

Abstract—Heterogeneous and configurable multicore systems

provide hardware specialization to meet disparate application

hardware requirements. However, effective multicore system

specialization can require a priori knowledge of the

applications, application profiling information, and/or

dynamic hardware tuning to schedule and execute

applications on the most energy efficient cores. Furthermore,

even though highly disparate core heterogeneity and/or highly

configurable parameters with numerous potential parameter

values result in more fine-grained specialization and higher

energy savings potential, these large design spaces are

challenging to efficiently explore. To address these challenges,

we propose a novel configuration-subsetted heterogeneous and

configurable multicore system, wherein each core offers a

small subset of the design space, and propose a novel

scheduling and tuning (SaT) algorithm to efficiently exploit

the energy savings potential of this system. Our proposed

architecture and algorithm require no a priori application

knowledge or profiling, and incurs minimal runtime

overhead. Results reveal energy savings potential and insights
on energy tradeoffs in heterogeneous, configurable systems.

Keywords-Heterogeneous cores, configurable caches, energy

optimizations, design space subsetting, embedded systems,

multicore architectures, scheduling.

I.INTRODUCTION

Reducing energy consumption is a key design goal in all

computing domains and devices. Since an application’s hardware

requirements significantly impact the system’s energy

consumption, hardware resources can be specialized to meet these

requirements for energy efficiency. Hardware specialization can

be achieved using multicore systems, wherein each core can have

different hardware parameter values, such as voltage, clock

frequency, cache size/associativity, etc. The specific configuration

of these parameters’ values that most closely adheres to the

application’s requirements while achieving design goals (e.g.,

lowest energy consumption, highest performance, or a tradeoff)

constitutes the application’s best configuration.

Heterogeneous multicore systems, such as the ARM big.LITTLE

[4] or OMAP3530 [25], have specialized/configurable cores to

meet different application requirements, and thus have excellent

energy savings potential. However, determining the core’s

specific configurations and scheduling applications to the core

with the application’s best configuration requires accurately

identifying the application’s requirements, which can be done

using application profiling information (e.g., level one (L1) cache

miss rate, pipeline stalls, cycles per instruction (CPI), etc.).

Application profiling can be done statically during design time or

dynamically during runtime. Static profiling requires a priori

knowledge of the applications, but can be leveraged to determine

the best core configurations based on these requirements, thus

offering greater energy savings potential at the expense of an

inflexible, static system. However, due to this application-specific

specialization, this method is only suitable for static, known

applications. Dynamic profiling increases system flexibility,

which is necessary for general purpose systems, by profiling

unknown applications during runtime to determine the

application’s best configuration. However, since the applications

are not known a priori, the cores’ configurations must be

generally suitable for any application, and thus may not closely

adhere to each application’s specific requirements, which

decreases the energy savings potential. Additionally, runtime

profiling incurs profiling overhead (e.g., performance/energy)

while profiling the applications.

Even though the specialized cores are heterogeneous, offering

different configurations for different application requirements,

these configurations are fixed, thus the total number of different

configurations (e.g., the design space) is very small, which limits

potential adherence to design goals [1] (e.g., energy savings in our

work). Alternatively, heterogeneous, configurable multicore

systems have cores with runtime configurable parameters, which

increases the design space and thus potential adherence to design

goals based on varying, unknown application requirements.

Parameter configurability in heterogeneous, configurable

multicore systems increases the design goal adherence potential,

but increases the runtime overhead, since after scheduling an

application to a core, a tuning algorithm must tune the core’s

configurable parameters to the application’s best configuration. If

the cores have disparate design spaces, the application should be

scheduled only to the core that offers the application’s best

configuration, which could force applications to stall if the core

with the best configuration is not available. If all cores offer the

same design space, scheduling is simplified since applications can

be scheduled to any core, then that core can be tuned. However,

core tuning is challenging [11] and can introduce large tuning

overhead when executing/evaluating applications in inappropriate,

non-best configurations [11], especially for highly configurable

cores with many parameters and parameter values (e.g., NM

where N is the number of cores and M is the number of core

configuration).

Whereas this vastly increased design space increases potential

design goal adherence, offering the same design space on all cores

is not necessary. Prior work showed that applications with similar

execution requirements belonged to similar application domains,

and had similar, but not necessarily the same, best configurations

[3]. Based on these similarities, the design space can be subsetted

to a small fraction of the complete design space, while still

offering best, or near-best, configurations for each application.

Based on these observations, we conjecture that the cores’

collective design space can be reduced to offer a much smaller

subset of the complete design space, wherein the subset can be

specialized to contain different configurations that are amenable

Dynamic Scheduling for Reduced Energy in

Configuration-Subsetted Heterogeneous Multicore Systems

Mohamad Hammam Alsafrjalani and Ann Gordon-Ross
*

Department of Electrical and Computer Engineering University of Florida (UF), Gainesville, FL, USA

*Also with the NSF Center for High Performance Reconfigurable Computing (CHREC) at UF

E-mail: mha8@ufl.edu, ann@ece.ufl.edu

to different application domains. During runtime, application

profiling determines the application’s domain, and the application

is scheduled to the core that offers a configuration for that

domain.

In this work, we propose, to the best of our knowledge, the first

heterogeneous, configurable multicore system architecture with

domain-specific core configuration subsets and an associated

scheduling and tuning (SaT) algorithm. Whereas this fundamental

architecture and approach is applicable to any configurable

parameters, we focused on configurable caches due to the cache’s

large contribution to system energy consumption [28] and

configurable caches’ energy savings potential [3][6][10][28].

SaT’s key contribution is the ability to save energy with no

designer effort in a highly configurable system without any a

priori knowledge of the applications.

II.RELATED WORK

Much prior work has focused on hardware specialization using

heterogeneous multicore systems and configurable cores, for

example, and various application scheduling and tuning

algorithms have been proposed to harness the benefits afforded by

these specialization methods. In this section, we discuss selected

hardware specialization methods that relate most closely to our

proposed work, in addition to state-of-the-art tuning algorithms.

A. HARDWARE SPECIALIZATION

Kumar et al. [16][17] used a four-core heterogeneous multicore

system consisting of cores from the same processor family, but

each core contained different, fixed parameters, such as issue-

width, branch prediction, etc. An oracle dynamically scheduled

applications to cores for reduced energy based on the

application’s specific requirements and energy/performance that

were evaluated offline. Silva et al. [7] used heterogeneous

multicore systems with different cache sizes and statically

scheduled applications to cores for reduced cache miss rates and

increased performance. However, these prior works focused on

general purpose desktop computing, which is less energy

constrained than embedded systems.

To complement heterogeneous multicore systems, much research

has focused on configurable cores with configurable parameters,

such as issue-width [9], dynamic clock rate [2], dynamic voltage

and frequency scaling [13], and caches [3][10][28]. Even though

these works have shown good design goal adherence in isolation,

these works did not consider amalgamating heterogeneous and

configurable cores into a holistic system.

To evaluate the potential benefits of combining these

specialization methods, Adegbija et al. [1] evaluated and

compared heterogeneous multicore systems to configurable

multicore systems for embedded systems, and showed that this

combination maximized energy savings. However, that work used

an exhaustive search to find the best combination of

heterogeneous cores and core configurations to reduce energy

consumption, which incurs significant tuning overhead for

systems with a large design space.

B. APPLICATION SCHEDULING AND CORE TUNING

Luo et al. [18] studied static application scheduling in

heterogeneous multicore systems for reduced energy consumption

in battery-operated embedded systems. The proposed method

profiled the battery’s discharging characteristics to determine an

application’s best core. Using a system with a processor core and

digital signal processing (DSP) core, Kim et al. [15] modified a

static-priority-based scheduling algorithm. Typically, static-

priority scheduling algorithms cause high priority applications to

block all accesses to the DSP while executing on the processor,

even if the application is not currently using the DSP. The authors

proposed a modified algorithm that allowed lower priority

applications to execute on the DSP when the DSP was idle using a

remote procedure call. Van Craeynest et al. [26] dynamically

scheduled applications in a heterogeneous multicore system for

increased performance using a method that estimated the

performance change for executing an application on a different

core based on the application’s performance on the current core.

Since the method estimated performance, there was no profiling

overhead. Instead of scheduling the entire application to a core,

Joao et al. [12] used a finer grained approach that partitioned the

application into threads and scheduled these threads to cores for

increased performance.

Alternatively to scheduling applications to disparate

heterogeneous cores, researchers also tuned configurable

hardware to adhere to disparate application requirements. Prior

work [5][19][28] leveraged configurable caches to reduce energy

and/or increase performance, however, many of these works

required designer effort to determine the best configuration. Chen

et al. [6] and Gordon-Ross et al. [10] alleviated designer effort

using tuning algorithms that leveraged specialized cache

hardware, called organizers/tuners/orchestrators, to automatically

search the design space and dynamically tune the configurable

cache to determine the best configuration. Even though these

methods required no designer effort, during tuning, the application

executed in inappropriate, non-best configurations, which could

impose significant tuning overhead [10].

To reduce tuning overhead, Gordon-Ross et al. [11] presented

non-intrusive oracle hardware that ran in parallel with the cache to

evaluate all possible cache configurations simultaneously and

determine the application’s best configuration. However, even

though this oracle eliminated cache tuning overhead, the oracle

hardware imposed significant energy overhead, and thus was only

feasible for systems with very persistent applications

While prior work motivated and demonstrated the potential for

tuning to reduce energy consumption, most prior work tuned only

a single core and did not evaluate tuning benefits for multicore

systems, or the additional tuning overhead incurred when

considering intra-core dependencies (e.g., shared data). Rawlins et

al. [22] applied single core cache tuning concepts to multicore

systems, and considered intra-core dependencies introduced by a

single instruction multiple data (SIMD) model. The authors

determined that cores with similar cache miss rates also had

similar best cache configurations. Thus, to reduce tuning

overhead, the cores were grouped based on the cores’ cache miss

rate similarity, and only one core from each group was tuned and

that core’s best configuration was conveyed to all other cores in

the same group.

III.HETEROGENEOUS, CONFIGURABLE MULTICORE

SYSTEM ARCHITECTURE

A. ARCHITECTURE

Figure 1 depicts our sample quad-core heterogeneous,

configurable multicore architecture that we evaluated in our

experiments. Each core has private, dedicated L1 data and

instruction caches. Since cache size has the largest impact on

energy consumption [28], and to limit the cores’ design spaces,

the cores’ caches have disparate, fixed cache sizes and the caches’

line sizes and associativities are configurable.

Table 1 depicts our cache configuration design space, which

corresponds to our sample architecture and the requirements of

our embedded system experimental applications (Section 5).

Columns represent the line sizes in bytes (B) and rows represent

the sizes in Kbytes (K) and associativity (W). Each column-row

intersection denotes a unique configuration cn. We use c18 for

application profiling, since c18 is the best-performance cache on

average over all of our experimental applications, and thus

minimizes the profiling overhead.

The cores’ subsets contain configurations from Table 1, and the

union of the cores’ subsets’ configurations is specialized to meet

different domain-specific application requirements. Based on

application profiling and our prior evaluations, we determined that

small domain-specific configuration subsets attained nearly the

same energy savings as the complete design space. Since these

evaluations showed that three domain-specific subsets were

sufficient to meet disparate application requirements, we consider

three domain-specific subsets. Each domain subset meets a given

range of application profiling information (e.g., cache miss rate

ranges), and during runtime, SaT (Section 4) profiles the

applications and uses the profiling information to determine the

applications’ domains. Since the cores’ subsets are specialized to

meet application domain-specific requirements, the domain

dictates the applications’ best subset, and hence, best cores.

Given the union of these domain-specific configuration subsets,

we grouped the configurations based on the configurations’ cache

sizes (i.e., three given Table 1), and mapped each group to the

corresponding core with the same cache size (i.e., cores one

through three in Figure 1). Thus, the core’s mapped

configurations comprise that core’s subset, which restricts the

core’s configuration design space. Any core with c18 can be used

as a profiling core, however, if c18 is not part of any domain-

specific subset, c18 can be easily included in at least one of the

subsets. Our experiments show that since domain-specific subsets

typically contain at least one configuration with a cache size of

8K, the overhead to include c18 in any subset without c18 requires

only a few additional control bits. Since this mapping only

requires three of the four cores, the fourth core’s subset replicates

the core with the largest cache size (i.e., 8 Kbyte). Even though

the fourth core could replicate any of the other cores’ subsets,

replicating the largest cache size is pessimistic with respect to

energy savings, and provides a second profiling core.

Even though our work evaluates this specific system architecture

and configuration design space, and three application domains,

our fundamental methodologies are generally applicable to any

arbitrary number of cores, configurations, and application

domains, and increasing any of these parameters would increase

the potential energy savings.

B. SOFTWARE SUPPORT

We integrate SaT into the operating system’s scheduler, which

enqueues applications into a ready queue for SaT to schedule. SaT

stores the application profiling information in the process (i.e.,

application) control block (PCB) [24], along with the

application’s identification number (ID), execution status (i.e.,

ready, executing, terminating, etc.), arrival time, etc.

The application profiling information contains the application’s

cache statistics, such as the L1 cache miss rate, which is obtained

from the core’s hardware counters [4], and is used to calculate the

application’s energy and performance (Section 5), and to

determine the application’s best core. The profiling information

also stores the application’s best core and best configuration after

these have been determined. Since during scheduling, the

application’s best core may not be available (Section 4.2), to

facilitate scheduling to the best alternative core, the profiling

information also stores a history of the energy consumption and

performance for all of the prior cores/configurations that the

application has executed on.

The storage requirement for each application profile is:

� � �������|
���� ∗ � ∗ � ∗ � ∗ ��| (1)

bits, where a, r, and c represent the number of anticipated

applications that will execute on the system, the number of cores,

and total number of configurations across all cores, respectively,

and e and t represent the energy and performance in number of

cycles, respectively, for each application execution per

core/configuration. Since most embedded systems typically run a

fixed set of persistent applications, m requires limited number of

bits, which can be stored in main memory and requires no

additional hardware storage unit.

IV.APPLICATION SCHEDULING AND TUNING (SAT)

ALGORITHM

A. OVERVIEW

Algorithm 1 depicts SaT’s operational flow, which has two stages:

scheduling, which determines the application’s best core,

effectively determining the application’s best cache size, and

tuning, which configures the core to the application’s best cache

line size and associativity.

Since SaT is part of the operating system’s scheduler, SaT is

invoked at a predetermined time interval [24]. On each

invocation, SaT processes applications in the ready queue in first

come first served (FCFS) order, and attempts to schedule the

application such that the total energy is minimized. Since dynamic

energy is the primary energy contributor, SaT first attempts to

schedule the application to the application’s best

core/configuration. If the best core is busy and there are idle, non-

best cores, to reduce wasted idle energy, SaT evaluates the energy

Figure 1: Sample heterogeneous, configurable multicore

system architecture.

 16B 32B 64B
2K_1W c1 c7 c13

4K_1W c2 c8 c14

4K_2W c3 c9 c15

8K_1W c4 c10 c16

8K_2W c5 c11 c17
8K_4W c6 c12 c18

Table 1: Cache configuration design space.

advantage for scheduling the application to a non-best core as

compared to leaving the application in the ready queue to wait for

the application’s best core, thus wasting idle energy as idle cores

are unused.

If SaT is unable to schedule an application or determines that it is

energy advantageous for an application to wait for the

application’s best core, the application remains in the ready queue

and SaT attempts to schedule the next application in the ready

queue. If SaT successfully schedules an application, the

application’s profiling information is updated when the

application terminates.

B. SCHEDULING STAGE

In the scheduling stage, SaT checks the application’s profiling

information. If there is no profiling information, the application is

executing for the first time and SaT schedules the application to

any arbitrary idle profiling core (i.e., core 3 or 4 in our sample

architecture (Section 3.1)), removes the application from the

queue, profiles the application, and updates the application’s PCB.

If no profiling core is idle, SaT leaves the application in the ready

queue, since attempting to schedule the application without any

profiling information may force the application to execute with an

extreme configuration. Extreme configurations are configurations

that are so ill-suited to the application’s requirements that the

configuration causes a significant increase in the energy

consumption [10], and thus should be avoided.

If there is profiling information for the application, the best core is

known. If the best core is idle, SaT schedules the application to

this core and removes the application from the ready queue.

If the application’s best core is not idle, but other non-best cores

are idle, SaT evaluates an energy-advantageous scheduling

decision using the application’s profiling information. This

evaluation determines if it is energy-advantageous to schedule the

application to a non-best core or leave the application in the ready

queue to wait for the best core to be idle.

The energy-advantageous scheduling decision is a Boolean value

Th calculated by:

�� � ������, ��� � �������, ��� � ������, �� � 	�������, �� (2)

where a1 is the application being scheduled, a2 is the application

executing on a1’s best core c1, c2 is an idle, non-best core, Edyn(ax,

cx) is the dynamic energy expended by executing ax on cx, and

Eidl(a2, c2) is the idle energy expended by idle c2 while waiting for

c1 to finish executing a2. Essentially, if the dynamic energy

Edyn(a1, c2) to execute the application being scheduled a1 on an

idle, non-best core c2 is less than the idle energy expended Eidl(a2,

c2) by the idle, non-best core c2 plus the dynamic energy Edyn(a2,

c1) of the busy, best core c1 to both complete execution of a2 and

execute a1, a1 is scheduled to the idle, non-best core c2. Otherwise,

SaT leaves a1 in the ready queue.

Th can only be calculated if both applications a1 and a2 have

previously executed in all configurations on cores c1 and c2 (i.e.,

the applications’ best configurations’ are known). If any core

configuration energy consumption is unknown, SaT optimistically

assumes Th is true and schedules a1 to execute on c2, and removes

the application from the ready queue, which promotes throughput

since the application may have to wait for a long period of time,

and models prior scheduling algorithms [26]. Additionally, this

scheduling enables SaT to populate the energy consumption and

performance history for additional core configurations, which

enhances future scheduling decisions.

C. TUNING STAGE

Once an application is scheduled to execute on a core, either best

or non-best, SaT enters the tuning stage. If the application’s

profiling information contains energy consumptions for all of the

core’s configurations, SaT directly tunes the core to the

application’s best (i.e., lowest energy) configuration for that core.

If there is any core configuration with unknown energy

consumption, then the application’s best configuration on that

core is not yet known and SaT must execute the application with

one of the unknown configurations. Since all configurations must

be executed, SaT arbitrarily chooses an unknown configuration

from the core’s subset, and tunes the core to that configuration,

and updates the application’s profiling information with this

configuration’s energy consumption. We note that since the core

subsets are small (four configurations in our experiments), this

exhaustive exploration is feasible, however, for advanced systems

with larger subsetted design spaces per core, search heuristics can

also be used [27].

V.EXPERIMENTAL SETUP

We evaluated SaT using our proposed architecture (Figure 1) with

34 embedded applications: sixteen (complete suite) from the

EEMBC Automotive application suite [8], six from Mediabench I

[21], and twelve from Motorola’s Powerstone applications [19],

which represent a diversity of application requirements [26].

Since embedded system applications are typically persistent, we

replicated the applications in the ready queue. Each application is

identified with an ID from one to 34, and we generated a series of

Algorithm 1: Scheduling and tuning (SaT) algorithm for

heterogeneous, configurable multicore system.

1,000 IDs using a discrete uniform distribution. We modeled the

application arrival times using a normal distribution centered at

the mean and within one standard deviation of the average

execution time of all applications using the base configuration.

To model common operating system schedulers [20][24], we

invoked SaT every 2,000 cycles, which represents less than 1% of

the average execution time of the applications using the base

configuration.

Since many embedded systems do not have level two caches [1],

and SaT’s efficacy can be evaluated with L1 caches, our

experimental architecture’s (Figure 1) private, separate L1 data

and instruction caches can be tuned independently and

simultaneously. We used SimpleScalar to obtain cache

accesses/hits/misses, and obtained off-chip access energy from a

standard low-power Samsung memory. We estimated that a fetch

from main memory took forty times longer than an L1 cache

fetch, and the memory bandwidth was 50% of the miss penalty

[11].

In order to directly compare to previous research [3][26], Figure 2

depicts our cache hierarchy energy model (similar to [3]) and we

determined the dynamic energy using CACTI [23] for 0.18 um

technology. Even though 0.18 um technology is a large

technology, many embedded systems do not require cutting edge

technologies. Furthermore, since SaT reduces the idle energy and

the idle energy constitutes a larger percentage of the total energy

as the technology size decreases (over 30% of the total energy in

smaller technologies (e.g., .032 um) [14]), this technology gives

pessimistic energy savings for SaT. We estimated the idle and

static energies each as 10% of the dynamic energy [11] and the

CPU stall energy as 20% of the active energy [3].

VI.EVALUATION METHODOLOGY

We compared SaT with prior configurable cache research [3][27]

and scheduling algorithms [20][24] using three systems, denoted

as system-1, system-2, and system-3. All systems had the same

configurable heterogeneous multicore architecture (Figure 1), but

used different scheduling algorithms. We compared the systems’

energy consumptions by normalizing the energy consumption to a

base system with all four cores configured to c18 that scheduled

applications using round robin [20][24].

System-1 was modeled similarly to [3] and provided insights on

the significance of wasted idle energy, and served as a near-

optimal system for comparison purposes. System-1 assumed a

priori knowledge of the applications’ domains (i.e., no profiling

overhead) and best configurations (i.e., no tuning overhead).

System-1 only scheduled an application to the application’s best

core using the best configuration, and left the application in the

ready queue if the application’s best core was not idle, even if

other, non-best cores were idle and wasting idle energy.

Alternatively, instead of requiring an application to wait for the

application’s best core to be available, the application can be

scheduled to a non-best core, if available, which trades off saved

idle energy for increased dynamic energy. System-2 modeled this

performance-centric system, which maximizes throughput and

core utilization. Similarly to system-1, system-2 had a priori

knowledge of the applications’ domains and best configurations.

However, the overall energy implications of this performance-

centric system are unclear. If there is an idle, non-best core, and

the idle core’s wasted energy while the application waits in the

ready queue for the application’s best core to be available is

greater than the dynamic energy for executing the application on a

non-best core, then system-2 consumes less energy than system-1.

However, prior works have shown that non-best configurations,

and thus non-best cores, can significantly increase the energy

consumption [3], thus if the dynamic energy for executing the

application with a non-best core is greater than the wasted idle

energy expended while the application waits in the ready queue,

then system-1 consumes less energy than system-2. Since this

evaluation is highly dependent on the actual applications’ best

cores/configurations and the applications’ arrival orders, our

experiments consider myriad applications and the results were

averaged over 1,000 application arrivals to capture an average

case.

Finally, system-3 evaluated SaT’s ability to achieve energy

savings without any designer effort or a priori knowledge of the

applications’ domains or best core/configuration, and to give

insights on idle and dynamic energy tradeoffs for different

scheduling decisions. System-3 also provided insights on the

significance of profiling and tuning overhead, which determines

the feasibility of using SaT in general purpose and/or constrained

embedded systems. SaT imposes profiling overhead while

profiling the applications using the base configuration, which is

not necessarily the best configuration and may incur large

dynamic energy overhead, and since not all cores offer the base

configuration, profiling can force applications to wait in the ready

queue for a profiling core to be idle, and thus incurs idle energy

overhead. Additionally, SaT imposes tuning overhead when

exhaustively executing the applications on all core configurations,

which forces applications to execute using non-best

configurations, and thus incurs dynamic energy overhead.

Designer effort and a priori knowledge of the applications’ best

configurations enables SaT to directly execute the applications

with the applications’ best configurations, thereby eliminating

profiling and tuning overhead. We evaluated SaT’s profiling and

tuning overhead by computing the energy difference between

executing system-3 with and without a priori knowledge the of

applications’ domains and best configurations, and normalized

this energy difference to the base system.

VII.RESULTS AND ANALYSIS

Figure 3 (a) and (b) depict the dynamic, idle, and total energy

consumptions for system-1, -2, and -3 (system-3 results include

profiling and tuning overhead) normalized to the energy

consumption of the base system for the data and instruction

caches, respectively. Values below/above 1 corresponds to

less/more energy consumption that the base system.

Compared to the base system for the data and instruction caches

respectively, system-1 reduced the dynamic energy consumption

by 38.2% and 25.4%, but increased the idle energy consumption

by 1916.4% and 155.6%, resulting in total energy savings of

11.6% and 20.8%. The idle energy increase suggests that the

applications’ best cores were not equally distributed across the

E(total) = E(sta) + E(dyn)

E(dyn) = cache_hits * E(hit) + cache_misses * E(miss)

E(miss) = E(off_chip_access) + miss_cycles * E(CPU_stall)

E(cache_fill)

Miss Cycles = cache_misses * miss_latency + (cache_misses *

(line_size/16)) * memory_band_width)

E(sta) = total_cycles * E(static_per_cycle)

E(static_per_cycle)) = E(per_Kbyte) * cache_size_in_Kbytes

E(per_Kbyte) = (E(dyn_of_base_cache) * 10%) /

(base_cache_size_in_Kbytes)

Figure 2: Cache hierarchy energy model for the L1 instruction

and data caches.

cores’ susbsets, which caused core bottlenecks while applications

waited indefinitely for the applications’ best cores to be available.

Alleviating this bottleneck is difficult since a balanced distribution

of the applications’ best configurations across the cores is highly

dependent on the actual applications that are executing. An

alternate solution is to increase the number of cores, however, this

solution will increase the system’s total energy consumption, and

still does not eliminate the potential for bottlenecks. As a result,

systems with increased number of cores are more likely to waste

more idle energy than to save dynamic energy. We expect that

dynamic core shutdown could alleviate these idle expenditures,

and is the focus of our future work.

Since system-2 was performance-centric and scheduled

applications to any available core, best or non-best, system-2’s

cores were less likely to be idle and thus consumed less idle

energy. System-2 reduced the idle energy compared to the base

system and system-1 by 47.0% and 97.4%, respectively, for the

data cache, and by 61.1% and 84.8% for the instruction cache,

respectively. Compared to system-1, system-2 increased the

dynamic energy by 27.9% and 38.3% for the data and instruction

caches, respectively, which is expected since system-2 did not

guarantee that applications executed on/with the applications’ best

cores/configurations. Compared to the base system, system-2

decreased the dynamic energy for the data cache by 21.0%, but

increased the dynamic energy for the instruction cache by 3.19%.

For the data and instruction caches respectively, system-2

decreased the total energy by 21.4% and increased the total

energy by 1.5% as compared to the base system, and decreased

the total energy by 11.2% and increased the total energy by 28.2%

as compared to system-1.

The increases in dynamic and total energies for the instruction

cache, as compared to the decreases in dynamic and total energies

for the data cache, are attributed to the fact that system-2 ran more

applications with extreme instruction cache configurations. Since

our analysis showed that instruction caches tended to exhibit less

miss rate and cache requirement variation as compared to data

caches across different applications (prior work also showed that

instruction cache subsets can be smaller than data cache subsets

[27]), executing in a non-best instruction cache configuration

causes a larger energy consumption increase due to the likelihood

that a non-best instruction cache configuration is an extreme

configuration. The increase in the instruction cache’s total energy

consumption with respect to system-1 suggests that the idle

energy savings is not large enough to compensate for the

increased dynamic energy consumption. Avoiding extreme

configurations can reduce the dynamic energy increase, and thus

the idle energy savings would reduce the total energy. We

conjecture that process migration and process preemption can

alleviate this increased dynamic energy for extreme

configurations by migrating the process to a core with a different

configuration subset, or by returning the application to the ready

queue until the application’s best core is available, However, both

process migration and preemption incur performance overhead

due to saving the process’s context and requires hardware support

to store and restore the process’s context, which is beyond the

scope of this paper and is part of our future work.

For the data and instruction caches respectively, system-3

increased the dynamic energy by 8.4% and 3.6% as compared to

system-1, decreased the dynamic energy by 33.0% and 22.7% as

compared to the base system, and decreased the dynamic energy

by 15.2% and 25.1% as compared to system-2. System-3 had

higher dynamic energy compared to system-1, since unlike

system-1, system-3 did not always schedule applications to the

application’s best core.

For the data and instruction caches respectively, system-3

increased the idle energy by 74.9% and 202.4% as compared to

the base system, and by 229.9% and 678.4% as compared to

system-2, since system-3, unlike the base system and system-2,

left applications in the ready queue until the applications’ best

cores were available based on Equation (2). System-3 consumed

91.3% less idle energy than system-1 for the data cache, but

consumed 18.3% more energy for the instruction cache. Our

analysis of system-1 revealed that the data cache’s idle energy

was much larger than the instruction cache’s idle energy and thus

system-3 was able to reduce more idle energy for the data cache

as compared to the instruction cache. For the data cache, system-3

reduced the total energy by 31.6%, 22.6%, and 13.0% as

compared to the base system, system-1, and system-2,

respectively. For the instruction cache, system-3 reduced the total

energy by 17.0% and 18.3% as compared to the base system and

system-2, respectively, but increased the total energy by 4.8% as

compared to system-1. System-3 decreased and increased the total

energy for the data and instruction caches, respectively, as

compared to system-1 due to the instruction cache’s higher

requirement variations. However, since our experiments

considered 0.18um technology (Section 5), we surmise that SaT

will have larger idle energy savings with smaller technologies.

Although system-3 increased the instruction cache energy as

compared to system-1, system-3 outperformed system-1 with

Figure 3: Energy of all systems normalized to the energy of the base system for the (a) data cache and (b) instruction cache.

respect to the data cache energy savings, and system-3

outperformed the base system, system-1, and system-2 with

respect to both the instruction and data cache energy savings.

Since system-3 outperformed system-1, which prioritized energy

savings, and system-1, which was performance-centric, in 75% of

the cases, system-3 can save energy in performance-centric

systems and systems with low energy constraints. However, since

the energy savings trades off performance [1], complete

evaluation of the performance tradeoffs between system-1, -2, and

-3 requires additional comparisons of the energy and performance,

which is part of our future work.

Finally, analysis of system-3’s profiling overhead revealed that a

priori knowledge of the applications’ domains and best

configurations only provided minor energy improvements, and

increased the energy savings for the data and instruction caches by

1.8% and 0.9%, respectively. The small overhead is attributed to

application persistence such that the overhead is amortized over

multiple executions. Since most embedded systems repeatedly

execute persistent applications, SaT is amenable to general

purpose systems. SaT’s most significant contribution is

appreciable energy savings with no designer effort with respect to

application profiling, which broadens SaT’s applicability and

usability to any general purpose system.

VIII.CONCLUSION AND FUTURE WORK

Heterogeneous and configurable multicore systems provide

hardware specialization to meet disparate application hardware

requirements. However, heterogeneous multicore systems have

small, fixed design spaces and require static or dynamic

application profiling to select the best cores that most closely

adhere to application hardware requirements. Configurable

multicore systems provide flexible and larger design spaces at the

cost of profiling and tuning overhead and designer effort. To

adhere to application hardware requirements while minimizing

profiling and tuning overhead, we propose, to the best of our

knowledge, the first heterogeneous, configurable multicore system

with application-domain specific configuration subsets and an

associated scheduling and tuning (SaT) algorithm. Our results

revealed average energy savings of 31.6% and 17.0% for the data

and instruction caches, respectively, as compared to a base

system, with only 1.8% and 0.9% profiling and tuning overhead.

Future work includes integrating additional energy savings

techniques into SaT, such as dynamic core shutdown and dynamic

voltage and frequency scaling. We also plan to study different

subset-to-core mapping methodologies with increased number of

cores to gain insight on the best per-core subset distributions and

potential bottlenecks. Finally, to gain insight on the performance

and energy tradeoffs, we will instrument our future experiments to

collect performance statistics and perform energy-delay product

analysis.

ACKNOWLEDGEMENT

This work was supported by the National Science Foundation

(CNS-0953447). Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the National

Science Foundation.

REFERENCES

[1] Adegbija, T., A. Gordon-Ross. "Exploring the Tradeoffs of

Configurability and Heterogeneity in Multicore Embedded

Systems, " Int. Con. on Mobile Ubiquitous Comp., Systems,

Services and Technologies (UBICOMM'13), Sept. 2013.

[2] Albonesi, D.H., "Dynamic IPC/clock rate optimization,"

Proc. of Int. Sym. on Computer Architecture, Jul. 1998

[3] Alsafrjalani, M. H., A. Gordon-Ross, and P. Viana.

"Minimum Effort Design Space Subsetting for Configurable

Caches, " Embedded and ubiquitous computing Design

(EUC), May 2014

[4] ARM Ltd., big.LITTLE Technology, White Paper:

http://www.arm.com/files/pdf/big_LITTLE_Technology_the

_Futue_of_Mobile.pdf

[5] Bahar, R.I., Albera, G., Manne, S., "Power and performance

tradeoffs using various caching strategies," Proc. of Int. Sym.

on Low Power Electronics and Design, 1998

[6] Chen, L., Zou, X., Lei,J., Liu, Z., "Dynamically

Reconfigurable Cache for Low-Power Embedded System,"

3rd Int. Conf. on Natural Computation, Aug. 2007.

[7] de Abreu Silva, B., Cuminato, L.A., Bonato, V., "Reducing

the overall cache miss rate using different cache sizes for

Heterogeneous Multi-core Processors," Reconfigurable

Computing and FPGAs (ReConFig), 2012 International

Conference on , vol., no., pp.1,6, 5-7 Dec. 2012

[8] EEMBC. The Embedded Microprocessor Benchmark

Consortium http://www.eembc.org/benchmark/automotive

_sl.php, Sept. 2013

[9] Folegnani, D.; Gonzalez, A., "Energy-effective issue logic,"

Proc. on Inter Sym. on, Computer Architecture 2001

[10] Gordon-Ross, A., Vahid, F. "A Self-Tuning Configurable

Cache" IEEE Design Automation Conference, Jul. 2007

[11] Gordon-Ross, A., Viana, P., Vahid, F., Najjar W., Barros, E.

"A One-Shot Configurable-Cache Tuner for Improved

Energy and Performance" IEEE/ACM Design, Automation

and Test in Europe, Apr. 2007

[12] Joao, José A., Aater Suleman, M., Mutlu, O., Patt, N.,

"Utility-based acceleration of multithreaded applications on

asymmetric CMPs. SIGARCH, " Comp. Arch. News 41, 3,

Jun. 2013

[13] Ishihara, T., Yasuura, H., "Voltage scheduling problem for

dynamically variable voltage processors," Proc. on Int. Sym.

on Low Power Electronics and Design, Aug. 1998.

[14] Kahng, A.B., Seokhyeong Kang, Rosing, T.S., Strong, R.,

"Many-Core Token-Based Adaptive Power Gating,"

Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on , vol.32, no.8

[15] Kim, K., Kim, D., Park, C., "Real-time scheduling in

heterogeneous dual-core architectures, " International

Conference on Parallel and Distributed Systems, 2006

[16] Kumar, R., Farkas, K.I., Jouppi, N.P., Ranganathan, P.,

Tullsen, D.M., "Single-ISA heterogeneous multi-core

architectures: the potential for processor power reduction,"

Microarchitecture, Int. Symp on, Proceedings. 36th pp.81,92,

3-5 Dec. 2003

[17] Kumar, R., Tullsen, D., N. Jouppi, N., Ranganathan, P.,

"Heterogeneous chip multiprocessors, " Computer, vol. 38,

Nov. 2005

[18] J. Luo and N. Jha, "Battery-aware static scheduling for

distributed real-time embedded systems, " Design

Automation Conference, 2001, pp. 444-449.

[19] Malik, A., Moyer, B., Cermak, D., "A low power unified

cache architecture providing power and performance

flexibility," Proc. of the 2000 Int. Symp. on Low Power

Electronics and Design

[20] Mauerer, W., "Process Management and Scheduling",

Professional Linux Kernel Architecture, 1st Ed., Wrox, Oct.,

2008, ch 2, pp 37.

[21] Mediabench Suite, http://euler.slu.edu/~fritts/mediabench/

[22] Rawlins, M., Gordon-Ross, A., "An Application

Classification guided Cache Tuning Heuristic for Multi-core

Architectures," Trans. on IEEE Computers 2012

[23] Reinman, G., and N.P. Jouppi, COMPAQ Western Research

Lab: CACTI2.0: An Integrated Cache Timing and Power

Model, 1999.

[24] Silberschatz, A., "Processes", Operating System Concept, 9th

Ed., Wiley, Dec. 2012, ch 3, pp 111

[25] Texas Instruments, OMAP3530 Applications Processors

Datasheet: http://www.ti.com/lit/ds/sprt656/sprt656.pdf

[26] Van Craeynest, K., Jaleel, A., Eeckhout, L., Narvaez, P.,

Emer, J., "Scheduling heterogeneous multi-cores through

performance impact estimation (PIE)," Computer

Architecture (ISCA), 2012 39th Annual International

Symposium on , vol., no., pp.213,224, 9-13 Jun. 2012

[27] Viana, P., Gordon-Ross, A., Keogh, E., Barros, E., Vahid, F.,

"Configurable cache subsetting for fast cache tuning,"

Design Automation Conference, 2006

[28] Zhang, C., Vahid, F., Najjar, W., "A highly configurable

cache architecture for embedded systems," Proc. of Int. Sym.

on Computer Architecture, Jun 2003

