
Introduction
Motivations

 Quantifying partial reconfiguration (PR) benefits
is not straightforward

 Many possible PR architectures and layouts on device

 Manual and tedious characterization,
analysis, and evaluation process

 Early design decision identification reduces
design time effort

 Formulation-level analysis affords short design
exploration time

Approach

 PR design space exploration in early design phases

 Analyze application’s high-level source code to
find Pareto optimal PR architectures

 Evaluate target device feasibility of PR architectures

 PR modeling language (PRML) and partitioning

 PRML models application’s algorithm based on the
application components’ control and data dependence

 Leverages advanced graph-theoretic techniques

 Application-behavior-independent partitioning rules

PR Modeling Language (PRML)
 Early PR benefit evaluation reduces application’s

PR design time efforts

 Correct design decisions reduce designer
effort and increase PR benefits

 Algorithmic-level model evaluations require nominal effort

 PRML provides application-behavior-independent graph-
theoretic techniques for application partitioning and analysis

 Table 1 shows fundamental partitioning rules and rules’
execution results when applied to an application’s PRML model

 Partitioning rules depends only on structural properties of graph

Table 1. Fundamental partitioning rules and brief description of the rules' execution results after the rule is applied to the complex arithmetic core's PRML model.

Fundamental Partitioning Rules Execution results

1. Eliminate hierarchy nodes and memory nodes inside the hierarchy nodes Eliminates redundant memory nodes by flattening the PRML model.

2. Identify computation and iteration supernode(s) Reduces the number of nodes by merging interdependent nodes.

3. Identify all execution paths/cycles except symbol paths/cycles and trivial paths (i.e., L1 paths) Identifies all non-trivial input to output paths.

4. Identify distinct smaller paths (i.e., L2 paths) from the L1 paths (sequentially break
the L1 paths at choice and or-merge nodes but exclude symbol paths and trivial paths)

Identifies smaller data paths from the non-trivial
input to output paths based on control choices.

5. Identify distinct smaller paths (i.e., L3 paths) from the L2 paths (break the
L2 paths at iteration nodes and iteration supernodes but exclude trivial paths)

Identifies all computation kernels.

6. Identify all sets of static module and PRMs based on
L2 paths, L3 paths, and node’s divergent attribute value

Identifies all possible path combinations considering paths generated
by rules 3-5, divides these paths into the PRMs and the static module.

7. Assign PRMs to PRRs: (a) clone PRMs are assigned to the same PRR; (b) sibling PRMs are
assigned to different PRRs; (c) cousin PRMs can be assigned to the same or different PRRs

Calculates the number of PRRs required for each combination
generated by rule 6 and creates all possible PRM to PRR assignments.

8. Create PR architectures.
Different PR architectures are created for each
PRM variant and each PRM to PRR assignment.

Figure 2. (left) Percentage of actual resource savings with respect to PR overhead for each PR-architecture; (right)

Percentage increase in longest path delay with respect to PR overhead for each PR-architecture. Pareto optimal

PR-architectures are circled. The boxes attached to circles show the Pareto optimal PR-architectures, number of

PRRs, percentage PR overhead, and percentage actual resource saving (top) or percentage increase in longest

path delay (right).

Figure 1. PRML model of a complex arithmetic core that

performs a set of arithmetic operations (add, subtract,

multiplication, division, square root) for complex number

operands represented in polar or Cartesian format

Future Work
Partitioning enhancements using an iterative process that incorporates

feedback from tradeoff analysis and the PR application’s runtime

performance throughput to repartition application

Case Study Application

 Complex arithmetic core

 Performs addition, subtraction, multiplication,
division, and square root operation on complex
number input

 Figure 1 shows PRML model created with XML-
based yED diagram editor tool

Results and Analysis

 Partitioning rules (Table 1) generated
390 PR architectures

 PR architectures have up to three PR regions

 Formulation-level PR design space exploration tool
(published in FPT’11) performs tradeoff analysis
based on three metrics (Figure 2)

 Percentage change in longest path delay, actual
resource savings, and PR overhead

 Tradeoff analysis enables designers to carefully
select a PR architecture based on system goals

 PR architectures with high actual resource savings
(e.g., 128 and 129) can fit on a smaller device

 PR architectures with low longest path delay
(e.g., 6 and 13) afford high performance

PRML: A Modeling Language for Rapid Design Space

Exploration of Partially Reconfigurable FPGAs

Rohit Kumar

Dr. Ann Gordon-Ross

