
Abstract—Partial reconfiguration (PR) enhances 
traditional FPGA-based high-performance reconfigurable 
computing by providing additional benefits such as reduced 
area and memory requirements, increased performance, and 
increased functionality. However, since leveraging these 
additional benefits requires specific designer expertise, 
which increases design time, PR has not yet gained 
widespread usage. Even though Xilinx’s PR design flow 
significantly eases PR design, to fully leverage PR benefits 
designers require extensive PR design flow knowledge, as 
well as low-level architectural details of the target FPGA 
device. In this paper, we present a PR design flow and 
associated tool to automate PR design intricacies and design 
space exploration. Our design flow and tool can significantly 
reduce PR design time effort and make PR designs more 
accessible and amenable to a wider range of PR designers. 

I. INTRODUCTION AND MOTIVATION 
Dynamic reconfiguration in SRAM-based FPGAs is an 

extremely beneficial feature for high-performance embedded 
designs. By dynamically reconfiguring FPGA configuration 
memory with various design specifications (bitstreams), 
hardware functionality can time-multiplex FPGA resources.  

The dynamic reconfiguration method affects the bitstream 
format. Full bitstreams, used for full reconfiguration (FR), 
contain configuration information for the entire FPGA. 
Partial bitstreams, used for partial reconfiguration (PR), 
contain configuration information for a portion of the FPGA. 
FR and PR expand FPGA resources to nearly an infinite 
amount, resulting in reduced total resource requirements and 
increased flexibility through on-demand design specification 
loading/unloading. Additionally, since FR and PR can 
potentially decrease the number of required devices or device 
size, FPGA power consumption can also be reduced [10].  

However, dynamic reconfiguration has several drawbacks. 
Since FR requires reconfiguring the entire FPGA even for 
small design changes, memory resources are wasted as 
multiple large full bitstreams containing redundant 
configuration information need to be stored. Additionally, 
FR interrupts design execution during FPGA reconfiguration. 
This interruption or reconfiguration time can impose 
unacceptable performance overheads, especially for real-time 
systems. Alternatively, PR mitigates FR’s drawbacks by 
isolating reconfiguration to a portion of the FPGA while all 
other remaining FPGA resources continue execution [11].  

PR designs partition the FPGA into a static region and 
several individually reconfigurable PR regions (PRRs). The 
static region implements a PR design’s base functionality 

and is never reconfigured, while the PRRs are 
loaded/unloaded on demand with PR modules (PRMs). A 
PRM constitutes a portion of a PR design’s functionality. 

Since PR isolates the static region and PRRs, PR reduces 
memory requirements by eliminating the need for multiple 
full bitstreams containing redundant configuration 
information. PR designs require only one full bitstream to 
initialize a PR design’s initial static region and PRRs. During 
execution, different PRM partial bitstreams can be loaded 
into the PRRs on demand. Additionally, since partial 
bitstreams are significantly smaller than full bitstreams, PR 
reconfiguration time is faster than FR reconfiguration time 
[9]. PR is particularly useful for designs that do not 
simultaneously require all their functionality and can benefit 
from uninterrupted reconfiguration (SDRs [10], JPEG [16]). 

Despite PR’s enhancements over FR, PR designs have 
several drawbacks. PR designs are primarily supported by 
Xilinx’s Early-Access (EA) PR design flow [14], which 
requires manual intervention and significant design time 
effort. In addition to defining a PR design’s functionality and 
partitioning the design into the PRMs, PR designers must 
perform PR-specific tasks such as instantiating bus macro 
[14] VHDL specifications. Thus, even with Xilinx’s EA PR 
design flow, realizing PR benefits is challenging as lack of 
sufficient expertise can result in poor design performance.  

Currently, there exists little support for PR designers, and, 
to the best of our knowledge, there exists no previous efforts 
to completely automate the EA PR design flow’s design 
space exploration. In this paper we present the Design 
Automation for Partial Reconfiguration (DAPR) PR design 
flow. The DAPR design flow reduces PR design time effort 
and complexity, allowing rapid PR design prototyping and 
making PR more amenable to a larger range of designers. 
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Figure 1: Xilinx's EA PR design flow (left side) and the DAPR design  
flow (right side). 

 



II. BACKGROUND AND RELATED WORK 
A. Xilinx’s EA PR Design Flow 

Figure 1 (left side) depicts Xilinx’s EA PR design flow 
[14]. The EA PR design flow requires a hierarchical logical 
partitioning of the VHDL design files into non-overlapping 
PRMs. Next, the designer must: (1) synthesize each design 
file separately; (2) create the PR design’s floorplan; (3) 
implement separate non-PR designs for every PRM to PRR 
combination and perform timing analysis on each design to 
verify timing requirements; (4) generate place and route 
information for the static region to create a static design with 
“holes” (un-placed and un-routed regions) for the PRMs and 
then generate place and route information for each respective 
hole’s (PRR’s) PRM; and (5) merge the static design’s place 
and route information with each PRM’s place and route 
information to generate the PR design’s multiple full and 
partial bitstreams. Each full bitstream contains configuration 
information for different PRM to PRR combinations 
allowing any startup PR design functionality and modifying 
the functionality with partial bitstreams during runtime. 

Xilinx ISE [14] utilities individually handle steps 1, 4, and 
5 and Xilinx PlanAhead [14] aids step 2 (PR design 
floorplanning). Floorplanning defines area constraints (set in 
Xilinx’s user constraints file (.ucf)) that specify bus macro 
and resource placements as well as each PRR’s location and 
dimension (size and shape) on the FPGA. Although 
PlanAhead provides useful floorplanning information, there 
exists no formal process for determining optimal bus macro 
and PRR placements. Additionally, FPGA manufacturer 
provided bus macro placement “best practices” can produce 
designs with suboptimal design performance [3].  

Bus macro floorplanning depends on the target device 
type. Xilinx Virtex-4 device bus macros are slice-based [14] 
and span the static region and PRR boundaries. Bus macros 
are Xilinx provided hardwired logical elements that lock wire 
routing between the static design and PRMs. All signals 
except global signals (e.g. clock signals) between the static 
design and PRMs must pass through bus macros to ensure 
communication between the static region and PRMs remains 
established during reconfiguration. PRR floorplanning 

ensures PRRs encompass enough hardware resources to 
support the resource requirements of each PRM mapped to a 
PRR. Proper floorplanning ensures correct placement of both 
bus macros and PRRs but several correct placements exist 
and not all placements will result in the same design 
performance. For example, a PRR’s dimension can affect the 
maximum attainable clock frequency [5]. 

Figure 2 (a) depicts a Virtex-4 LX25 FPGA fabric and 
resource types including: configurable logic blocks (CLBs), 
block RAMs (BRAMs), first-in first-out buffers (FIFOs), 
digital signal processors (DSPs), digital clock managers 
(DCMs), input/output buffers (IOBs), and global buffers 
(BUFGs). CLBs, BRAMs, FIFOs, and DSPs are in the right 
and left halves of the fabric, whereas DCMs and BUFGs are 
in the center. CLBs consist of four slices and are the main 
logic resource used for sequential and combinatorial circuits. 
B. Previous work 

Previous work proposes the special-purpose (SP) and 
multipurpose (MP) [5] PR design methodologies. The SP PR 
design flow creates custom PR designs tailored for a target 
system and the MP design flow creates generalized PR 
design templates for implementing a variety of systems. 
Since a critical design flow stage is PRR floorplanning, the 
authors proposed cost functions to evaluate PRR placement 
quality with respect to the PRR aspect ratio (PRR height in 
slices divided by PRR width), internal fragmentation, 
position relative to IOBs, and routability. 

Craven et al. [6] presented a high-level development 
environment for implementing dynamically reconfigurable 
hardware and used a simulated annealing based automated 
floorplanner and a BusMacroHelper tool for PRR and bus 
macro placement, respectively. No details were presented on 
the mechanism or effectiveness of the BusMacroHelper tool. 

Carver et al. [3] developed an automated simulated 
annealing-based bus macro placement tool and evaluated the 
tool using timing results generated by Xilinx’s PAR (place 
and route) utility. However, PRR dimensions were fixed and 
manually placed and timing evaluation was done for the 
static and PRM designs separately. Alternatively, DAPR 
automates PRR placement and evaluates the complete 
design’s timing and partial bitstream size using the final 
output bitstreams.  

Much previous work focuses on floorplanning techniques 
for reconfigurable designs [1][2][6]. Singhal et al. [13], 
Cheng et al. [4], and Feng et al. [8] used simulated annealing 
algorithms for automated PRR floorplanning, but these 
methods did not automate bus macro placement nor apply 
their floorplanning techniques to a PR design flow. 

Even though there exists much research on bus macro and 
PRR placement, to the best of our knowledge this is the first 
attempt to circumvent PR design flow burdens and 
complexities by automated design space exploration of both 
bus macro and PRR placement through the evaluation of PR 
design output bitstreams. Our work also aims to isolate 
designers from PR design low-level details and intricacies. 

 
 
 
 
 

 
 
 
 
 
 
 

 
 

Figure 2: Virtex-4 LX25 (a) Virtex-4 LX25 FPGA resource layout with 
.dil file banks and (b) .dil to device floorplan mapping. 
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III. DAPR DESIGN FLOW 
The DAPR design flow reduces PR design time effort and 

complexities by automating many of Xilinx’s EA PR design 
flow’s difficult steps. Figure 1 depicts the DAPR design flow 
(right side) compared to Xilinx’s EA PR design flow (left 
side). The DAPR design flow is a generic, module-based 
reconfiguration PR design flow and uses vendor specific 
(Xilinx in this case) utilities to assist in bitstream generation. 

The DAPR design flow consists of a manual step and an 
automated step. In the manual step, the designer annotates 
the top-level VHDL design files and sets design constraints 
(optional). These annotations and design constraints serve as 
input to the automated step, which is orchestrated by the 
DAPR tool to automate the complex portions of Xilinx’s EA 
PR design flow. The DAPR design flow can be adapted to 
support different PR devices by updating how the vendor 
utilities are integrated in the DAPR tool. The DAPR tool 
works in four phases, which generate the PR design’s full 
and partial bitstreams. In this section, we describe the DAPR 
design flow steps and the DAPR tool phases. 
A. DAPR Design Flow Steps 

In the DAPR design flow’s first manual step, the designer 
performs several straightforward tasks to prepare the PR 
design for the second automated step. First, the designer 
annotates the VHDL component instantiations in the top-
level design file using standard formatted VHDL comments 
(the designer must also follow Xilinx’s EA PR design VHDL 
formatting guidelines (Section II.A), which assumes that all 
PRR instantiations are defined in the top-level file). Using 
VHDL comments ensures that these annotations will not 
introduce synthesis errors or affect design portability. 
Optionally, the designer can define PR design constraints 
(e.g. timing, power, area, partial bitstream size, I/O primitive 
definitions, etc.) and the DAPR tool’s effort level control 
value (Section III.B) in a design constraints file (.dcs). 

After completion of the manual step, the DAPR tool’s 

inputs are the annotated top-level design file, all other design 
files, and the .dcs file. The DAPR tool manipulates these 
files to generate the PR design’s full and partial bitstreams. 
B. DAPR Tool Phases 

The DAPR design flow’s second automated step, depicted 
in Figure 3, consists of four phases. In phase 1, information 
identification uses the design file annotations to identify the 
static region and PRR instantiations, bus macro 
instantiations, and design file names. Information extraction 
extracts port map connection information from the region 
instantiations. The extracted connection information is 
written to a PR automation information file (.prai). 

Collectively, phases 2 through 4 iteratively generate 
candidate PR designs. Phase 2, the candidate generation 
phase, constitutes the bulk of DAPR’s work and 
automatically (1) synthesizes all design files using Xilinx’s 
XST utility, (2) estimates the hardware resource 
requirements from the generated synthesis log file (.srp) and 
records the requirements in the .prai file, (3) reads the port 
map connection information from the .prai file, generates a 
connectivity information file (.dot), and generates a 
connectivity graph for these regions, (4) uses the device 
information library file’s (.dil) estimated resources, 
connectivity information, and .ucf file to build an initial 
candidate floorplan if the .ucf file does not contain an 
existing floorplan, otherwise builds a new candidate 
floorplan, and (5) writes the current candidate floorplan 
constraints to a new .ucf file. The .dil file is currently 
generated in-house as part of the DAPR tool and contains the 
target device’s hardware resource information.  

Phase 3, the bitstream generation phase, uses the ngdbuild, 
MAP, PAR, PR_verifydesign, and PR_assemble utilities 
(similar to the EA PR design flow’s implement (4) and 
merge (5) steps) to output the full and partial bitstreams. 

Finally, phase 4, the design evaluation phase, determines if 
the current candidate floorplan meets the specified design 
constraints. A Perl script estimates the candidate PR design’s 
partial bitstream size, timing, power, and area requirements 
from the trace report file (.twr), the power report file (.pwr), 
and the map report file (.mrp) generated by Xilinx’s TRACE, 
XPower, and MAP utilities, respectively. If any design 
constraints are not met, the DAPR tool returns to phase 2, 
builds a new unique candidate floorplan, and repeats phases 
3 and 4. This iterative process continues until the candidate 
floorplan meets the design constraints or for a fixed number 
of successful iterations Imax. Successful iterations generate 
valid candidate PR designs, while unsuccessful iterations fail 
the place and route step. To bound design exploration time to 
a reasonable amount, Imax is initially set to 100 since 
experiments showed that a single small design iteration 
required 15 minutes on average (the Xilinx utilities 
constituted the majority of this time). However, Imax’s value 
can be specified in the .dcs file. 

On phase 4’s completion, the DAPR tool outputs the PR 
design that meets the clock frequency constraint or the PR 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 3: DAPR tool phases.  



design with the maximum attainable clock frequency if the 
clock frequency constraint is not met. The DAPR tool also 
outputs a Pareto optimal set of PR designs that trade off 
clock frequency and partial bitstream size. 

IV. DAPR TOOL DETAILS 
Since the candidate generation phase does most of 

DAPR’s work, in this section we elaborate on this phase’s 
functionality, including .dil file layout and usage in candidate 
floorplan generation. 
A. Device Information Library 

 The .dil file is primarily used in conjunction with the 
DAPR tool floorplanner to build candidate floorplans. The 
.dil file is a two dimensional grid of entries, which specify 
each FPGA fabric location’s resource status and type (e.g. 
0S, 0R, 0F, 0D, 0B, 0C). Each entry’s X and Y coordinates 
(grid location) in the .dil file’s grid directly translate to the 
resource’s X and Y coordinates on the FPGA fabric. Each 
entry’s numerical and character value indicate the resource’s 
availability (allocated (0) or free (1)) and type (CLB slices 
(S), BRAMs (R), FIFOs (F), DSPs (D), BUFGs (B), and 
DCMs (C)), respectively. Figure 2 (b) illustrates an example 
floorplan built from the Virtex-4 LX25 .dil file. 
 Each entry’s value and corresponding grid location provides 
an easy method to identify and allocate FPGA resources 
(currently the DAPR tool includes a .dil file for the Virtex-4 
LX 25, but the .dil file could be easily generated for any 
FPGA device). Resource types can be allocated for a PR 
design’s PRRs, bus macros, or other components (e.g. 
DCMs, BUFGs) by translating the entry value and grid 
location into proper .ucf file syntax. The allocation syntax for 
a PRR is the PRR instance name, as defined in the top level 
VHDL file, followed by the required resource’s type and X 
and Y coordinates on the FPGA fabric (see [14] for syntax 
details). To allocate component resources that span across 
the FPGA fabric (e.g. CLB slices, BRAM, FIFOs, DSPs), the 
resource range can be specified in the .ucf file. Alternatively, 
DCM and BUFG allocations do not span the FPGA fabric 
and must be in the form of single X and Y coordinates. Since 
defining PRRs that span the center of the device ((a)) is 
complicated and not recommended [14], we divide the .dil 
file into three banks (Figure 2 (a)) to isolate resource 
allocation. Banks 0 and 1 contain CLB slice, BRAM, FIFO, 
and DSP entries for the FPGA’s left and right halves, 
respectively, and bank 2 contains DCM and BUFG entries. 
B. Candidate Floorplan Generation 

The DAPR tool floorplanner uses the .dil, .dcs, and .prai 
files to automatically build candidate design floorplans to 
determine the best PR design (fastest clock frequency) after 
Imax successful iterations. Phase 2’s first iteration creates an 
initial candidate floorplan by placing the PR design’s DCMs 
and BUFGs in the lowest possible free DCM and BUFG X 
and Y coordinate locations, the PRRs using a cluster growth 
(CG) algorithm [12], and the bus macros randomly around 

the PRRs using a simulated annealing (SA) algorithm [12]. 
The candidate floorplan is then used to create a candidate PR 
design during phases 3 and 4. 

Algorithm 1 depicts our CG algorithm which takes as 
input the set of all PRRs (S), each PRRs maximum resource 
requirements (R) and port connectivity information (C), the 
white space (WS) (extra resources), the aspect ratio (AR), 
total number of PRRs (n), the .dil file, the set of all bus 
macros (B), the maximum number of bus macros required for 
each PRR (Bmax), and the maximum number of successful 
iterations (Imax).  

Lines 3-10 use CG to place PRRs where the set of all 
PRRs S is initially arranged in a linearly ordered list (line 3) 
using PRR port connectivity information C and a linear 
ordering algorithm (a widely used technique for building 
initial placement configurations [12]). The CG algorithm 
selects PRRs in ascending order from the list (line 7) and 
selects a placement for the current PRR i (starting at the 
FPGA’s lower left corner and growing diagonally across the 
device) using the .dil file while minimizing the increase in 
the cost function (line 8). The cost function attempts to 
minimize each PRR’s placement size, thus minimizing the 
total number of resources required, while keeping the PRR 
aspect ratio close to AR. PRR i’s minimum placement size is 
defined by PRR i’s maximum resource requirements R(i) 
plus the percentage of extra resources as defined by WS. The 
default amount of white space allocated is 10% of the 
maximum resources required by a PRR (WS can be specified 
in the .dcs file). Additionally, AR defines the placed PRR’s 
shape. AR defaults to 1 if no value is specified. 

Lines 11-57 depict our SA-based approach for exploring 
bus macro placement solutions for B. In order to determine 
the initial temperature T0 and initial solution for the SA 
algorithm, a random number Irand (between 1 and 10) of 
successful bus macro placement iterations is performed (lines 
11-18) where in each iteration, the set of all bus macros B is 
placed around the respective PRRs using bmRnd(). bmRnd() 
generates random placement constraints for B, which is 
written to BmPlace (line 12). BmPlace is written to the .ucf 
file (line 13) and the corresponding candidate PR design is 
generated (line 14) and evaluated (line 16). Candidate PR 
designs are only evaluated if the bitstream generation 
completes without PAR errors (line 15), otherwise a new 
candidate floorplan is generated and the current running 
number of successful iterations Icurr remains unchanged 
(lines 51-52). If five consecutive PAR errors occur, WS is 
increased by 5% in order to inhibit further PAR errors (lines 
55-57). A candidate PR design’s clock frequency, partial 
bitstream size, power, and area requirements are determined 
and recorded during design evaluation. If the design’s clock 
frequency constraint is met, then DesignEvaluation() jumps 
to line 59, otherwise the average clock frequency change 
!avg (used to compute T0) for all uphill bus macro 
placements (lower clock frequency PR designs) is 
determined. The best found bus macro placement constraints 



after Irand successful iterations is stored in BmInit using 
clkFq() (returns the candidate PR design’s clock frequency) 
and is used as the initial solution for SA. 

After Irand successful iterations complete, the SA 
algorithm (lines 20-25) sets the current bus macro placement 
(BmCurrent) and the best found bus macro placement 
(BmBest) to BmInit, swp to Bmax, the acceptance probability 
(uphill bus macro placement acceptance probability) P to 
0.99, the temperature reduction rate ! to 0.85, and the current 
temperature T and the initial temperature T0 using: 

                                                                      (1) 

Next, for each successful iteration from Irand to Imax 
(lines 26-57), the SA algorithm explores new bus macro 
placements for B using a perturbation function (lines 28-33), 
generates and evaluates the corresponding candidate PR 

design (lines 35-38), and accepts or rejects the new 
placement (lines 39-46) with probability P using: 

                                                                              (2) 
The perturbation function explores new bus macro 

placements for B (written to BmNew) using either swpRnd() 
or bmRnd() according to the value of swp. If swp is greater 
than 0, swpRnd() modifies the current bus macro placements 
(BmCurrent) by performing swaps among existing bus macro 
placements of each respective PRR while decrementing swp 
each time (line 28-30). If swp equals 0, bmRnd() performs 
random bus macro placements while resetting the value of 
swp back to Bmax each time (lines 31-33). swpRnd() swaps 
existing bus macro placements for each respective PRR by 
comparing the current value of Bmax and swp where, if 
swp"(2*Bmax/3), the input bus macro locations are 
randomly swapped, if swp<(2*Bmax/3) and swp>(Bmax/3), 
the output bus macro locations are randomly swapped, and if 
swp<(Bmax/3) until swp equals 0, the input and output bus 
macro locations are randomly swapped interchangeably. We 
use this swapping method to provide ample variation in the 
swapping mechanism, but not too much variation such that 
the design solution space size is exponential (2Bmax). 

After the candidate PR design with the new bus macro 
placement is generated and evaluated, the change (!clkFq) 
between the new bus macro placement’s (BmNew) clock 
frequency from the current bus macro placement’s 
(Bmcurrent) clock frequency is computed (line 39). If 
!clkFq < 0 (line 40), the new bus macro placement is not 
uphill and is accepted as the current bus macro placement 
(line 43). Also, if the new bus macro placement has the best 
clock frequency thus far, the new bus macro placement is 
accepted as the best bus macro placement and is written to 
BmBest (lines 44-45). Alternatively, if the new bus macro 
placement is uphill, the new solution is accepted with 
probability P and written to BmCurrent (line 41). Initially, 
the acceptance probability P is close to 1 during high T 
values, but decreases with decreasing T. T is decreased in 
line 49 with the recommended temperature reduction rate ! = 
0.85 [12], if at each given temperature the total number of 
uphill moves (Uphill) or the total number of moves (MT) 
exceeds Bmax or 2*Bmax respectively (line 27). 

At the end of our algorithm (line 59), the best found clock 
frequency along with the corresponding iteration number and 
floorplan is output using clkFqBest(), IBest(), and 
floorplanBest(), respectively. Also, a Pareto optimal set of 
PR designs that trade off clock frequency and partial 
bitstream size are output with Pareto(). 

V. DAPR DESIGN FLOW EVALUATION 
A. Experimental Setup 

We implemented the DAPR design flow and tool in the 
Linux environment. The DAPR tool phases are implemented 
in Perl scripts for information parsing and file manipulation. 
The candidate generation phase (2) uses a dot language 

Input: S, R, C, WS, AR, n, .dil, B, Bmax, Imax 
Output: Highest clock frequency value, corresponding design number,     
               and floorplan constraints 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Algorithm 1: The DAPR tool cluster growth and simulated annealing 

algorithm for PRR and bus macro placement, respectively. 

1 Icurr,Uphill,Reject,MT # 0; 
2 Irand # int(rand(10)); 
3 S # LinearOrder(S, C); 
4 while Icurr < Imax do 
5    DCMandBUFGplacement(); 
6    for i # 1 to n do 
7       Select PRR i from S; 
8       Use R(i), WS, AR and .dil to select PRR i’s  

      placement with minimum increase in cost function; 
9       Write PRM i’s placement constraints to ucf file; 
10    endfor 
11    if Ic < Irand then 
12       BmPlace # bmRnd(B); 
13       Write bmInit placement constraints to ucf file; 
14       BitstreamGeneration(); 
15       if PARfail == 0 then 
16          DesignEvaluation(); 
17       if clkFq(bmplace) > clkFq(bmInit) then 
18          BmInit # Bmplace; 
19       if Ic == Irand then 
20          BmCurrent # BmInit; 
21          BmBest # BmInit; 
22          swp # Bmax; 
23          P # 0.99; 
24          ! # 0.85; 
25          T " T0 # !avg/ln (P); 
26    if Ic # Irand and Ic < Imax then 
27       if (Uphill > Bmax or MT  > 2*Bmax) then 
28          if (swp > 0 and swp $ Bmax) then 
29             BmNew # swpRnd(B, swp, Bmax); 
30             swp " swp -1; 
31          else 
32             BmNew # bmRnd(B); 
33             swp # Bmax; 
34          MT # MT + 1; 
35          Write bmNew placement constraints to ucf file; 
36          BitstreamGeneration(); 
37          if PARfail == 0 then 
38             DesignEvaluation(); 
39          !clkFq # clkFq(BmCurrent) – clkFq(BmNew); 
40          if (!clkFq < 0 or rand(1) < e!clkFq/T) then 
41             if (!clkFq > 0) then 
42                Uphill # Uphill+1; 
43             bmCurrent # bmNew; (*placement accepted*) 
44             if (clkFq (BmCurrent) > clkFq (BmBest)) then  
45               BmBest # BmCurrent; 
46          else  
47             Reject ! Reject+1; (*placement rejected*) 
48       else 
49          T ! ! * T; 
50          Uphill,Reject,MT # 0; 
51    if PARfail == 0 then 
52       Icurr # Icurr  + 1; 
53    else 
54       PARerror # PARerror +1; 
55    if PARerror == 5; 
56       WS # WS + 5; 
57       PARerror " 0; 
58 endwhile 
59 return clkFqBest(), IBest(), floorplanBest(), Pareto() 



interpreter to generate the connectivity graphs. We ran the 
DAPR tool on a desktop PC with an Intel® Core ™ 2 Duo 
E6750 2.66 GHz CPU and 3.24 GB of RAM and the utilities 
from Xilinx’s ISE version 9.2i04 with PR patch 12 installed. 

We evaluated the DAPR design flow SA algorithm with a 
32-bit counter core and the complete DAPR design flow with 
a 1K-point FFT core, a 32-bit CORDIC core, and a 4X4 
matrix multiplier (MM) core. We generated the FFT and 
CORDIC cores using Xilinx’s core generation tool and wrote 
the MM and counter cores in-house. Each PR design’s 
modified HDL design description was taken as input by the 
DAPR tool and the final bitstreams were generated for the 
Xilinx ML401 evaluation platform [15] (Virtex-4 LX25 
FPGA board). We wrote the original HDL device description 
for the PR designs with one static region to function as a 
register to store each PRM’s last output and one PRR to 
load/unload the counter, FFT, CORDIC, or MM core PRMs. 
In order to maintain feasible simulation times, our PR 
designs consist of a single PRR due to a significant increase 
in iteration time for more PRRs (i.e. 50 to 60 minutes per 
iteration for 2 PRRs). However, we simulated designs with 
more PRRs and obtained similar results as presented here. 

We evaluated our SA algorithm for the 32-bit counter core 
compared to an exhaustive search (ES) algorithm to find the 
optimal placement of the input bus macros only (the 32-bit 
counter has 4 input and output bus macros) and also a 
random exploration (RE) algorithm of the input bus macros 
for the largest PRR size (we explored four ascending PRR 
sizes, which required 24, 120, 360, and 840 iterations, 
respectively for ES). Although, we obtained similar results 
for ES by including output bus macros for the smallest PRR 
size (required 576 iterations), we ran the algorithms for input 
bus macros only to bound the total DAPR tool run time (e.g. 
the second smallest PRR size would require 14,400 iterations 
for ES, which would require 3600 hours or 150 days).  

We constructed two test cases for the FFT, CORDIC, and 
MM PR designs and used the DAPR tool to find the best PR 
design (fastest clock frequency) within Imax successful 
iterations. For both test cases, we set Imax = 100. For the 
first and second test cases, we set AR=1 and AR=10, 
respectively, in order to evaluate the aspect ratio’s impact on 

attainable clock frequency (there is no defined method to 
predict clock frequency based on PRR aspect ratio [5]) and 
partial bitstream size. Power and area constraints were not 
set, which forced the algorithm to place the PRRs with the 
lowest area (including the extra space) possible. Setting lax 
power and area constraints allows the PRR placement 
algorithm to place PRRs with larger areas (extra unused 
resources), which can reveal higher clock frequencies. 

We evaluated our results for the FFT, CORDIC, and MM 
cores with respect to the highest clock frequency found by 
the DAPR tool after a fixed number of successful iterations. 
We did not compare with the optimal clock frequency 
because our experiments showed that the clock frequency 
varied unpredictably with different bus macro placements, 
therefore determining the optimal solution through 
exhaustive search is impractical given such a large design 
space. The average runtime to complete 100 iterations on 
each design was 25 completely automated hours (an 
acceptable runtime given that a manual process would take 
several days). 
B. Results 

We evaluated SA using the percentage of the design space 
explored (in terms of successful iterations) to achieve the 
optimal clock frequency obtained from ES. For the smallest 
PRR size, SA found the optimal solution after exploring 83% 
of the design space. SA improved on this performance 
significantly for increasing PRR sizes, finding the optimal 
solution after exploring only 21.7%, 13.84%, and 18.2% of 
the design space, respectively. Additionally, for the largest 
PRR size, SA outperformed RE by requiring 23% less design 
space exploration. 

We evaluated the complete DAPR design flow using the 
clock frequency and partial bitstream size verses successful 
iterations. Power requirements were constant in each 
iteration as each PR design’s logic remained constant (no 
logic reduction was done during synthesis). PRR area 
requirements did not change significantly during the 
iterations as PRR size only increased when enough PAR 
failures occurred and thus was excluded due to lack of space.  

Figure 4 depicts the current iteration’s clock frequency 

 
Figure 4: Current iteration’s clock frequency and partial bitstream size versus successful iterations with the design’s final aspect ratio (top row and 

bottom row shows designs run with AR=1 and AR=10, respectively). 



and partial bitstream size verses successful iterations (AR=1 
top row, AR=10 bottom row) and Figure 5 depicts the current 
highest clock frequency found (AR=1 left, AR=10 right). 
Figure 4 tracks the variations in the current iteration’s clock 
frequency and bitstream size while Figure 5 tracks the 
convergence of the best solution found thus far. Since the AR 
constraint is not always maintained during design exploration 
due to variations in the PRR’s required resources and the 
FPGA fabric’s resource distribution, the actual (final) AR 
values of the placed PRR’s are noted in the graph titles.  

As expected, the results revealed that the greatest 
improvements in the best solution occur during the first 
several successful iterations. This growth rate quickly levels 
off and converges to within 2.31% of the highest achievable 
solution (within Imax) after an average of only 10 iterations. 
Comparing the convergence rates for different AR values also 
reveals that higher AR values converge faster than lower AR 
values requiring on average 28 and 33 iterations, 
respectively. Additionally, the initial AR value affects the 
maximum achievable clock frequency. For example, the 32-
bit CORDIC core’s fastest clock frequency ranged from 
170.1 MHz to 178.1 MHz for AR=1 and AR=10, respectively. 
The difference in clock frequency arises because large aspect 
ratios enable our PRR placement algorithm to more easily 
meet DSP, FIFO, and BRAM requirements with more free 
resources in each PRR, which reveals additional higher clock 
frequency routing paths.  

Since each candidate PR design results in a different 
tradeoff between partial bitstream size and clock frequency, 
the DAPR design flow can also be used to determine the 
Pareto optimal set of design points, enabling designers to 
choose the appropriate design tradeoff while examining only 
a small set of potential designs. Figure 6 shows each 
candidate design’s time period (inverse of the clock 
frequency) verses partial bit stream size for the 1K-point FFT 
core with AR=1 with the Pareto optimal points highlighted 
(circular points). For this example, only 3% of the design 

space are interesting points, thus significantly reducing the 
number of designs a designer must consider. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we present the DAPR design flow, which 

automates the intricate EA PR design flow steps. DAPR 
enables designers to specify design constraints and 
automatically explores the design space using an iterative 
candidate PR floorplan generation methodology. DAPR 
outputs the PR design with the fastest clock frequency and a 
Pareto optimal set of PR design’s that trade off clock 
frequency and partial bitstream size. Therefore, the DAPR 
flow is highly flexible to meet different designer needs. The 
DAPR design flow’s key contributions include: making PR 
design more accessible and amenable to a wider range of 
designers; facilitating rapid design prototyping; and creating 
high-performance systems with reduced design time effort. 

Future work includes investigating techniques to enhance 
the DAPR tool floorplanning algorithm such as leveraging 
SA for PRR placement (the CG-based method is unsuitable 
for heterogeneous floorplanning), efficient use of BUFG and 
DCM placement, and finding the best design with respect to 
any design constraint. Support for additional Virtex-4 
devices and the ISE design suite 11 is also planned. 
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Figure 5: Current iteration’s highest Clock Frequency versus successful 
iterations for designs run with AR=1 (left side) and AR=10 (right side). 

 
 
 
 
 
 
 
 
 

Figure 6: 1K-point FFT (AR=1) time period versus partial bitstream size. 
 
 
 
 
 

 

 

 


