
10 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 2, NO. 1, MARCH 2010

Evaluation of Dynamic Profiling Methodologies for
Optimization of Sensor Networks

Ashish Shenoy, Jeff Hiner, Susan Lysecky, Member, IEEE, Roman Lysecky, Member, IEEE, and
Ann Gordon-Ross, Member, IEEE

Abstract—To reduce the complexity associated with application-
specific tuning of sensor-based systems, dynamic profiling enables
an accurate view of the application behavior, such that the network
can be reoptimized at runtime in response to changing application
behavior or environmental conditions. However, dynamic profiling
must be able to accurately capture application behavior without in-
curring significant runtime overheads. We present several profiling
methods for dynamically monitoring sensor-based platforms and
analyze the associated network traffic, energy, and code impacts.

Index Terms—Application-specific optimization, design automa-
tion, dynamic profiling, sensor networks.

I. INTRODUCTION

N UMEROUS sensor-based platforms have appeared en-
abling a wide range of application possibilities. With each

application scenario, developers have a unique set of applica-
tion requirements such as lifetime, responsiveness, reliability,
or throughput that must be met. For example, a disaster re-
sponse application requires high responsiveness and reliability
to survey damage or detect survivors, but may only require a
lifetime of days or weeks. Conversely, an automated vineyard
irrigation system would have a longer lifetime requirement as it
is intended to operate on the order of years.

To achieve various application goals, developers can tune
configurable node-level parameters such as voltage levels,
processor mode, or configurable baud rates [4]. Furthermore,
developers can also consider numerous protocol-level design
choices such as power cycling to sensing units [3], or data
aggregation and filtering [5]. While the effects of various pa-
rameter configurations have on high-level design metrics have
been well documented, balancing these numerous competing
metrics remains challenging. To further complicate matters,
predicting application behavior is extremely difficult at design
time. Tuning the underlying platform to inaccurate applica-
tion behavior estimates can yield either suboptimal results or
negatively impact the resulting system. Currently, application
developers are left to specify application-behavior via an input

Manuscript received January 22, 2010; revised March 06, 2010: accepted
March 06, 2010. Date of publication March 15, 2010. Date of current version
April 26, 2010. This work was supported in part by the National Science Foun-
dation, under Grants CNS-0834102 and CNS-0834080.

A. Shenoy, J. Hiner, S. Lysecky, and R. Lysecky are with the Department
of Electrical and Computer Engineering, University of Arizona, Tucson, AZ
85721 USA (e-mail: ashenoy@email.arizona.edu; jhiner@email.arizona.edu;
slysecky@ece.arizona.edu; rlysecky@ece.arizona.edu).

A. Gordon-Ross is with the Department of Electrical and Computer
Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
ann@ece.ufl.edu).

Digital Object Identifier 10.1109/LES.2010.2045634

file [11], a mathematical model [10], or through synthetic data
generation [12]. While a few real-time tools have appeared
[9], they are not designed for dynamic profiling and incur
significant overhead.

To alleviate some of the complexity associated with applica-
tion-specific tuning of sensor-based systems, we have begun to
develop a dynamic profiling and optimization (DPOP) frame-
work. Dynamic profiling and optimization not only reduces de-
signer effort, but an automated environment increases accessi-
bility to nonexpert application developers by abstracting much
of the underlying platform specific knowledge. Dynamic pro-
filing enables an accurate view of the application behavior while
immersed in its intended environment, eliminating the guess-
work of trying to create a “good” benchmark. Furthermore, by
profiling applications dynamically, we can monitor how the ap-
plication responds to changes in environmental conditions or
changes in the underlying platform (i.e., a node is disabled),
opening opportunities to dynamically reoptimize and update the
underlying platform accordingly.

However, such dynamic optimization relies upon accurate
profiling results collected at runtime. Currently, an accurate and
robust method to capture external application-specific stimuli
remains elusive. While many dynamic profiling techniques
exist, these techniques are highly specific to their intended
system and thus, are quite low level. For example, working set
analysis [1] monitors the current set of executing instructions
to determine changes in system execution. Kaxiras et al. [6]
determines changes in cache requirements using counters
embedded within the cache structure, while other methods
simply observe current idle periods [2]. Whereas idle period
observation is a generalized, high-level mechanism to profile a
system, this method, when applied to sensor networks, provides
little information on overall system behavior. Furthermore, the
distributed nature of sensor-based networks complicate adop-
tion of previously developed profiling methods to sensor-based
networks.

One of the major challenges of dynamically profiling
sensor-based platforms is accurately capturing application
behavior without incurring significant overhead or significantly
altering system behavior. In this letter, we present several
profiling methods for dynamically monitoring sensor-based
platforms and analyze the traffic/energy/code impacts for two
prototyped sensor-based systems.

II. DPOP ENVIRONMENT

Fig. 1 illustrates the proposed dynamic profiling and opti-
mization platform. Three main components contribute to the

1943-0663/$26.00 © 2010 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on May 17,2010 at 12:39:27 UTC from IEEE Xplore. Restrictions apply.

SHENOY et al.: EVALUATION OF DYNAMIC PROFILING METHODOLOGIES FOR OPTIMIZATION OF SENSOR NETWORKS 11

Fig. 1. DPOP environment highlighting various tasks including specifying design metric evaluation equations and assigning design metric weights to indicate the
relative importance between each design metric.

proposed environment and include the sensor-based application,
the end-user design metric specification, and the DPOP module.

The sensor-based application is the physical deployment of
the application within the intended environment and consists of
sensor nodes, intermediate processing and routing nodes, and
actuator nodes, working together to achieve the desired applica-
tion functionality.

Ultimately, the application developer is interested in high-
level system metrics such as the expected lifetime of a node or
sensor network utilizing two AA batteries, the time required to
process a single packet, or the time required to process and re-
spond to a sensor event. The end-user design metric specifica-
tion allows an application developer to define which design met-
rics are of importance to a particular application, and of those
design metrics, what are the acceptable or unacceptable values
of each, thereby providing a method to interpret the resulting
system achievement within the context of a given application.

First, for each design metric, an application developer corre-
lates a design cost to the raw metric value (i.e., lifetime of two
months), where a lower design cost corresponds to a superior de-
sign metric value. Fig. 1 illustrates three design metric objective
functions corresponding to lifetime, reliability, and throughput,
for which a graphical interface [7] is utilized to specify the de-
sign metric objective functions as piecewise linear functions.

Second, to determine the relative importance of each design
metric, the application developer additionally specifies weights
for each design metric, as shown in Fig. 1. The overall objec-
tive function—or overall design cost—combines the individual
design metric weights as well as the resulting costs assigned by
each design metric objective function. This overall design cost
indicates how well an individual node configuration meets the
specified application requirements.

The DPOP node is a separate component—implemented
either within the base station node or as a separate sensor
node—dedicated to the profiling and optimization of the under-
lying sensor-based platform, as the platform interacts within
the intended environment. The profiler module dynamically
monitors the application behavior while the sensor-based
system is deployed, tracking statistics of interest to the applica-
tion developer. The optimizer module evaluates possible node
configurations within the design space to determine which
configuration best meets the application requirements. Given
the design metric evaluation specification and dynamic profile
data, the optimizer first utilizes an equation based estimation
methodology that estimates each design metric using both

Fig. 2. Overview of profiling strategies considerations including what, whom,
when, and how to profile (shaded options are currently supported by our pro-
filing implementation).

the node configuration and profile data. The optimizer then
explores the design space by evaluating each feasible node
configuration to determine which node configuration is best
suited for a given application, i.e., the configuration yielding
the lowest overall design cost. Dynamic optimization of sensor
nodes using the DPOP environment can yield up to an 83%
improvement in overall design costs compared to a statically
optimized node configuration.

III. DYNAMIC PROFILING OF APPLICATION BEHAVIOR

Within the DPOP environment, dynamically profiling a
sensor-based application requires profiling methods to be in-
corporated within each node to monitor the execution behavior
for individual sensor nodes. Additionally, in order to optimize
a sensor-based system, a global view of the entire system is
needed. As such, the resulting node-level profile data must
eventually be transmitted and analyzed by the system-level
profiler module. Numerous profiling strategies can be employed
to collect the pertinent application level information. As high-
lighted in Fig. 2, each profiling strategy must consider: 1) what
application level parameters needed to be profiled; 2) whom
to profile within the network; 3) when to perform profiling;
and 4) how to transmit profile information from the individual
sensor nodes.

One of the foremost concerns for a profiling strategy is to
determine what low-level execution statistics (e.g., sensor sam-
pling rate, packet transmissions, battery charge) need to be pro-
filed within the deployed network. At each sensor node, var-
ious low level execution details must be monitored in order to
enable the optimization approach to accurately estimate the var-
ious high-level design metrics of interest. For example, consider
a sensor node that periodically samples and reports sensor data.
The power consumption of the software required to process each

Authorized licensed use limited to: University of Florida. Downloaded on May 17,2010 at 12:39:27 UTC from IEEE Xplore. Restrictions apply.

12 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 2, NO. 1, MARCH 2010

sensor event and transmit the packet can be statically measured
through physical measurements. The runtime power consump-
tion of the software executing on a node can be estimated as a
function of the measured power consumption and the dynamic
sensor sampling rate. Overall, determining what low-level met-
rics to profile within a sensor-based platform is thus related to
both the high-level design metrics of interest and the estima-
tion method utilized to evaluate those design metrics. Within
our current profiling implementation, both the sensor sampling
rate and the time between successive packets can be profiled for
individual sensor nodes.

Profiling individual sensor nodes is not always necessary.
Hence, a profiling strategy must consider the granularity at
which profiling is performed, including profiling an individual
node, a cluster of nodes, or profiling the network as a whole.
The granularity at which to profile is affected by both applica-
tion and network topology. For example, the profiler may want
to profile only those intermediate nodes whose job is to forward
packets as these nodes may have higher energy consumption
for which optimizing lifetime is of critical importance. Alter-
natively, the profiler may consider a single sensor node placed
in a known area with high activity to determine the minimum
sampling rate to needed by the application. Profiling the entire
network is also possible in which nodes directly aggregate—or
average—the collected profile information as it is forwarded
profiler module. However, profiling at different levels of gran-
ularity provides the ability to tradeoff profiling detail with
profiling overhead. Although various profiling granularities are
possible, our current profiling implementation only supports
profiling of individual nodes.

Given the desired profiling information to be collected, the
frequency at which profiling is performed directly impacts both
the accuracy of the profile data, as well as the intrusiveness of
the profiling method. On the one hand, profiling can be per-
formed periodically at each node or cluster of nodes. Although
the performance and energy overhead of periodic profiling is
often easily predicted, dynamic activity patterns of individual
nodes or across the sensor network may be unpredictable and
a periodically collected profile may not accurately describe the
current execution behavior. On the other hand, nodes can di-
rectly detect all events related to the required profiling informa-
tion and directly transmit those event occurrences to the profile
module as they occur. Such an approach provides the advan-
tage of highly accurate profile information, but at the expense
of potential increases in both code size needed to detect such
events and increased packet transmission overhead due to unpre-
dictable event occurrences. An alternative approach to control
when to profile is requiring the profiler module to explicitly send
a profile request packet. While a packet transmission overhead
is incurred to transmit the profile request packet, the profiler
module can dynamically control how often these requests are
sent based on the data collected thus far or patterns previously
observed. Our current profiling implementation provides sup-
port for all three methods of controlling when profiling is per-
formed for individual nodes, specifically periodic, event-driven,
and profiler module directed.

Finally, the method of transmitting the collected profile data
back to the profiler module directly impacts both the network

traffic of the sensor network, as well as node’s energy consump-
tion as the radio subsystem must remain active for longer dura-
tions to transmit the profile data. Currently, our profiler imple-
mentation provides support for either transmitting profile data
as separate profile packets or appending, i.e., piggybacking, the
profile data to existing packets already transmitted by the appli-
cation. Requesting nodes to send separate profiling packets may
increase overall network traffic as each dedicated profile packet
must also include the packet header. Instead, by piggybacking
the profile information onto existing data packets, the profile
data can be transmitted without requiring an additional packet
header. However, piggybacking profile data onto existing data
packets may require individual sensor nodes to store the profile
data until the sensor nodes transmit a data packet.

To evaluate the feasibility of the proposed profiling method-
ologies within the DPOP framework, we implemented the above
mentioned profiling methods on the Crossbow IRIS platform as
a set of software functions that can be readily integrated within a
sensor application. While incorporating these profiling methods
into the target application currently requires designer effort, the
required changes do not directly impact the main application
functionality. Rather, these methods are inserted within the un-
derlying software infrastructure for packet transmission/recep-
tion and sensor interfaces. As many application developers will
not need to directly modify this code, various profiling methods
can be selected by simply including the required set of software
driver source files for the target application.

The resulting profiling methodologies can supported all com-
binations of what, whom, when, and how to profile mentioned
above. However, we currently consider the following four spe-
cific profiling methods.

• PM1: sensor sampling rate and time between successive
packets; individual nodes; profiler module directed; piggy-
backed.

• PM2: sensor sampling rate and time between successive
packets; individual nodes; profiler module directed; sepa-
rate profile packets.

• PM3: sensor sampling rate and time between succes-
sive packets; individual nodes; periodic; separate profile
packets.

• PM4: sensor sampling rate; individual nodes; profiler
module directed; separate profile packets.

IV. EXPERIMENTS

We consider two sensor-based applications to evaluate the
overheads of the four proposed profiling methods. The first ap-
plication is a Forest Fire Detection and Propagation Tracking
system. During the normal observation mode, individual sensors
sample and transmit the surrounding temperate reading every
five minutes to a base station. In the event that a node detects an
elevated temperature, beyond a user-defined threshold, an alert
to nearby nodes is issued to transition to a fire tracking mode
and report the temperature every ten seconds. We have also de-
veloped a Building Monitor application. Within this application,
sensor nodes synchronize hourly with the base station to verify
the node is still functioning, as well as obtain which operation
mode the node should be in. In the low-power mode, nodes do

Authorized licensed use limited to: University of Florida. Downloaded on May 17,2010 at 12:39:27 UTC from IEEE Xplore. Restrictions apply.

SHENOY et al.: EVALUATION OF DYNAMIC PROFILING METHODOLOGIES FOR OPTIMIZATION OF SENSOR NETWORKS 13

TABLE I
NETWORK TRAFFIC (%/BYTES), ENERGY CONSUMPTION (mAH), AND CODE SIZE (%/kb) OVERHEADS OF VARIOUS PROFILING STRATEGIES FOR THE FOREST

FIRE DETECTION AND BULIDING MONITOR APPLICATIONS

not need to detect movement and return to a sleep state until
the next synchronization. During the monitor mode, if the stan-
dard deviation of the last four samples is greater than a user de-
fined threshold, the sensor node will transmit a message to the
base station indicating movement with the corresponding time.
In contrast to the forest fire monitoring application that is peri-
odic in nature, the building monitor is a more reactive system in
that it reports movement when detected.

We implemented all applications without profiling and with
each of the four profiling methods to determine the network
traffic, energy, and code size overheads, presented in Table I.

For the forest fire detection and propagation tracking applica-
tion, PM3 yields the lowest network traffic overhead. Although
the profile information is sent as individual packets within the
PM3 strategy, by eliminating the need to transmit profile request
packets from the base station, the overhead is reduced compared
to both PM1 and PM2. However, for the building monitor appli-
cation, the PM1 strategy incurs the lowest overhead. For this ap-
plication, the profiling data is primarily piggybacked within the
time synchronization packets. Due to the low overall number of
packets transmitted within the network for this application, pig-
gybacking significantly reduces the additional traffic that would
be required for the other methodologies. This implies that pro-
filer module directed profiling is well suited to reactive systems
due to the unpredictable nature of these applications. In addi-
tion, piggybacking profile data to existing packets is only prefer-
able when periodic profiling is employed, as transmitting both
profile request packets and separate profile packets leads to sig-
nificant 14.8% and 32.2% overheads for the two respective ap-
plications.

Across all profiling methods, energy and code size overhead
remain reasonable with a maximum overhead of only 0.06 mil-
liamp-hours and 1.4 kilobytes (or 3.5%).

We note that the profiling overheads are dependent on the
both application behavior and profiling methods. As such, it is
necessary to be able to either characterize an application at de-
sign time to select an appropriate profiling method or dynami-
cally select between profiling methods at runtime, although we
currently leave this as future work.

V. CONCLUSION

Dynamic profiling of sensor-based platforms enables an ac-
curate view of an application’s execution behavior, but at the
expense of network traffic, energy, and code size overheads.
We have developed various methods for controlling the pro-
filing process and analyzed the corresponding overhead for four
specific profiling methods. While the energy and code size in-
creases are reasonable, network traffic overheads range from
7.9% to 32.2%. Furthermore, choosing an appropriate profiling
mechanism is dependent on the application behavior itself and a
single profiling method is unlikely to provide good results across
different classes of applications.

REFERENCES

[1] A. Dhodapkar and J. Smith, “Managing multi-configuration hardware
via dynamic working set analysis,” in Proc. Int. Symp. Comput. Arch.,
Anchorage, AK, 2002, pp. 233–244.

[2] F. Douglis, P. Krishnan, and B. Bershad, “Adaptive disk spindown poli-
cies for mobile computers,” in Proc. Symp. Mobile Location-Indepen-
dent Comput., Ann Arbor, MI, 1995, pp. 121–137.

[3] P. Dutta and D. Culler, “System software techniques for low-power
operation in wireless sensor networks,” in Proc. Int. Conf. Comput.-
Aided Design, San Jose, CA, 2005, pp. 925–932.

[4] J. Hill and D. Culler, “MICA: A wireless platform for deeply embedded
networks,” IEEE Micro, vol. 22, no. 6, pp. 12–24, Nov. 2002.

[5] I. Kadayif and M. Kandemir, “Tuning in-sensor data filtering to re-
duce energy consumption in wireless sensor networks,” in Proc Design,
Autom., Test Eur. Conf. (DATE), Paris, France, 2004, pp. 1530–1591.

[6] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting gen-
erational behavior to reduce cache leakage power,” in Proc. Int. Symp.
Comput. Arch., Goteborg, Sweden, 2001, pp. 240–251.

[7] S. Lysecky and F. Vahid, “Automated application-specific tuning of pa-
rameterized sensor-based embedded system building blocks,” in Proc.
UbiComp, Orange County, CA, 2006.

[8] A. Munir and A. Gordon-Ross, “An MDP-based application oriented
optimal policy for wireless sensor networks,” in Proc. Conf. Hardware/
Software Codesign Syst. Synth., Grenoble, France, 2009, pp. 183–192.

[9] C. Park and P. Chou, “EmPro: An environment/energy emulation and
profiling platform for wireless sensor networks,” in Proc. Conf. Sensor
Ad Hoc Commun. Netw., 2006, pp. 158–167.

[10] F. Perrone and D. Nicol, “A scalable simulator for TinyOSapplications,”
in Proc. Winter Simulation Conf., San Diego, CA, 2002, pp. 679–687.

[11] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. Baras, and M. Karir,
“ATEMU: A fine-grained sensor network simulator,” in Proc. Conf.
Sensor Ad Hoc Commun. Netw., 2004, pp. 145–152.

[12] Y. Yu, D. Ganseen, L. Girod, D. Estrin, and R. Govindan, “Synthetic
data generation to support irregular sampling in sensor networks,”
GeoSensor Netw., vol. 1, no. 4, pp. 211–234, 2004.

Authorized licensed use limited to: University of Florida. Downloaded on May 17,2010 at 12:39:27 UTC from IEEE Xplore. Restrictions apply.

