
 
Abstract—Heterogeneous and configurable multicore systems 

provide hardware specialization to meet disparate application 

hardware requirements. However, effective multicore system 

specialization can require a priori knowledge of the 

applications, application profiling information, and/or 

dynamic hardware tuning to schedule and execute 

applications on the most energy efficient cores. Furthermore, 

even though highly disparate core heterogeneity and/or highly 

configurable parameters with numerous potential parameter 

values result in more fine-grained specialization and higher 

energy savings potential, these large design spaces are 

challenging to efficiently explore. To address these challenges, 

we propose a novel configuration-subsetted heterogeneous and 

configurable multicore system, wherein each core offers a 

small subset of the design space, and propose a novel 

scheduling and tuning (SaT) algorithm to efficiently exploit 

the energy savings potential of this system. Our proposed 

architecture and algorithm require no a priori application 

knowledge or profiling, and incurs minimal runtime 

overhead. Results reveal energy savings potential and insights 
on energy tradeoffs in heterogeneous, configurable systems.  

Keywords-Heterogeneous cores, configurable caches, energy 

optimizations, design space subsetting, embedded systems, 

multicore architectures, scheduling. 

I.INTRODUCTION 

Reducing energy consumption is a key design goal in all 

computing domains and devices. Since an application’s hardware 

requirements significantly impact the system’s energy 

consumption, hardware resources can be specialized to meet these 

requirements for energy efficiency. Hardware specialization can 

be achieved using multicore systems, wherein each core can have 

different hardware parameter values, such as voltage, clock 

frequency, cache size/associativity, etc. The specific configuration 

of these parameters’ values that most closely adheres to the 

application’s requirements while achieving design goals (e.g., 

lowest energy consumption, highest performance, or a tradeoff) 

constitutes the application’s best configuration.  

Heterogeneous multicore systems, such as the ARM big.LITTLE 

[4] or OMAP3530 [25], have specialized/configurable cores to 

meet different application requirements, and thus have excellent 

energy savings potential. However, determining the core’s 

specific configurations and scheduling applications to the core 

with the application’s best configuration requires accurately 

identifying the application’s requirements, which can be done 

using application profiling information (e.g., level one (L1) cache 

miss rate, pipeline stalls, cycles per instruction (CPI), etc.).  

Application profiling can be done statically during design time or 

dynamically during runtime. Static profiling requires a priori 

knowledge of the applications, but can be leveraged to determine 

the best core configurations based on these requirements, thus 

offering greater energy savings potential at the expense of an 

inflexible, static system. However, due to this application-specific 

specialization, this method is only suitable for static, known 

applications. Dynamic profiling increases system flexibility, 

which is necessary for general purpose systems, by profiling 

unknown applications during runtime to determine the 

application’s best configuration. However, since the applications 

are not known a priori, the cores’ configurations must be 

generally suitable for any application, and thus may not closely 

adhere to each application’s specific requirements, which 

decreases the energy savings potential. Additionally, runtime 

profiling incurs profiling overhead (e.g., performance/energy) 

while profiling the applications. 

Even though the specialized cores are heterogeneous, offering 

different configurations for different application requirements, 

these configurations are fixed, thus the total number of different 

configurations (e.g., the design space) is very small, which limits 

potential adherence to design goals [1] (e.g., energy savings in our 

work). Alternatively, heterogeneous, configurable multicore 

systems have cores with runtime configurable parameters, which 

increases the design space and thus potential adherence to design 

goals based on varying, unknown application requirements.  

Parameter configurability in heterogeneous, configurable 

multicore systems increases the design goal adherence potential, 

but increases the runtime overhead, since after scheduling an 

application to a core, a tuning algorithm must tune the core’s 

configurable parameters to the application’s best configuration. If 

the cores have disparate design spaces, the application should be 

scheduled only to the core that offers the application’s best 

configuration, which could force applications to stall if the core 

with the best configuration is not available. If all cores offer the 

same design space, scheduling is simplified since applications can 

be scheduled to any core, then that core can be tuned. However, 

core tuning is challenging [11] and can introduce large tuning 

overhead when executing/evaluating applications in inappropriate, 

non-best configurations [11], especially for highly configurable 

cores with many parameters and parameter values (e.g., NM 

where N is the number of cores and M is the number of core 

configuration). 

Whereas this vastly increased design space increases potential 

design goal adherence, offering the same design space on all cores 

is not necessary. Prior work showed that applications with similar 

execution requirements belonged to similar application domains, 

and had similar, but not necessarily the same, best configurations 

[3]. Based on these similarities, the design space can be subsetted 

to a small fraction of the complete design space, while still 

offering best, or near-best, configurations for each application.  

Based on these observations, we conjecture that the cores’ 

collective design space can be reduced to offer a much smaller 

subset of the complete design space, wherein the subset can be 

specialized to contain different configurations that are amenable 
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to different application domains. During runtime, application 

profiling determines the application’s domain, and the application 

is scheduled to the core that offers a configuration for that 

domain.  

In this work, we propose, to the best of our knowledge, the first 

heterogeneous, configurable multicore system architecture with 

domain-specific core configuration subsets and an associated 

scheduling and tuning (SaT) algorithm. Whereas this fundamental 

architecture and approach is applicable to any configurable 

parameters, we focused on configurable caches due to the cache’s 

large contribution to system energy consumption [28] and 

configurable caches’ energy savings potential [3][6][10][28]. 

SaT’s key contribution is the ability to save energy with no 

designer effort in a highly configurable system without any a 

priori knowledge of the applications.  

II.RELATED WORK 

Much prior work has focused on hardware specialization using 

heterogeneous multicore systems and configurable cores, for 

example, and various application scheduling and tuning 

algorithms have been proposed to harness the benefits afforded by 

these specialization methods. In this section, we discuss selected 

hardware specialization methods that relate most closely to our 

proposed work, in addition to state-of-the-art tuning algorithms.  

A. HARDWARE SPECIALIZATION 

Kumar et al. [16][17] used a four-core heterogeneous multicore 

system consisting of cores from the same processor family, but 

each core contained different, fixed parameters, such as issue-

width, branch prediction, etc. An oracle dynamically scheduled 

applications to cores for reduced energy based on the 

application’s specific requirements and energy/performance that 

were evaluated offline. Silva et al. [7] used heterogeneous 

multicore systems with different cache sizes and statically 

scheduled applications to cores for reduced cache miss rates and 

increased performance. However, these prior works focused on 

general purpose desktop computing, which is less energy 

constrained than embedded systems. 

To complement heterogeneous multicore systems, much research 

has focused on configurable cores with configurable parameters, 

such as issue-width [9], dynamic clock rate [2], dynamic voltage 

and frequency scaling [13], and caches [3][10][28]. Even though 

these works have shown good design goal adherence in isolation, 

these works did not consider amalgamating heterogeneous and 

configurable cores into a holistic system.  

To evaluate the potential benefits of combining these 

specialization methods, Adegbija et al. [1] evaluated and 

compared heterogeneous multicore systems to configurable 

multicore systems for embedded systems, and showed that this 

combination maximized energy savings. However, that work used 

an exhaustive search to find the best combination of 

heterogeneous cores and core configurations to reduce energy 

consumption, which incurs significant tuning overhead for 

systems with a large design space. 

B. APPLICATION SCHEDULING AND CORE TUNING  

Luo et al. [18] studied static application scheduling in 

heterogeneous multicore systems for reduced energy consumption 

in battery-operated embedded systems. The proposed method 

profiled the battery’s discharging characteristics to determine an 

application’s best core. Using a system with a processor core and 

digital signal processing (DSP) core, Kim et al. [15] modified a 

static-priority-based scheduling algorithm. Typically, static-

priority scheduling algorithms cause high priority applications to 

block all accesses to the DSP while executing on the processor, 

even if the application is not currently using the DSP. The authors 

proposed a modified algorithm that allowed lower priority 

applications to execute on the DSP when the DSP was idle using a 

remote procedure call. Van Craeynest et al. [26] dynamically 

scheduled applications in a heterogeneous multicore system for 

increased performance using a method that estimated the 

performance change for executing an application on a different 

core based on the application’s performance on the current core. 

Since the method estimated performance, there was no profiling 

overhead. Instead of scheduling the entire application to a core, 

Joao et al. [12] used a finer grained approach that partitioned the 

application into threads and scheduled these threads to cores for 

increased performance.  

Alternatively to scheduling applications to disparate 

heterogeneous cores, researchers also tuned configurable 

hardware to adhere to disparate application requirements. Prior 

work [5][19][28] leveraged configurable caches to reduce energy 

and/or increase performance, however, many of these works 

required designer effort to determine the best configuration. Chen 

et al. [6] and Gordon-Ross et al. [10] alleviated designer effort 

using tuning algorithms that leveraged specialized cache 

hardware, called organizers/tuners/orchestrators, to automatically 

search the design space and dynamically tune the configurable 

cache to determine the best configuration. Even though these 

methods required no designer effort, during tuning, the application 

executed in inappropriate, non-best configurations, which could 

impose significant tuning overhead [10]. 

To reduce tuning overhead, Gordon-Ross et al. [11] presented 

non-intrusive oracle hardware that ran in parallel with the cache to 

evaluate all possible cache configurations simultaneously and 

determine the application’s best configuration. However, even 

though this oracle eliminated cache tuning overhead, the oracle 

hardware imposed significant energy overhead, and thus was only 

feasible for systems with very persistent applications  

While prior work motivated and demonstrated the potential for 

tuning to reduce energy consumption, most prior work tuned only 

a single core and did not evaluate tuning benefits for multicore 

systems, or the additional tuning overhead incurred when 

considering intra-core dependencies (e.g., shared data). Rawlins et 

al. [22] applied single core cache tuning concepts to multicore 

systems, and considered intra-core dependencies introduced by a 

single instruction multiple data (SIMD) model. The authors 

determined that cores with similar cache miss rates also had 

similar best cache configurations. Thus, to reduce tuning 

overhead, the cores were grouped based on the cores’ cache miss 

rate similarity, and only one core from each group was tuned and 

that core’s best configuration was conveyed to all other cores in 

the same group. 

III.HETEROGENEOUS, CONFIGURABLE MULTICORE 

SYSTEM ARCHITECTURE 

A. ARCHITECTURE  

Figure 1 depicts our sample quad-core heterogeneous, 

configurable multicore architecture that we evaluated in our 

experiments. Each core has private, dedicated L1 data and 

instruction caches. Since cache size has the largest impact on 

energy consumption [28], and to limit the cores’ design spaces, 

the cores’ caches have disparate, fixed cache sizes and the caches’ 

line sizes and associativities are configurable.  



Table 1 depicts our cache configuration design space, which 

corresponds to our sample architecture and the requirements of 

our embedded system experimental applications (Section 5). 

Columns represent the line sizes in bytes (B) and rows represent 

the sizes in Kbytes (K) and associativity (W). Each column-row 

intersection denotes a unique configuration cn. We use c18 for 

application profiling, since c18 is the best-performance cache on 

average over all of our experimental applications, and thus 

minimizes the profiling overhead.  

The cores’ subsets contain configurations from Table 1, and the 

union of the cores’ subsets’ configurations is specialized to meet 

different domain-specific application requirements. Based on 

application profiling and our prior evaluations, we determined that 

small domain-specific configuration subsets attained nearly the 

same energy savings as the complete design space. Since these 

evaluations showed that three domain-specific subsets were 

sufficient to meet disparate application requirements, we consider 

three domain-specific subsets. Each domain subset meets a given 

range of application profiling information (e.g., cache miss rate 

ranges), and during runtime, SaT (Section 4) profiles the 

applications and uses the profiling information to determine the 

applications’ domains. Since the cores’ subsets are specialized to 

meet application domain-specific requirements, the domain 

dictates the applications’ best subset, and hence, best cores.  

Given the union of these domain-specific configuration subsets, 

we grouped the configurations based on the configurations’ cache 

sizes (i.e., three given Table 1), and mapped each group to the 

corresponding core with the same cache size (i.e., cores one 

through three in Figure 1). Thus, the core’s mapped 

configurations comprise that core’s subset, which restricts the 

core’s configuration design space. Any core with c18 can be used 

as a profiling core, however, if c18 is not part of any domain-

specific subset, c18 can be easily included in at least one of the 

subsets. Our experiments show that since domain-specific subsets 

typically contain at least one configuration with a cache size of 

8K, the overhead to include c18 in any subset without c18 requires 

only a few additional control bits. Since this mapping only 

requires three of the four cores, the fourth core’s subset replicates 

the core with the largest cache size (i.e., 8 Kbyte). Even though 

the fourth core could replicate any of the other cores’ subsets, 

replicating the largest cache size is pessimistic with respect to 

energy savings, and provides a second profiling core.   

Even though our work evaluates this specific system architecture 

and configuration design space, and three application domains, 

our fundamental methodologies are generally applicable to any 

arbitrary number of cores, configurations, and application 

domains, and increasing any of these parameters would increase 

the potential energy savings. 

B. SOFTWARE SUPPORT 

We integrate SaT into the operating system’s scheduler, which 

enqueues applications into a ready queue for SaT to schedule. SaT 

stores the application profiling information in the process (i.e., 

application) control block (PCB) [24], along with the 

application’s identification number (ID), execution status (i.e., 

ready, executing, terminating, etc.), arrival time, etc.  

The application profiling information contains the application’s 

cache statistics, such as the L1 cache miss rate, which is obtained 

from the core’s hardware counters [4], and is used to calculate the 

application’s energy and performance (Section 5), and to 

determine the application’s best core. The profiling information 

also stores the application’s best core and best configuration after 

these have been determined. Since during scheduling, the 

application’s best core may not be available (Section 4.2), to 

facilitate scheduling to the best alternative core, the profiling 

information also stores a history of the energy consumption and 

performance for all of the prior cores/configurations that the 

application has executed on.  

The storage requirement for each application profile is: 

� � �������|
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bits, where a, r, and c represent the number of anticipated 

applications that will execute on the system, the number of cores, 

and total number of configurations across all cores, respectively, 

and e and t represent the energy and performance in number of 

cycles, respectively, for each application execution per 

core/configuration. Since most embedded systems typically run a 

fixed set of persistent applications, m requires limited number of 

bits, which can be stored in main memory and requires no 

additional hardware storage unit. 

IV.APPLICATION SCHEDULING AND TUNING (SAT) 

ALGORITHM 

A. OVERVIEW  

Algorithm 1 depicts SaT’s operational flow, which has two stages: 

scheduling, which determines the application’s best core, 

effectively determining the application’s best cache size, and 

tuning, which configures the core to the application’s best cache 

line size and associativity. 

Since SaT is part of the operating system’s scheduler, SaT is 

invoked at a predetermined time interval [24]. On each 

invocation, SaT processes applications in the ready queue in first 

come first served (FCFS) order, and attempts to schedule the 

application such that the total energy is minimized. Since dynamic 

energy is the primary energy contributor, SaT first attempts to 

schedule the application to the application’s best 

core/configuration. If the best core is busy and there are idle, non-

best cores, to reduce wasted idle energy, SaT evaluates the energy 

 

Figure 1: Sample heterogeneous, configurable multicore 

system architecture. 

 16B 32B 64B 
2K_1W c1 c7 c13 

4K_1W c2 c8 c14 

4K_2W c3 c9 c15 

8K_1W c4 c10 c16 

8K_2W c5 c11 c17 
8K_4W c6 c12 c18 

Table 1: Cache configuration design space. 



advantage for scheduling the application to a non-best core as 

compared to leaving the application in the ready queue to wait for 

the application’s best core, thus wasting idle energy as idle cores 

are unused.  

If SaT is unable to schedule an application or determines that it is 

energy advantageous for an application to wait for the 

application’s best core, the application remains in the ready queue 

and SaT attempts to schedule the next application in the ready 

queue. If SaT successfully schedules an application, the 

application’s profiling information is updated when the 

application terminates.   

B. SCHEDULING STAGE 

In the scheduling stage, SaT checks the application’s profiling 

information. If there is no profiling information, the application is 

executing for the first time and SaT schedules the application to 

any arbitrary idle profiling core (i.e., core 3 or 4 in our sample 

architecture (Section 3.1)), removes the application from the 

queue, profiles the application, and updates the application’s PCB. 

If no profiling core is idle, SaT leaves the application in the ready 

queue, since attempting to schedule the application without any 

profiling information may force the application to execute with an 

extreme configuration. Extreme configurations are configurations 

that are so ill-suited to the application’s requirements that the 

configuration causes a significant increase in the energy 

consumption [10], and thus should be avoided. 

If there is profiling information for the application, the best core is 

known. If the best core is idle, SaT schedules the application to 

this core and removes the application from the ready queue.  

If the application’s best core is not idle, but other non-best cores 

are idle, SaT evaluates an energy-advantageous scheduling 

decision using the application’s profiling information. This 

evaluation determines if it is energy-advantageous to schedule the 

application to a non-best core or leave the application in the ready 

queue to wait for the best core to be idle.  

The energy-advantageous scheduling decision is a Boolean value 

Th calculated by: 

�� � ������, ��� � �������, ��� � ������, �� � 	�������, ��     (2) 

where a1 is the application being scheduled, a2 is the application 

executing on a1’s best core c1, c2 is an idle, non-best core, Edyn(ax, 

cx) is the dynamic energy expended by executing ax on cx, and 

Eidl(a2, c2) is the idle energy expended by idle c2 while waiting for 

c1 to finish executing a2. Essentially, if the dynamic energy 

Edyn(a1, c2) to execute the application being scheduled a1 on an 

idle, non-best core c2 is less than the idle energy expended Eidl(a2, 

c2) by the idle, non-best core c2 plus the dynamic energy Edyn(a2, 

c1) of the busy, best core c1 to both complete execution of a2 and 

execute a1, a1 is scheduled to the idle, non-best core c2. Otherwise, 

SaT leaves a1 in the ready queue.  

Th can only be calculated if both applications a1 and a2 have 

previously executed in all configurations on cores c1 and c2 (i.e., 

the applications’ best configurations’ are known). If any core 

configuration energy consumption is unknown, SaT optimistically 

assumes Th is true and schedules a1 to execute on c2, and removes 

the application from the ready queue, which promotes throughput 

since the application may have to wait for a long period of time, 

and models prior scheduling algorithms [26]. Additionally, this 

scheduling enables SaT to populate the energy consumption and 

performance history for additional core configurations, which 

enhances future scheduling decisions.  

C. TUNING STAGE 

Once an application is scheduled to execute on a core, either best 

or non-best, SaT enters the tuning stage. If the application’s 

profiling information contains energy consumptions for all of the 

core’s configurations, SaT directly tunes the core to the 

application’s best (i.e., lowest energy) configuration for that core.  

If there is any core configuration with unknown energy 

consumption, then the application’s best configuration on that 

core is not yet known and SaT must execute the application with 

one of the unknown configurations. Since all configurations must 

be executed, SaT arbitrarily chooses an unknown configuration 

from the core’s subset, and tunes the core to that configuration, 

and updates the application’s profiling information with this 

configuration’s energy consumption. We note that since the core 

subsets are small (four configurations in our experiments), this 

exhaustive exploration is feasible, however, for advanced systems 

with larger subsetted design spaces per core, search heuristics can 

also be used [27]. 

V.EXPERIMENTAL SETUP  

We evaluated SaT using our proposed architecture (Figure 1) with 

34 embedded applications: sixteen (complete suite) from the 

EEMBC Automotive application suite [8], six from Mediabench I 

[21], and twelve from Motorola’s Powerstone applications [19], 

which represent a diversity of application requirements [26].  

Since embedded system applications are typically persistent, we 

replicated the applications in the ready queue. Each application is 

identified with an ID from one to 34, and we generated a series of 

 

Algorithm 1: Scheduling and tuning (SaT) algorithm for 

heterogeneous, configurable multicore system. 



1,000 IDs using a discrete uniform distribution. We modeled the 

application arrival times using a normal distribution centered at 

the mean and within one standard deviation of the average 

execution time of all applications using the base configuration. 

To model common operating system schedulers [20][24], we 

invoked SaT every 2,000 cycles, which represents less than 1% of 

the average execution time of the applications using the base 

configuration.  

Since many embedded systems do not have level two caches [1], 

and SaT’s efficacy can be evaluated with L1 caches, our 

experimental architecture’s (Figure 1) private, separate L1 data 

and instruction caches can be tuned independently and 

simultaneously. We used SimpleScalar to obtain cache 

accesses/hits/misses, and obtained off-chip access energy from a 

standard low-power Samsung memory. We estimated that a fetch 

from main memory took forty times longer than an L1 cache 

fetch, and the memory bandwidth was 50% of the miss penalty 

[11]. 

In order to directly compare to previous research [3][26], Figure 2 

depicts our cache hierarchy energy model (similar to [3]) and we 

determined the dynamic energy using CACTI [23] for 0.18 um 

technology. Even though 0.18 um technology is a large 

technology, many embedded systems do not require cutting edge 

technologies. Furthermore, since SaT reduces the idle energy and 

the idle energy constitutes a larger percentage of the total energy 

as the technology size decreases (over 30% of the total energy in 

smaller technologies (e.g., .032 um) [14]), this technology gives 

pessimistic energy savings for SaT. We estimated the idle and 

static energies each as 10% of the dynamic energy [11] and the 

CPU stall energy as 20% of the active energy [3]. 

VI.EVALUATION METHODOLOGY 

We compared SaT with prior configurable cache research [3][27] 

and scheduling algorithms [20][24] using three systems, denoted 

as system-1, system-2, and system-3. All systems had the same 

configurable heterogeneous multicore architecture (Figure 1), but 

used different scheduling algorithms. We compared the systems’ 

energy consumptions by normalizing the energy consumption to a 

base system with all four cores configured to c18 that scheduled 

applications using round robin [20][24]. 

System-1 was modeled similarly to [3] and provided insights on 

the significance of wasted idle energy, and served as a near-

optimal system for comparison purposes. System-1 assumed a 

priori knowledge of the applications’ domains (i.e., no profiling 

overhead) and best configurations (i.e., no tuning overhead). 

System-1 only scheduled an application to the application’s best 

core using the best configuration, and left the application in the 

ready queue if the application’s best core was not idle, even if 

other, non-best cores were idle and wasting idle energy.  

Alternatively, instead of requiring an application to wait for the 

application’s best core to be available, the application can be 

scheduled to a non-best core, if available, which trades off saved 

idle energy for increased dynamic energy. System-2 modeled this 

performance-centric system, which maximizes throughput and 

core utilization. Similarly to system-1, system-2 had a priori 

knowledge of the applications’ domains and best configurations. 

However, the overall energy implications of this performance-

centric system are unclear. If there is an idle, non-best core, and 

the idle core’s wasted energy while the application waits in the 

ready queue for the application’s best core to be available is 

greater than the dynamic energy for executing the application on a 

non-best core, then system-2 consumes less energy than system-1. 

However, prior works have shown that non-best configurations, 

and thus non-best cores, can significantly increase the energy 

consumption [3], thus if the dynamic energy for executing the 

application with a non-best core is greater than the wasted idle 

energy expended while the application waits in the ready queue, 

then system-1 consumes less energy than system-2. Since this 

evaluation is highly dependent on the actual applications’ best 

cores/configurations and the applications’ arrival orders, our 

experiments consider myriad applications and the results were 

averaged over 1,000 application arrivals to capture an average 

case. 

Finally, system-3 evaluated SaT’s ability to achieve energy 

savings without any designer effort or a priori knowledge of the 

applications’ domains or best core/configuration, and to give 

insights on idle and dynamic energy tradeoffs for different 

scheduling decisions. System-3 also provided insights on the 

significance of profiling and tuning overhead, which determines 

the feasibility of using SaT in general purpose and/or constrained 

embedded systems. SaT imposes profiling overhead while 

profiling the applications using the base configuration, which is 

not necessarily the best configuration and may incur large 

dynamic energy overhead, and since not all cores offer the base 

configuration, profiling can force applications to wait in the ready 

queue for a profiling core to be idle, and thus incurs idle energy 

overhead. Additionally, SaT imposes tuning overhead when 

exhaustively executing the applications on all core configurations, 

which forces applications to execute using non-best 

configurations, and thus incurs dynamic energy overhead.  

Designer effort and a priori knowledge of the applications’ best 

configurations enables SaT to directly execute the applications 

with the applications’ best configurations, thereby eliminating 

profiling and tuning overhead. We evaluated SaT’s profiling and 

tuning overhead by computing the energy difference between 

executing system-3 with and without a priori knowledge the of 

applications’ domains and best configurations, and normalized 

this energy difference to the base system. 

VII.RESULTS AND ANALYSIS 

Figure 3 (a) and (b) depict the dynamic, idle, and total energy 

consumptions for system-1, -2, and -3 (system-3 results include 

profiling and tuning overhead) normalized to the energy 

consumption of the base system for the data and instruction 

caches, respectively. Values below/above 1 corresponds to 

less/more energy consumption that the base system.  

Compared to the base system for the data and instruction caches 

respectively, system-1 reduced the dynamic energy consumption 

by 38.2% and 25.4%, but increased the idle energy consumption 

by 1916.4% and 155.6%, resulting in total energy savings of 

11.6% and 20.8%. The idle energy increase suggests that the 

applications’ best cores were not equally distributed across the 

E(total) = E(sta) + E(dyn) 

E(dyn) = cache_hits * E(hit) + cache_misses * E(miss) 

E(miss) = E(off_chip_access) + miss_cycles * E(CPU_stall) 

E(cache_fill) 

Miss Cycles = cache_misses * miss_latency + (cache_misses * 

(line_size/16)) * memory_band_width) 

E(sta) = total_cycles * E(static_per_cycle) 

E(static_per_cycle)) = E(per_Kbyte) * cache_size_in_Kbytes 

E(per_Kbyte) = (E(dyn_of_base_cache) * 10%) / 

(base_cache_size_in_Kbytes) 

Figure 2: Cache hierarchy energy model for the L1 instruction 

and data caches. 



cores’ susbsets, which caused core bottlenecks while applications 

waited indefinitely for the applications’ best cores to be available. 

Alleviating this bottleneck is difficult since a balanced distribution 

of the applications’ best configurations across the cores is highly 

dependent on the actual applications that are executing. An 

alternate solution is to increase the number of cores, however, this 

solution will increase the system’s total energy consumption, and 

still does not eliminate the potential for bottlenecks. As a result, 

systems with increased number of cores are more likely to waste 

more idle energy than to save dynamic energy. We expect that 

dynamic core shutdown could alleviate these idle expenditures, 

and is the focus of our future work.    

Since system-2 was performance-centric and scheduled 

applications to any available core, best or non-best, system-2’s 

cores were less likely to be idle and thus consumed less idle 

energy. System-2 reduced the idle energy compared to the base 

system and system-1 by 47.0% and 97.4%, respectively, for the 

data cache, and by 61.1% and 84.8% for the instruction cache, 

respectively. Compared to system-1, system-2 increased the 

dynamic energy by 27.9% and 38.3% for the data and instruction 

caches, respectively, which is expected since system-2 did not 

guarantee that applications executed on/with the applications’ best 

cores/configurations. Compared to the base system, system-2 

decreased the dynamic energy for the data cache by 21.0%, but 

increased the dynamic energy for the instruction cache by 3.19%. 

For the data and instruction caches respectively, system-2 

decreased the total energy by 21.4% and increased the total 

energy by 1.5% as compared to the base system, and decreased 

the total energy by 11.2% and increased the total energy by 28.2% 

as compared to system-1.  

The increases in dynamic and total energies for the instruction 

cache, as compared to the decreases in dynamic and total energies 

for the data cache, are attributed to the fact that system-2 ran more 

applications with extreme instruction cache configurations. Since 

our analysis showed that instruction caches tended to exhibit less 

miss rate and cache requirement variation as compared to data 

caches across different applications (prior work also showed that 

instruction cache subsets can be smaller than data cache subsets 

[27]), executing in a non-best instruction cache configuration 

causes a larger energy consumption increase due to the likelihood 

that a non-best instruction cache configuration is an extreme 

configuration. The increase in the instruction cache’s total energy 

consumption with respect to system-1 suggests that the idle 

energy savings is not large enough to compensate for the 

increased dynamic energy consumption. Avoiding extreme 

configurations can reduce the dynamic energy increase, and thus 

the idle energy savings would reduce the total energy. We 

conjecture that process migration and process preemption can 

alleviate this increased dynamic energy for extreme 

configurations by migrating the process to a core with a different 

configuration subset, or by returning the application to the ready 

queue until the application’s best core is available, However, both 

process migration and preemption incur performance overhead 

due to saving the process’s context and requires hardware support 

to store and restore the process’s context, which is beyond the 

scope of this paper and is part of our future work.  

For the data and instruction caches respectively, system-3 

increased the dynamic energy by 8.4% and 3.6% as compared to 

system-1, decreased the dynamic energy by 33.0% and 22.7% as 

compared to the base system, and decreased the dynamic energy 

by 15.2% and 25.1% as compared to system-2. System-3 had 

higher dynamic energy compared to system-1, since unlike 

system-1, system-3 did not always schedule applications to the 

application’s best core.  

For the data and instruction caches respectively, system-3 

increased the idle energy by 74.9% and 202.4% as compared to 

the base system, and by 229.9% and 678.4% as compared to 

system-2, since system-3, unlike the base system and system-2, 

left applications in the ready queue until the applications’ best 

cores were available based on Equation (2). System-3 consumed 

91.3% less idle energy than system-1 for the data cache, but 

consumed 18.3% more energy for the instruction cache. Our 

analysis of system-1 revealed that the data cache’s idle energy 

was much larger than the instruction cache’s idle energy and thus 

system-3 was able to reduce more idle energy for the data cache 

as compared to the instruction cache. For the data cache, system-3 

reduced the total energy by 31.6%, 22.6%, and 13.0% as 

compared to the base system, system-1, and system-2, 

respectively. For the instruction cache, system-3 reduced the total 

energy by 17.0% and 18.3% as compared to the base system and 

system-2, respectively, but increased the total energy by 4.8% as 

compared to system-1. System-3 decreased and increased the total 

energy for the data and instruction caches, respectively, as 

compared to system-1 due to the instruction cache’s higher 

requirement variations. However, since our experiments 

considered 0.18um technology (Section 5), we surmise that SaT 

will have larger idle energy savings with smaller technologies.  

Although system-3 increased the instruction cache energy as 

compared to system-1, system-3 outperformed system-1 with 

 

 

 

Figure 3: Energy of all systems normalized to the energy of the base system for the (a) data cache and (b) instruction cache. 



respect to the data cache energy savings, and system-3 

outperformed the base system, system-1, and system-2 with 

respect to both the instruction and data cache energy savings.  

Since system-3 outperformed system-1, which prioritized energy 

savings, and system-1, which was performance-centric, in 75% of 

the cases, system-3 can save energy in performance-centric 

systems and systems with low energy constraints. However, since 

the energy savings trades off performance [1], complete 

evaluation of the performance tradeoffs between system-1, -2, and 

-3 requires additional comparisons of the energy and performance, 

which is part of our future work. 

Finally, analysis of system-3’s profiling overhead revealed that a 

priori knowledge of the applications’ domains and best 

configurations only provided minor energy improvements, and 

increased the energy savings for the data and instruction caches by 

1.8% and 0.9%, respectively. The small overhead is attributed to 

application persistence such that the overhead is amortized over 

multiple executions. Since most embedded systems repeatedly 

execute persistent applications, SaT is amenable to general 

purpose systems. SaT’s most significant contribution is 

appreciable energy savings with no designer effort with respect to 

application profiling, which broadens SaT’s applicability and 

usability to any general purpose system.  

VIII.CONCLUSION AND FUTURE WORK 

Heterogeneous and configurable multicore systems provide 

hardware specialization to meet disparate application hardware 

requirements. However, heterogeneous multicore systems have 

small, fixed design spaces and require static or dynamic 

application profiling to select the best cores that most closely 

adhere to application hardware requirements. Configurable 

multicore systems provide flexible and larger design spaces at the 

cost of profiling and tuning overhead and designer effort. To 

adhere to application hardware requirements while minimizing 

profiling and tuning overhead, we propose, to the best of our 

knowledge, the first heterogeneous, configurable multicore system 

with application-domain specific configuration subsets and an 

associated scheduling and tuning (SaT) algorithm. Our results 

revealed average energy savings of 31.6% and 17.0% for the data 

and instruction caches, respectively, as compared to a base 

system, with only 1.8% and 0.9% profiling and tuning overhead.  

Future work includes integrating additional energy savings 

techniques into SaT, such as dynamic core shutdown and dynamic 

voltage and frequency scaling. We also plan to study different 

subset-to-core mapping methodologies with increased number of 

cores to gain insight on the best per-core subset distributions and 

potential bottlenecks. Finally, to gain insight on the performance 

and energy tradeoffs, we will instrument our future experiments to 

collect performance statistics and perform energy-delay product 

analysis. 
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