both
bus macro and PRR placement through the evaluation of PR
design output bitstreams. Our work also aims to isolate
designers from PR design low-level details and intricacies.

Figure 2: Virtex-4 LX25 (a) Virtex-4 LX25 FPGA resource layout with
.dil file banks and (b) .dil to device floorplan mapping.

 (a) (b)

III. DAPR DESIGN FLOW
The DAPR design flow reduces PR design time effort and

complexities by automating many of Xilinx’s EA PR design
flow’s difficult steps. Figure 1 depicts the DAPR design flow
(right side) compared to Xilinx’s EA PR design flow (left
side). The DAPR design flow is a generic, module-based
reconfiguration PR design flow and uses vendor specific
(Xilinx in this case) utilities to assist in bitstream generation.

The DAPR design flow consists of a manual step and an
automated step. In the manual step, the designer annotates
the top-level VHDL design files and sets design constraints
(optional). These annotations and design constraints serve as
input to the automated step, which is orchestrated by the
DAPR tool to automate the complex portions of Xilinx’s EA
PR design flow. The DAPR design flow can be adapted to
support different PR devices by updating how the vendor
utilities are integrated in the DAPR tool. The DAPR tool
works in four phases, which generate the PR design’s full
and partial bitstreams. In this section, we describe the DAPR
design flow steps and the DAPR tool phases.
A. DAPR Design Flow Steps

In the DAPR design flow’s first manual step, the designer
performs several straightforward tasks to prepare the PR
design for the second automated step. First, the designer
annotates the VHDL component instantiations in the top-
level design file using standard formatted VHDL comments
(the designer must also follow Xilinx’s EA PR design VHDL
formatting guidelines (Section II.A), which assumes that all
PRR instantiations are defined in the top-level file). Using
VHDL comments ensures that these annotations will not
introduce synthesis errors or affect design portability.
Optionally, the designer can define PR design constraints
(e.g. timing, power, area, partial bitstream size, I/O primitive
definitions, etc.) and the DAPR tool’s effort level control
value (Section III.B) in a design constraints file (.dcs).

After completion of the manual step, the DAPR tool’s

inputs are the annotated top-level design file, all other design
files, and the .dcs file. The DAPR tool manipulates these
files to generate the PR design’s full and partial bitstreams.
B. DAPR Tool Phases

The DAPR design flow’s second automated step, depicted
in Figure 3, consists of four phases. In phase 1, information
identification uses the design file annotations to identify the
static region and PRR instantiations, bus macro
instantiations, and design file names. Information extraction
extracts port map connection information from the region
instantiations. The extracted connection information is
written to a PR automation information file (.prai).

Collectively, phases 2 through 4 iteratively generate
candidate PR designs. Phase 2, the candidate generation
phase, constitutes the bulk of DAPR’s work and
automatically (1) synthesizes all design files using Xilinx’s
XST utility, (2) estimates the hardware resource
requirements from the generated synthesis log file (.srp) and
records the requirements in the .prai file, (3) reads the port
map connection information from the .prai file, generates a
connectivity information file (.dot), and generates a
connectivity graph for these regions, (4) uses the device
information library file’s (.dil) estimated resources,
connectivity information, and .ucf file to build an initial
candidate floorplan if the .ucf file does not contain an
existing floorplan, otherwise builds a new candidate
floorplan, and (5) writes the current candidate floorplan
constraints to a new .ucf file. The .dil file is currently
generated in-house as part of the DAPR tool and contains the
target device’s hardware resource information.

Phase 3, the bitstream generation phase, uses the ngdbuild,
MAP, PAR, PR_verifydesign, and PR_assemble utilities
(similar to the EA PR design flow’s implement (4) and
merge (5) steps) to output the full and partial bitstreams.

Finally, phase 4, the design evaluation phase, determines if
the current candidate floorplan meets the specified design
constraints. A Perl script estimates the candidate PR design’s
partial bitstream size, timing, power, and area requirements
from the trace report file (.twr), the power report file (.pwr),
and the map report file (.mrp) generated by Xilinx’s TRACE,
XPower, and MAP utilities, respectively. If any design
constraints are not met, the DAPR tool returns to phase 2,
builds a new unique candidate floorplan, and repeats phases
3 and 4. This iterative process continues until the candidate
floorplan meets the design constraints or for a fixed number
of successful iterations Imax. Successful iterations generate
valid candidate PR designs, while unsuccessful iterations fail
the place and route step. To bound design exploration time to
a reasonable amount, Imax is initially set to 100 since
experiments showed that a single small design iteration
required 15 minutes on average (the Xilinx utilities
constituted the majority of this time). However, Imax’s value
can be specified in the .dcs file.

On phase 4’s completion, the DAPR tool outputs the PR
design that meets the clock frequency constraint or the PR

Figure 3: DAPR tool phases.

design with the maximum attainable clock frequency if the
clock frequency constraint is not met. The DAPR tool also
outputs a Pareto optimal set of PR designs that trade off
clock frequency and partial bitstream size.

IV. DAPR TOOL DETAILS
Since the candidate generation phase does most of

DAPR’s work, in this section we elaborate on this phase’s
functionality, including .dil file layout and usage in candidate
floorplan generation.
A. Device Information Library

 The .dil file is primarily used in conjunction with the
DAPR tool floorplanner to build candidate floorplans. The
.dil file is a two dimensional grid of entries, which specify
each FPGA fabric location’s resource status and type (e.g.
0S, 0R, 0F, 0D, 0B, 0C). Each entry’s X and Y coordinates
(grid location) in the .dil file’s grid directly translate to the
resource’s X and Y coordinates on the FPGA fabric. Each
entry’s numerical and character value indicate the resource’s
availability (allocated (0) or free (1)) and type (CLB slices
(S), BRAMs (R), FIFOs (F), DSPs (D), BUFGs (B), and
DCMs (C)), respectively. Figure 2 (b) illustrates an example
floorplan built from the Virtex-4 LX25 .dil file.
 Each entry’s value and corresponding grid location provides
an easy method to identify and allocate FPGA resources
(currently the DAPR tool includes a .dil file for the Virtex-4
LX 25, but the .dil file could be easily generated for any
FPGA device). Resource types can be allocated for a PR
design’s PRRs, bus macros, or other components (e.g.
DCMs, BUFGs) by translating the entry value and grid
location into proper .ucf file syntax. The allocation syntax for
a PRR is the PRR instance name, as defined in the top level
VHDL file, followed by the required resource’s type and X
and Y coordinates on the FPGA fabric (see [14] for syntax
details). To allocate component resources that span across
the FPGA fabric (e.g. CLB slices, BRAM, FIFOs, DSPs), the
resource range can be specified in the .ucf file. Alternatively,
DCM and BUFG allocations do not span the FPGA fabric
and must be in the form of single X and Y coordinates. Since
defining PRRs that span the center of the device ((a)) is
complicated and not recommended [14], we divide the .dil
file into three banks (Figure 2 (a)) to isolate resource
allocation. Banks 0 and 1 contain CLB slice, BRAM, FIFO,
and DSP entries for the FPGA’s left and right halves,
respectively, and bank 2 contains DCM and BUFG entries.
B. Candidate Floorplan Generation

The DAPR tool floorplanner uses the .dil, .dcs, and .prai
files to automatically build candidate design floorplans to
determine the best PR design (fastest clock frequency) after
Imax successful iterations. Phase 2’s first iteration creates an
initial candidate floorplan by placing the PR design’s DCMs
and BUFGs in the lowest possible free DCM and BUFG X
and Y coordinate locations, the PRRs using a cluster growth
(CG) algorithm [12], and the bus macros randomly around

the PRRs using a simulated annealing (SA) algorithm [12].
The candidate floorplan is then used to create a candidate PR
design during phases 3 and 4.

Algorithm 1 depicts our CG algorithm which takes as
input the set of all PRRs (S), each PRRs maximum resource
requirements (R) and port connectivity information (C), the
white space (WS) (extra resources), the aspect ratio (AR),
total number of PRRs (n), the .dil file, the set of all bus
macros (B), the maximum number of bus macros required for
each PRR (Bmax), and the maximum number of successful
iterations (Imax).

Lines 3-10 use CG to place PRRs where the set of all
PRRs S is initially arranged in a linearly ordered list (line 3)
using PRR port connectivity information C and a linear
ordering algorithm (a widely used technique for building
initial placement configurations [12]). The CG algorithm
selects PRRs in ascending order from the list (line 7) and
selects a placement for the current PRR i (starting at the
FPGA’s lower left corner and growing diagonally across the
device) using the .dil file while minimizing the increase in
the cost function (line 8). The cost function attempts to
minimize each PRR’s placement size, thus minimizing the
total number of resources required, while keeping the PRR
aspect ratio close to AR. PRR i’s minimum placement size is
defined by PRR i’s maximum resource requirements R(i)
plus the percentage of extra resources as defined by WS. The
default amount of white space allocated is 10% of the
maximum resources required by a PRR (WS can be specified
in the .dcs file). Additionally, AR defines the placed PRR’s
shape. AR defaults to 1 if no value is specified.

Lines 11-57 depict our SA-based approach for exploring
bus macro placement solutions for B. In order to determine
the initial temperature T0 and initial solution for the SA
algorithm, a random number Irand (between 1 and 10) of
successful bus macro placement iterations is performed (lines
11-18) where in each iteration, the set of all bus macros B is
placed around the respective PRRs using bmRnd(). bmRnd()
generates random placement constraints for B, which is
written to BmPlace (line 12). BmPlace is written to the .ucf
file (line 13) and the corresponding candidate PR design is
generated (line 14) and evaluated (line 16). Candidate PR
designs are only evaluated if the bitstream generation
completes without PAR errors (line 15), otherwise a new
candidate floorplan is generated and the current running
number of successful iterations Icurr remains unchanged
(lines 51-52). If five consecutive PAR errors occur, WS is
increased by 5% in order to inhibit further PAR errors (lines
55-57). A candidate PR design’s clock frequency, partial
bitstream size, power, and area requirements are determined
and recorded during design evaluation. If the design’s clock
frequency constraint is met, then DesignEvaluation() jumps
to line 59, otherwise the average clock frequency change
!avg (used to compute T0) for all uphill bus macro
placements (lower clock frequency PR designs) is
determined. The best found bus macro placement constraints

after Irand successful iterations is stored in BmInit using
clkFq() (returns the candidate PR design’s clock frequency)
and is used as the initial solution for SA.

After Irand successful iterations complete, the SA
algorithm (lines 20-25) sets the current bus macro placement
(BmCurrent) and the best found bus macro placement
(BmBest) to BmInit, swp to Bmax, the acceptance probability
(uphill bus macro placement acceptance probability) P to
0.99, the temperature reduction rate ! to 0.85, and the current
temperature T and the initial temperature T0 using:

 (1)

Next, for each successful iteration from Irand to Imax
(lines 26-57), the SA algorithm explores new bus macro
placements for B using a perturbation function (lines 28-33),
generates and evaluates the corresponding candidate PR

design (lines 35-38), and accepts or rejects the new
placement (lines 39-46) with probability P using:

 (2)
The perturbation function explores new bus macro

placements for B (written to BmNew) using either swpRnd()
or bmRnd() according to the value of swp. If swp is greater
than 0, swpRnd() modifies the current bus macro placements
(BmCurrent) by performing swaps among existing bus macro
placements of each respective PRR while decrementing swp
each time (line 28-30). If swp equals 0, bmRnd() performs
random bus macro placements while resetting the value of
swp back to Bmax each time (lines 31-33). swpRnd() swaps
existing bus macro placements for each respective PRR by
comparing the current value of Bmax and swp where, if
swp"(2*Bmax/3), the input bus macro locations are
randomly swapped, if swp<(2*Bmax/3) and swp>(Bmax/3),
the output bus macro locations are randomly swapped, and if
swp<(Bmax/3) until swp equals 0, the input and output bus
macro locations are randomly swapped interchangeably. We
use this swapping method to provide ample variation in the
swapping mechanism, but not too much variation such that
the design solution space size is exponential (2Bmax).

After the candidate PR design with the new bus macro
placement is generated and evaluated, the change (!clkFq)
between the new bus macro placement’s (BmNew) clock
frequency from the current bus macro placement’s
(Bmcurrent) clock frequency is computed (line 39). If
!clkFq < 0 (line 40), the new bus macro placement is not
uphill and is accepted as the current bus macro placement
(line 43). Also, if the new bus macro placement has the best
clock frequency thus far, the new bus macro placement is
accepted as the best bus macro placement and is written to
BmBest (lines 44-45). Alternatively, if the new bus macro
placement is uphill, the new solution is accepted with
probability P and written to BmCurrent (line 41). Initially,
the acceptance probability P is close to 1 during high T
values, but decreases with decreasing T. T is decreased in
line 49 with the recommended temperature reduction rate ! =
0.85 [12], if at each given temperature the total number of
uphill moves (Uphill) or the total number of moves (MT)
exceeds Bmax or 2*Bmax respectively (line 27).

At the end of our algorithm (line 59), the best found clock
frequency along with the corresponding iteration number and
floorplan is output using clkFqBest(), IBest(), and
floorplanBest(), respectively. Also, a Pareto optimal set of
PR designs that trade off clock frequency and partial
bitstream size are output with Pareto().

V. DAPR DESIGN FLOW EVALUATION
A. Experimental Setup

We implemented the DAPR design flow and tool in the
Linux environment. The DAPR tool phases are implemented
in Perl scripts for information parsing and file manipulation.
The candidate generation phase (2) uses a dot language

Input: S, R, C, WS, AR, n, .dil, B, Bmax, Imax
Output: Highest clock frequency value, corresponding design number,
 and floorplan constraints

Algorithm 1: The DAPR tool cluster growth and simulated annealing

algorithm for PRR and bus macro placement, respectively.

1 Icurr,Uphill,Reject,MT # 0;
2 Irand # int(rand(10));
3 S # LinearOrder(S, C);
4 while Icurr < Imax do
5 DCMandBUFGplacement();
6 for i # 1 to n do
7 Select PRR i from S;
8 Use R(i), WS, AR and .dil to select PRR i’s

 placement with minimum increase in cost function;
9 Write PRM i’s placement constraints to ucf file;
10 endfor
11 if Ic < Irand then
12 BmPlace # bmRnd(B);
13 Write bmInit placement constraints to ucf file;
14 BitstreamGeneration();
15 if PARfail == 0 then
16 DesignEvaluation();
17 if clkFq(bmplace) > clkFq(bmInit) then
18 BmInit # Bmplace;
19 if Ic == Irand then
20 BmCurrent # BmInit;
21 BmBest # BmInit;
22 swp # Bmax;
23 P # 0.99;
24 ! # 0.85;
25 T " T0 # !avg/ln (P);
26 if Ic # Irand and Ic < Imax then
27 if (Uphill > Bmax or MT > 2*Bmax) then
28 if (swp > 0 and swp $ Bmax) then
29 BmNew # swpRnd(B, swp, Bmax);
30 swp " swp -1;
31 else
32 BmNew # bmRnd(B);
33 swp # Bmax;
34 MT # MT + 1;
35 Write bmNew placement constraints to ucf file;
36 BitstreamGeneration();
37 if PARfail == 0 then
38 DesignEvaluation();
39 !clkFq # clkFq(BmCurrent) – clkFq(BmNew);
40 if (!clkFq < 0 or rand(1) < e!clkFq/T) then
41 if (!clkFq > 0) then
42 Uphill # Uphill+1;
43 bmCurrent # bmNew; (*placement accepted*)
44 if (clkFq (BmCurrent) > clkFq (BmBest)) then
45 BmBest # BmCurrent;
46 else
47 Reject ! Reject+1; (*placement rejected*)
48 else
49 T ! ! * T;
50 Uphill,Reject,MT # 0;
51 if PARfail == 0 then
52 Icurr # Icurr + 1;
53 else
54 PARerror # PARerror +1;
55 if PARerror == 5;
56 WS # WS + 5;
57 PARerror " 0;
58 endwhile
59 return clkFqBest(), IBest(), floorplanBest(), Pareto()

interpreter to generate the connectivity graphs. We ran the
DAPR tool on a desktop PC with an Intel® Core ™ 2 Duo
E6750 2.66 GHz CPU and 3.24 GB of RAM and the utilities
from Xilinx’s ISE version 9.2i04 with PR patch 12 installed.

We evaluated the DAPR design flow SA algorithm with a
32-bit counter core and the complete DAPR design flow with
a 1K-point FFT core, a 32-bit CORDIC core, and a 4X4
matrix multiplier (MM) core. We generated the FFT and
CORDIC cores using Xilinx’s core generation tool and wrote
the MM and counter cores in-house. Each PR design’s
modified HDL design description was taken as input by the
DAPR tool and the final bitstreams were generated for the
Xilinx ML401 evaluation platform [15] (Virtex-4 LX25
FPGA board). We wrote the original HDL device description
for the PR designs with one static region to function as a
register to store each PRM’s last output and one PRR to
load/unload the counter, FFT, CORDIC, or MM core PRMs.
In order to maintain feasible simulation times, our PR
designs consist of a single PRR due to a significant increase
in iteration time for more PRRs (i.e. 50 to 60 minutes per
iteration for 2 PRRs). However, we simulated designs with
more PRRs and obtained similar results as presented here.

We evaluated our SA algorithm for the 32-bit counter core
compared to an exhaustive search (ES) algorithm to find the
optimal placement of the input bus macros only (the 32-bit
counter has 4 input and output bus macros) and also a
random exploration (RE) algorithm of the input bus macros
for the largest PRR size (we explored four ascending PRR
sizes, which required 24, 120, 360, and 840 iterations,
respectively for ES). Although, we obtained similar results
for ES by including output bus macros for the smallest PRR
size (required 576 iterations), we ran the algorithms for input
bus macros only to bound the total DAPR tool run time (e.g.
the second smallest PRR size would require 14,400 iterations
for ES, which would require 3600 hours or 150 days).

We constructed two test cases for the FFT, CORDIC, and
MM PR designs and used the DAPR tool to find the best PR
design (fastest clock frequency) within Imax successful
iterations. For both test cases, we set Imax = 100. For the
first and second test cases, we set AR=1 and AR=10,
respectively, in order to evaluate the aspect ratio’s impact on

attainable clock frequency (there is no defined method to
predict clock frequency based on PRR aspect ratio [5]) and
partial bitstream size. Power and area constraints were not
set, which forced the algorithm to place the PRRs with the
lowest area (including the extra space) possible. Setting lax
power and area constraints allows the PRR placement
algorithm to place PRRs with larger areas (extra unused
resources), which can reveal higher clock frequencies.

We evaluated our results for the FFT, CORDIC, and MM
cores with respect to the highest clock frequency found by
the DAPR tool after a fixed number of successful iterations.
We did not compare with the optimal clock frequency
because our experiments showed that the clock frequency
varied unpredictably with different bus macro placements,
therefore determining the optimal solution through
exhaustive search is impractical given such a large design
space. The average runtime to complete 100 iterations on
each design was 25 completely automated hours (an
acceptable runtime given that a manual process would take
several days).
B. Results

We evaluated SA using the percentage of the design space
explored (in terms of successful iterations) to achieve the
optimal clock frequency obtained from ES. For the smallest
PRR size, SA found the optimal solution after exploring 83%
of the design space. SA improved on this performance
significantly for increasing PRR sizes, finding the optimal
solution after exploring only 21.7%, 13.84%, and 18.2% of
the design space, respectively. Additionally, for the largest
PRR size, SA outperformed RE by requiring 23% less design
space exploration.

We evaluated the complete DAPR design flow using the
clock frequency and partial bitstream size verses successful
iterations. Power requirements were constant in each
iteration as each PR design’s logic remained constant (no
logic reduction was done during synthesis). PRR area
requirements did not change significantly during the
iterations as PRR size only increased when enough PAR
failures occurred and thus was excluded due to lack of space.

Figure 4 depicts the current iteration’s clock frequency

Figure 4: Current iteration’s clock frequency and partial bitstream size versus successful iterations with the design’s final aspect ratio (top row and

bottom row shows designs run with AR=1 and AR=10, respectively).

and partial bitstream size verses successful iterations (AR=1
top row, AR=10 bottom row) and Figure 5 depicts the current
highest clock frequency found (AR=1 left, AR=10 right).
Figure 4 tracks the variations in the current iteration’s clock
frequency and bitstream size while Figure 5 tracks the
convergence of the best solution found thus far. Since the AR
constraint is not always maintained during design exploration
due to variations in the PRR’s required resources and the
FPGA fabric’s resource distribution, the actual (final) AR
values of the placed PRR’s are noted in the graph titles.

As expected, the results revealed that the greatest
improvements in the best solution occur during the first
several successful iterations. This growth rate quickly levels
off and converges to within 2.31% of the highest achievable
solution (within Imax) after an average of only 10 iterations.
Comparing the convergence rates for different AR values also
reveals that higher AR values converge faster than lower AR
values requiring on average 28 and 33 iterations,
respectively. Additionally, the initial AR value affects the
maximum achievable clock frequency. For example, the 32-
bit CORDIC core’s fastest clock frequency ranged from
170.1 MHz to 178.1 MHz for AR=1 and AR=10, respectively.
The difference in clock frequency arises because large aspect
ratios enable our PRR placement algorithm to more easily
meet DSP, FIFO, and BRAM requirements with more free
resources in each PRR, which reveals additional higher clock
frequency routing paths.

Since each candidate PR design results in a different
tradeoff between partial bitstream size and clock frequency,
the DAPR design flow can also be used to determine the
Pareto optimal set of design points, enabling designers to
choose the appropriate design tradeoff while examining only
a small set of potential designs. Figure 6 shows each
candidate design’s time period (inverse of the clock
frequency) verses partial bit stream size for the 1K-point FFT
core with AR=1 with the Pareto optimal points highlighted
(circular points). For this example, only 3% of the design

space are interesting points, thus significantly reducing the
number of designs a designer must consider.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we present the DAPR design flow, which

automates the intricate EA PR design flow steps. DAPR
enables designers to specify design constraints and
automatically explores the design space using an iterative
candidate PR floorplan generation methodology. DAPR
outputs the PR design with the fastest clock frequency and a
Pareto optimal set of PR design’s that trade off clock
frequency and partial bitstream size. Therefore, the DAPR
flow is highly flexible to meet different designer needs. The
DAPR design flow’s key contributions include: making PR
design more accessible and amenable to a wider range of
designers; facilitating rapid design prototyping; and creating
high-performance systems with reduced design time effort.

Future work includes investigating techniques to enhance
the DAPR tool floorplanning algorithm such as leveraging
SA for PRR placement (the CG-based method is unsuitable
for heterogeneous floorplanning), efficient use of BUFG and
DCM placement, and finding the best design with respect to
any design constraint. Support for additional Virtex-4
devices and the ISE design suite 11 is also planned.

VII. ACKNOWLEDGEMENTS
This work was supported in part by the I/UCRC Program

of the National Science Foundation under Grant No. EEC-
0642422. We gratefully acknowledge tools provided by
Xilinx.

VIII. REFERENCES
[1] P. Banerjee, S. Sur-Kolay and A. Bishnu, “Floorplanning in Modern

FPGAs,” VLSID, 2007.
[2] P. Banerjee, M. Sangtani and S. Sur-Kolay, “Floorplanning for Partial

Reconfiguration in FPGAs,” VLSID, 2009.
[3] J.M. Carver, R.N. Pittman and A. Forin, “Automatic Bus Macro

Placement for Partially Reconfigurable FPGA designs,” FPGA 2009.
[4] L. Cheng and M.D.F Wong, “Floorplan Design for Multi-million Gate

FPGAs,” ICCAD, 2004.
[5] C. Conger, A. D. George and A. Gordon-Ross, “Design Framework for

Partial Run-Time FPGA Reconfiguration,” ERSA, 2008.
[6] S. Craven and P. Athanas, “Dynamic Hardware Development,” IJRC,

2008.
[7] S. Fekete, E. Kohler and J. Teich, “Optimal FPGA module placement

with temporal precedence constraints,” DATE, 2001.
[8] Y. Feng, D.P. Mehta, “Heterogeneous floorplanning for FPGAs,”

VLSID, 2006.
[9] C. Kao, “Benefits of Partial Reconfiguration”, Xcell Journal, 2005.
[10] E.J. Mcdonald, “Runtime FPGA partial reconfiguration,” IEEE AES

Magazine, 2008.
[11] D. Mesquita, F. Moraes, J. Palma, L. Moller and N. Calazans, “Remote

and partial reconfiguration of FPGAs: tools and trends,” IPDPS, 2003.
[12] S. M. Sait and H. Youssef, “VLSI Physical Design Automation:

Theory and Practice”, World Scientific Publishing Company, 1st
edition, 1999.

[13] L. Singhal and E. Bozorgzadeh, “Multi-layer Floorplanning on a
Sequence of Reconfigurable Designs,” FPL, 2006.

[14] Xilinx Inc., “Early Access PR User Guide,” UG208, 2006.
[15] Xilinx Inc., “ML40x Evaluation Platform User Guide,” UG080, 2006.
[16] S. Yousuf and A. Gordon-Ross, “Partial Reconfiguration for Image

Processing Applications,” MAPLD, 2009.

Figure 5: Current iteration’s highest Clock Frequency versus successful
iterations for designs run with AR=1 (left side) and AR=10 (right side).

Figure 6: 1K-point FFT (AR=1) time period versus partial bitstream size.

