
PRML: A Modeling Language for Rapid Design Exploration of Partially
Reconfigurable FPGAs

Rohit Kumar, Ann Gordon-Ross
{kumar, ann}@chrec.org

NSF Center for High-Performance Reconfigurable Computing
University of Florida, Gainesville, FL USA 32611

Abstract—Leveraging partial reconfiguration (PR) can
improve system flexibility, cost, and performance/power/area
tradeoffs over non-PR functionally-equivalent systems,
however, realizing these benefits is challenging,
time-consuming, and PR must be considered early during
application design to reduce design exploration time and
improve system quality. To facilitate realizing these benefits,
we present an application design framework and an abstract
modeling language for PR (PRML). By applying extensive
PRML modeling guidelines to a complex arithmetic core, we
show PRML’s potential for efficient PR capability analysis,
enabling designers to determine Pareto optimal systems during
application formulation based on designer-specified area and
performance metrics.

Keywords-FPGA; partial reconfiguration; design space
exploration

I. INTRODUCTION AND MOTIVATION

In a partially reconfigurable (PR) field-programmable
gate array (FPGA), reconfiguration is isolated to
pre-defined reconfigurable regions, which enables runtime
reconfiguration of hardware functionality without halting
system execution. As compared to non-PR FPGAs, which
must halt system execution for reconfiguration, PR provides
many additional benefits, such as increased area and power
reduction potential and facilitates system maintainability,
adaptability, reliability, and fault-tolerance.

However, effectively leveraging PR is a challenging,
time-consuming design task due to specialized PR
design tools, flows, and manual design steps and,
thus PR is not widely used. Designers must create
the application’s PR-architecture, which partitions the
application into one or more reconfigurable modules,
which run in the reconfigurable regions (reconfigurable
modules can time-multiplex reconfigurable regions) and
a static module, which runs in the static region
(the static region is never reconfigured). Given the
reconfigurable modules’ resource requirements, the designer
must also manually floorplan the FPGA to specify
the reconfigurable regions’ and static region’s locations
and area constraints. Additionally, given an intractable
number of alternative PR-architectures and floorplans
(we refer to each combination as a PR-design point)
that provide different area/performance/power tradeoffs,

designers require design exploration assistance. Currently no
conventional methodology exists to automatically generate
and analyze the PR-design point tradeoffs with respect to
designer-specified application goals/requirements.

In this paper, we present a formulation-level framework
for rapid PR design space exploration. Our framework uses
a novel PR modeling language (PRML) to model application
algorithms using specialized modeling blocks (PRML
blocks) that represent generic algorithmic-level components
(ALCs), such as loops, conditions, computations, memory
reads/writes, etc. To evaluate an ALC’s amenability to
PR, our framework leverages FoRSE [1], an in-house
formulation-level tradeoff analysis tool. To improve the
tradeoff analysis accuracy, ALCs are augmented with
per-ALC estimated attributes, such as device-specific area,
performance, and/or power overheads. Since FoRSE does
not physically implement each PR design point, FoRSE’s
execution time is minimal. Using a complex arithmetic
core, we illustrate PRML’s ability to accurately model an
application and provide fast and accurate tradeoff analysis.

II. RELATED WORK AND CONTRIBUTIONS

Several previous works [2][3] present
application-formulation-level modeling, but few consider
tradeoff analysis. Antola et al. [4] performed tradeoff
analysis using an Impulse-C/CoDeveloper-based framework
that analyzed feasible PR-architectures based on execution
time, inter-module communication interface bit-width,
and resource usage. However, Impulse-C is proprietary,
which inhibits portability/usability, and the partitioning
methodology and tradeoff analysis details were not
provided. Shallenberg et al. [5] avoided using a proprietary
language in OSSS+R by leveraging SystemC. OSSS+R
provided custom SystemC constructs to model PR. Since
OSSS+R did not generate PR-architecture(s) from a non-PR
application, OSSS+R could not perform tradeoff analysis
of an application. Ponpandi et al. [6] performed tradeoff
analysis on an application’s netlist. However, since a
netlist description contains fine-grain application and target
device specifications, the designer had no control over
partitioning or tradeoff analysis. In addition to academic
tools [4][5][2][3][6], few industrial tools, such as Labview

and Simulink provide algorithmic-level modeling via
modeling blocks but these tools do not explore application’s
PR design space.

In our work, we leverage algorithm-level modeling
languages to mitigate portability/usability limitations and
eliminate physical implementation using PRML. PRML
provides an accurate and flexible method for modeling
application behavior using both fine- and coarse-grained
modeling to represent primitive operations (e.g., Boolean)
or a large set of operations with a single PRML block,
respectively. PRML uses interdependence modeling to
model and consider inter-module communication interface
requirements and overheads.

III. PRML ALGORITHM MODELING

To provide simple modeling guidelines and accurate ALC
representation, PRML uses PR-compliant and PR-resistant
blocks, which represent ALCs that are amenable to PR
(e.g., arithmetic and logical operations, loops, macros,
conditional forks) and not amenable to PR (e.g., off-chip
memory, input/output (I/O) devices, joins, syncs, waits),
respectively. PR-compliant blocks include computation
blocks for modeling computations, iteration blocks for
modeling repetitive computations, memory blocks for
modeling memory operations, hierarchy blocks for modeling
a hierarchy or group of operations, and choice blocks for
modeling conditions that are triggered by one or more
PR-compliant block(s). PR-resistant blocks model inter-ALC
dependence relationships and create block interconnections
using data and control arcs. A data arc block denotes
a data dependence and control arc block denotes a
control dependence. Additionally, PR-resistant blocks model
dependence operations, such as dependence or-merge,
and-merge, and split/clone.

PRML extends the PR-compliant and PR-resistant blocks’
modeling capabilities with per-block/arc attributes, which
enable designers to easily incorporate an application’s
architectural and implementation characteristics (e.g.,
resource requirements and worst case delay) in the PRML
model. Since an ALC can be implemented in several
alternative ways on an FPGA, a PR-compliant block’s
resource and latency attributes can assume multiple values.
PRML leverages the attribute’s ability to uniquely identify
a block’s architectural and implementation characteristics to
perform partitioning and tradeoff analysis.

IV. PARTITIONING AND TRADEOFF ANALYSIS

Our framework performs an application’s PR design space
exploration using two phases: the partitioning phase, which
generates feasible PR-architectures, and the tradeoff analysis
phase, which evaluates these PR-architectures.

Partitioning Phase: The partitioning phase uses
partitioning rules to systematically analyze the PRML
model to generate the PR-architecture(s). The partitioning

rules leverage graph-theory concepts and the per-block/arc
attributes to logically segregate common and mutually
exclusive ALCs and generate sets of ALC combinations
(i.e., the PR-architectures).

A PRML model is a directed graph of PRML blocks. An
execution path/cycle is a directed path/cycle between any
pair of memory blocks. Trivial paths do not contain any
computation or iteration blocks and do not show resource
or latency overheads. A path X is a parent/child of a path Y
if all blocks and arcs of path X are a proper superset/subset
of path Y. Two paths are siblings/clones if the paths have the
same parent/terminal blocks. A path’s uncles are the path’s
parent’s siblings or parent’s clones. A path’s cousins are
a path’s uncle’s children. A weak data/control component
is a maximal weakly connected component where all arcs
are data/control arcs. An iteration/computation superblock
represents a weak data component that contains at least two
blocks and at least one/all block(s) are iteration/computation
blocks. To exemplify the partitioning phase, we partition a
complex arithmetic core that implements a set of arithmetic
operations (add, subtract, multiply, divide, square root) for a
complex number. Since describing all partitioning rules and
the rules’ effects on the PRML model is infeasible due to
space constraints (there are 390 different PR-architectures
for the core), Table I depicts the fundamental partitioning
rules, in the order that the rules are executed, and a brief
description of the rules’ execution results.

Tradeoff Analysis Phase: Tradeoff analysis takes as input
a PR-architecture, as generated by the partitioning phase,
and evaluates these PR-architectures based on the area,
performance, and inter-reconfigurable region communication
overheads according to the block’s attributes.

To determine the complex arithmetic core’s per-ALC
resource and delay attribute values, we developed and
implemented the core using Xilinx ISE 13.2 and used FoRSE
to perform tradeoff analysis. Although implementation of
all reconfigurable modules generated in the partitioning
phase (rule 6 in Table I) was necessary to obtain area and
delay values, FoRSE does not require a PR-architecture’s
floorplans’ physical implementation. FoRSE determines
the Pareto optimal set of floorplans and target devices
for a PR-architecture using high-level formulations and
mathematical models of the target devices’ resource
organizations and, thus, affords fast design space exploration
time.

To generate the Pareto optimal set of PR-architectures
and target devices, FoRSE leverages several metrics, such
as expected resource savings, actual resource savings,
and PR overhead. Expected and actual resource savings
are the percentage of saved resources that the designer
expects to attain and actually achieves, respectively,
by using a PR-architecture as compared to a non-PR
functionally-equivalent architecture. PR overhead is the
difference between the expected and actual resource savings.

Table I: Fundamental partitioning rules and brief description of the rules’ execution results after the rule is applied to a
PRML model.

Fundamental Partitioning rules Execution results
1. Eliminate hierarchy blocks and memory blocks inside the hierarchy
blocks.

Eliminates redundant memory blocks by flattening the PRML model.

2. Identify computation and iteration superblock(s). Reduces the number of blocks by merging interdependent blocks.
3. Identify all execution paths/cycles (L1 paths) except data paths/cycles
and trivial paths.

L1 paths identify input-to-output paths that show non-zero resource/delay
overheads and include all control choices.

4. Identify distinct smaller paths (L2 paths) from L1 paths (sequentially
break L1 paths at choice and or-merge blocks but exclude data paths).

L2 paths identify smaller data paths from the non-trivial input-to-output
paths based on control choices.

5. Identify distinct smaller paths (L3 paths) from L2 paths (break L2
paths at iteration blocks and iteration superblocks).

L3 paths identify small computation kernels.

6. Identify all sets of static module and reconfigurable modules based on
L2 paths, L3 paths, and the block’s divergent attribute value.

Identifies all possible path combinations by merging the paths generated
by rules 3-5, and identifies clone, sibling, and cousin paths from these
merged paths. Clone, sibling, and cousin paths represent reconfigurable
modules.

7. Assign reconfigurable modules to reconfigurable regions: (a) clone
reconfigurable modules are assigned to the same reconfigurable region;
(b) sibling reconfigurable modules are assigned to different
reconfigurable regions; (c) cousin reconfigurable modules can be
assigned to the same or different reconfigurable regions.

Calculates the number of reconfigurable regions required for each
combination generated by rule 6 and creates all possible reconfigurable
module-to-reconfigurable region assignments.

8. Create PR-architectures. Different PR-architectures are created for each reconfigurable module
variant and each reconfigurable module-to-reconfigurable region
assignment.

Additionally, we augmented FoRSE to include longest path
delay analysis for each floorplan.

V. EXPERIMENTAL RESULTS

We demonstrate the efficacy of PRML’s partitioning and
tradeoff analysis using a complex arithmetic core. We
created the core’s PRML model with the yED tool, which
is an extended markup language (XML)-based diagram
editor. We developed Python scripts and used the NetworkX
library to parse and partition the core’s PRML model to
generate the PR-architectures. We leveraged our enhanced
version of FoRSE to perform tradeoff analysis of these
PR-architectures. To show FoRSE’s efficacy, we considered
the actual resource savings, longest path delay, and the PR
overhead as the comparison metrics. We determined the PR
overheads in terms of configuration frames using the Xilinx
V5LX100T FPGA.

A Python script applied the partitioning rules (Table I)
o generate all feasible PR-architectures. The partitioning
rules generated only PR-architectures with one, two,
or three reconfigurable regions. Rule 6 revealed that
there exists only one set of clone paths and thus, rule
7(a) produced PR-architectures with one reconfigurable
region. Additionally, rule 6 revealed that there exists
two or three children for a path and thus, rules
7(a) and 7(b) produced PR-architectures with two or
three reconfigurable regions, respectively. The partitioning
generated 390 PR-architectures. To concisely reference
individual PR-architectures during tradeoff analysis, we
number the PR-architectures A1 through A390.

Fig. 1a and Fig. 1b depict the tradeoff between the
PR-architectures’ actual resource savings and longest path
delays, respectively, and the PR overheads, with the

Pareto optimal PR-architectures circled and the numbers of
reconfigurable regions, PR overheads, and actual resource
savings or increase in longest path delay in the adjacent
rectangles. Since these metric values depend on the floorplan
and the floorplans reconfigurable module-to-reconfigurable
region assignments (rule 6 and 7 in Table I) and
different PR-architectures may have similar floorplans,
single points may represent multiple PR-architectures. In
Fig. 1a, PR-architectures A128 and A129 show the highest
actual resource savings due to mapping a large number
of reconfigurable modules into two small reconfigurable
regions as compared to one larger reconfigurable region or
three smaller reconfigurable regions. Since the difference
between the sum of the reconfigurable modules’ resource
requirements and the floorplans resource requirements is
lowest for A218-A221, these PR-architectures show the
lowest PR overhead, but since these PR-architectures’
floorplans use three reconfigurable regions, the actual
resource savings is low. In Fig. 1b, PR-architectures A6
and A13 have the smallest increase in longest path delay
because these PR-architectures have only one reconfigurable
region and the longest path delay increases as the number of
reconfigurable regions increases, but these PR-architectures
have high PR overheads. Similar arguments justify the
remainder of the Pareto optimal PR-architectures’ metric
values.

Since the PR overheads are typically small as compared
to the actual resource savings and the increase in the longest
path delay, designers can select either a Pareto optimal
PR-architecture with high actual resource savings to fit
a small target device or a Pareto optimal PR-architecture
with lower longest path delay for higher performance.
Thus, this tradeoff analysis enables designers to carefully

A128, A129 2 2.31 51.39

PR-architecture
number (A1-A390)

Number
of RPs

PR overhead
(%)

Actual resource
saving (%)

A218-A221 3 0.46 42.13

(a)

PR-architecture
number(A1-A390)

Number
of RPs

PR overhead
(%)

Increase in longest
path delay(%)

A218-A221 3 0.46 179.88

A266-A269 3 0.93 170.47

A114, A115 2 1.39 154.28

A26 1 1.85 149.14

A128, A129 2 2.31 138.32

A22 1 3.24 125.01

A116, A117 2 3.7 114.2

A19 1 4.17 100.22

A90-A99, A106, A107 2 5.09 90.29

A6, A13 1 5.56 82.57

(b)

Figure 1: a) Percentage of actual resource savings with respect to PR overhead for each PR-architecture; b) Percentage
increase in longest path delay with respect to PR overhead for each PR-architecture.

select an application’s most suitable PR-architectures based
on designer-specified goals during application formulation,
thereby pruning the design space and reducing design
exploration time while improving the system’s ability to
adhere to designer-specified goals.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a framework for modeling
an applications PR amenability and performing PR design
space exploration. To enable rapid modeling and accurate
exploration, our framework uses a partial reconfiguration
modeling language (PRML) and formulation-level tradeoff
analysis [1]. To show our framework’s capability for
application-formulation-level modeling and rapid design
space exploration, we apply our framework to a complex
arithmetic core and showed that the tradeoff analysis
can aid designers in selecting a PR-architecture for
implementation based on a designer’s goals, such as a small
target device or high performance. Future work includes
partitioning enhancements using an iterative process that
incorporates feedback from tradeoff analysis and the PR
application’s runtime performance/throughput to repartition
the application.

VII. ACKNOWLEDGMENTS

This work was supported in part by the I/UCRC program
of the National Science Foundation under Grant Nos.
EEC-0642422 and IIP-1161022. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation. We gratefully
acknowledge tools provided by Xilinx.

REFERENCES

[1] R. Kumar and A. Gordon-Ross, “Formulation-level design
space exploration for partially reconfigurable fpgas,” in
Field-Programmable Technology (FPT), 2011 International
Conference on, Dec., pp. 1–6.

[2] N. Abel, “Design and Implementation of an Object-Oriented
Framework for Dynamic Partial Reconfiguration,”
International Conference on Field Programmable Logic
and Applications, pp. 240–243, Aug. 2010.

[3] R. Ahmed and P. Hallschmid, “Modeling and Evaluation of
Dynamic Partial Reconfigurable Datapaths for FPGA-Based
Systems Using Stochastic Networks,” 21st International
Conference on Field Programmable Logic and Applications,
pp. 70–75, Sep. 2011.

[4] A. Antola, M. Santambrogio, M. Fracassi, P. Gotti, and
C. Sandionigi, “A novel hardware/software codesign
methodology based on dynamic reconfiguration with
ImpulseC and CoDeveloper,” in 3rd Southern Conference on
Programmable Logic, 2007, pp. 221–224.

[5] A. Schallenberg, W. Nebel, A. Herrholz, P. A. Hartmann, and
F. Oppenheimer, “OSSS+ R: A framework for application level
modelling and synthesis of reconfigurable systems,” in Design,
Automation & Test in Europe Conference & Exhibition, 2009.
DATE’09., 2009, pp. 970–975.

[6] S. D. Ponpandi and A. Tyagi, “Partial reconfiguration logic
synthesis by temporal slicing,” in International Conference on
Field-Programmable Technology (FPT), 2011, pp. 1–6.

