
ABSTRACT 

Networks-on-Chips (NoCs) are an emerging 
communication topology paradigm in single chip VLSI 
design, enhancing parallelism and system scalability. 
Processing units (PUs) connect to the communication 
topology via routers, which are responsible for runtime 
establishment and management of inter-PU 
communication channels. Router design directly affects 
overall system performance and exploited parallelism. In 
this paper, we present a highly parametric NoC 
architecture, MACS, providing increased system speed, 
designer flexibility, and scalability as compared to 
previous methods. In addition, MACS enhances inter-PU 
communication using a circuit-switching technique with 
dedicated, high frequency communication channels. 
Compared to previous work, MACS offers a 5x increase in 
operating frequency and a 2x reduction in area overhead. 

1. INTRODUCTION AND MOTIVATION 

In order for applications to harness new capabilities made 
possible by the transistor explosion provided by Moore’s 
law, applications are typically decomposed into multiple 
parallel processing units (PUs). For applications to exploit 
this increased parallelism, Networks-on-Chips (NoCs) 
[3][4] provide a scalable, modular communication 
architecture to efficiently and effectively communicate 
shared data and control signals across inter-PU 
communication channels. In NoCs, routers or switches 
(for packet switching or circuit switching, respectively), 
connect PUs to a routing fabric (PUs may connect to more 
than one router) and the routing fabric connects routers in 
a single- or multi-dimensional topology.  

Currently, NoC performance is primarily restricted by 
three limitations: connecting a single PU to each router, 
inefficient routing algorithms, and inefficient packet 
switching methodologies. Connecting a single PU to each 
router can result in increased area overhead (allowing 
PU’s to share routers reduces the number of required 
routers), reduced operating frequency, and increased wire 
length. Inefficient routing algorithms (such as 
deterministic routing) can cause communication 
bottlenecks (all lanes dedicated to communication 
channels) and unbalanced communication load (some 

routers may have many communication channels while 
others have few or none). Finally, inefficient switching 
methodologies for packetized data transfers can increase 
router area and reduce the communication operating 
frequency due to complex decoding logic and extra logic, 
such as counters, to monitor the number of packets.  

In this paper, we address these NoC limitations with 
MACS, a Minimal Adaptive routing Circuit-Switching 
based switch for a two-dimensional mesh topology. 
MACS connects two PUs to each switch, providing quick 
channel establishment (only one switch involved) and fast 
data transfers (data moves directly from one PU to the 
other without traversing the routing fabric) for critical PU 
pairs. This enhancement increases system design 
flexibility, enabling designers to strategically place critical 
PU pairs on the same router. MACS efficiently distributes 
communication load using a minimal adaptive shortest 
path routing algorithm with distributed arbitration. In 
addition, MACS uses a simple and efficient circuit-
switched routing decision state machine, resulting in high 
communication operating frequency. Finally, to increase 
design flexibility and system customization, we 
implement MACS as a highly parametric VHDL model 
with numerous tunable architectural parameters such as 
number of communication lanes per port and data bit 
width. MACS offers a 5x increase in communication 
operating frequency and a 2x reduction in area compared 
to a previous packet-switched architecture [2] and a 2x 
increase in communication operating frequency with only 
a slight increase in area compared to a previous circuit-
switched architecture [6]. 

2. RELATED WORK 

Efficient router architecture design motivated much early 
NoC research and in order to compare these router 
architectures, [5][7][8][9] provided comparisons based on 
different switching techniques and topologies. Wiklund et 
al. [9] evaluated different topologies and proved that the 
mesh topology was the most appropriate for on-chip 
networks.  

Liu et al. [7] and Wiklund et al. [8] both provided 
strong arguments for the advantages of circuit-switched 
NoCs over packet-switched NoCs. Liu et al. [7] proposed 
a Time Division Multiplexed (TDM) scheme for 
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communication channels on a two-dimensional mesh 
NoC. One potential drawback of TDM was out-of-order 
data arrival; but the authors provided a mechanism to 
ensure in-order data arrival. Moreover, due to the use of 
centralized routing, TDM could suffer from 
communication bottlenecks. 

To alleviate these bottlenecks, Wiklund et al. [8] 
proposed a mesh topology NoC (SoCBUS) using 
distributed arbitration. SoCBUS explored only one 
shortest path (even though many existed) and did not 
consider communication load balancing. In addition, the 
authors suggested that SoCBUS was not suitable for 
networks with random traffic. 

In order to provide better communication bandwidth for 
random traffic, Ahmadinia et al. [1] proposed RMBoC (a 
circuit-switched NoC). RMBoC had several drawbacks 
including deterministic routing that did not consider 
communication load balancing, large area requirements 
due to a separate network controller for each dimension, 
and low communication operating frequencies due to a 
complex routing algorithm. 

Hilton et al. [6] presented the Programmable Network-
on-Chip (PNoC), a highly flexible circuit switched NoC 
for FPGA systems. PNoC’s tunable parameters included 
the number of router ports, data, address bus widths, and 
number of PUs attached to a router. All PUs connected to 
the same router formed a subnet and these PUs shared a 
common address. Therefore, during a connection 
establishment request to a particular subnet, only one PU 
could communicate at a time. Whereas this technique 
appeared to be inflexible, the technique was highly 
suitable for processor-farm systems. Furthermore, PNoC 
could not consider communication load balancing unless 
the operating system could update the routing table during 
run-time. 

In order to address limitations of previous architectures, 
we introduce MACS, a two-dimensional mesh topology 
circuit-switched architecture with distributed arbitration. 
We implement MACS as a highly parametric VHDL 
model with numerous tunable architectural parameters. 

Compared to previous work, MACS is a low area 
architecture that reduces communication establishment 
bottlenecks using a minimal adaptive routing algorithm to 
ensure alternate path exploration in orthogonal directions, 
increases architectural specialization, and provides high 
communication operating frequencies.   

3. MACS ARCHITECTURE 

Fig 1 (left side) depicts MACS’s switch architectural 
layout. X and Y coordinates identify individual switch 
addresses based on horizontal and vertical positions, 
respectively, in the two-dimensional topology. Each 
switch’s two PUs are addressed relative to their connected 
switch. A MACS switch has four total switch ports with 
one port connected to each neighboring switch (left, right, 
up, and down) and two local ports connected to the two 
PUs. A port identification number (PID) uniquely 
identifies each port. Each port contains multiple input and 
output communication lanes to support multiple 
simultaneous communication channels between different 
PU pairs (denoted by the ‘K’ tunable architectural 
parameters in Fig 1). A lane identification number (LID) 
uniquely identifies each port’s input and output lane. Each 
switch/local port can be specialized with different 
numbers of input or output lanes providing fine-grained 
per-direction communication bandwidth specialization. 
Furthermore, each input lane consists of several control 
signals (req_in, gnt_out, dny_out, and ful_out) and W data 
signals (data_in). Similarly, each output lane consists of 
several control signals (req_out, gnt_in, dny_in, and 
ful_in) and W data signals (data_out). Control signals 
negotiate channel establishment and data signals provide 
inter-PU communication bandwidth. 

3.1 SWITCH OPERATION  

Switch operations include communication channel 
establishment for inter-PU data transfers (transactions), 
waiting for transaction completion, and subsequently 
releasing communication channel resources (e.g. logic 
elements, registers, etc). Channel establishment 
effectively connects an input lane of one port to an output 
lane of another port and is the process of allocating 
channel resources for routing incoming requests and data 
on this dedicated input-output lane connection. After 
channel resource allocation, the switch waits until 
transaction completion before releasing these resources.  

Each port contains two types of routing control logic 
blocks (signal forwarders) for channel establishment: an 
External Signal Forwarder (ExSIF) and an Internal Signal 
Forwarder (InSIF). Signal forwarders are responsible for 
controlling all communication operations such as 
communication request servicing and channel 
establishment negotiations and record necessary channel 
routing information in status tables. Table 1 depicts the 

 
Fig 1. MACS’s switch architectural layout (left) and port 

details (right) (all ports are similar with individually 
parameterized number, denoted by ‘K’s,  of similar lanes). 

Lane details show all signals and routing control logic blocks 
(ExSIF/InSIF) associated with each input/output lane. 

ExSIF/InSIF coordinate using status tables (RST and CNT). 



status table details for the request service table (RST) 
maintained by the ExSIF and the connectivity table (CNT) 
maintained by the InSIF. Channel routing information 
specifies lane availability and input-output port lane 
connections. The ExSIFs, InSIFs and the status tables play 
a key role in channel routing, as discussed in Section 4. 

4. CHANNEL ROUTING ALGORITHM 

Establishing an arbitrary inter-PU communication channel 
on a two-dimensional mesh is a straightforward process, 
but however, choosing the best communication channel 
given all potential routes is challenging. For example, 
minimal adaptive routing chooses the shortest path 
between two points in a two-dimensional mesh, thus 
defining the best route as simply the shortest path. 
However, between two points in a two-dimensional mesh, 
there exists (ΔX + ΔY)! / ((ΔX)! + (ΔY)!) equal length 
shortest path routes where ΔX and ΔY are the differences 
between the X and Y coordinates of the two points, 
respectively. We define the best routing path as both a 
shortest path (with available communication lanes) and 
one that best distributes communication channels to avoid 
communication bottlenecks and communication resource 
starvation. 

Our communication channel routing algorithm is based 
on minimal adaptive routing to establish, maintain, use 
(transfer data), and release inter-PU communication 
channels, which correspond to channel phases: the request 
service phase, the grant/deny phase, the data transfer 
phase, and the resource release phase. Each switch can 
maintain multiple channels, each of which may be in any 
one of these phases (regardless of the other channel’s 
phases). Fig 2 depicts a state graph of channel phase 
actions and transitions. 

 The switch begins operation in the idle state (S1). If the 
switch receives a channel establishment request and 
associated channel establishment information on the 
req_in and data_in signals, the switch transitions to S2 

and begins the request service phase. In S2, the switch 
compares its address with the destination switch address 
and determines (according to the minimal adaptive 
algorithm) the potential destination ports (‘C0’ and/or 
‘C1’) in which to forward the incoming request. If the 
current and destination switch addresses do not match, the 
requested PU is not connected to the current switch and 
the current switch must forward the request to (a) 
neighboring switch(es). Otherwise, the request is 
forwarded to the appropriate local PU port. If there is an 
available output lane on ‘C0’ and/or ‘C1’, the switch 
transitions to S3 to establish input-output lane 
connections. In S3, the requesting port’s ExSIF adds the 
appropriate entries to the RST (Table 1 (top)) and the 
destination port’s InSIF adds the appropriate entries to the 
CNT (Table 1 (bottom)). After adding these entries, the 
switch transitions to S4 and forwards the request to the 
available lane on port(s) ‘C0’ and/or ‘C1’ and completes 
the request service phase. On the other hand, if there are 
no available output port lanes, routing at this switch fails 
and the switch transitions to S10, sends a deny response to 
the requesting switch, and transitions back to the idle state 
(S1) (the status tables are unchanged). 

After successful completion of the request service 
phase, the switch enters the grant/deny phase (S5) and 
waits for grant and/or deny signal responses (gnt_in or 
dny_in, respectively) on the output lane of port(s) ‘C0’ 
and/or ‘C1’. If only one port (direction ‘C0’) was selected 
in the request service phase and a grant is received, the 
switch transitions to S7 and forwards the gnt_in, dny_in, 
and ful_in signals to the corresponding gnt_out, dny_out, 
and ful_out signals of the requesting port’s input lane (the 
port’s input lane in which the request generated from and 
has already been stored in the CNT in S3). If both ports 
‘C0’ and ‘C1’ were selected in the request service phase, 
there are three possible state transition situations. In the 
first situation, the switch receives denies from both ports 
and transitions to S6 to release all channel resources 
associated with both ports. The switch transitions to S10, 
sends deny to the requesting port and transitions back to 
the idle state (S1). In the second situation, the switch 
receives one grant and one deny (associated with ‘C0’ and 

 
Fig 2. State diagram for a switch’s channel phase actions 

and transitions. 

Table 1. Status table details for each input lane (ExSIF maintains 
the RST) and output lane (InSIF maintains the CNT). 

 



‘C1’, respectively, or vice versa). The switch transitions to 
S7, forwards gnt_in, dny_in, and ful_in from ‘C0’ to the 
requesting port, and releases resources associated with 
‘C1’. (Note that the case is similar when ‘C0’ denies and 
‘C1’ accepts). In the third scenario, the switch receives 
grants from both ports and transitions to S8 for grant 
resolution. Grant resolution selects the best channel to 
establish by evaluating the port responses and associated 
route costs to determine which response to forward to the 
requesting port’s input lane. Route cost is defined as the 
number of lanes already assigned to existing 
communication channels. If both ports route costs are 
different, the switch selects the lowest route cost port as 
the best port. If both ports route costs are equal, the switch 
selects the port with the lowest PID as the best port. After 
the best port is selected (denoted as ‘C0’ in S8 and S7), 
the switch transitions to S7, forwards gnt_in, dny_in, and 
ful_in of port ‘C0’ to the requesting port’s input lane using 
information in C0’s output lane’s CNT, and releases the 
resources associated with port ‘C1’ using information in 
the requesting port’s input lane’s RST. This algorithm is 
deadlock free because in all situations, the switch 
forwards/sends either a grant or deny to the requesting 
input port, which prohibits infinite channel locking. The 
total number of cycles required for releasing all of the 
resources is linear with ΔX + ΔY. 

The request service phase propagates successively 
down all shortest paths from the source switch to the 
destination switch simultaneously. The grant/deny phase 
propagates successively backward on all of these paths. 
Even though multiple request service phase paths may 
reach the destination switch, only one path will propagate 
the grant signal all the way back to the source switch, 
allocating channel resources on this backward 
propagation.  

At each switch, if sufficient channel resources exist and 
that switch is allocated to the routing path (lies on the best 
routing path), grant/deny phase completion (S7) and 
channel establishment occur simultaneously and pipelined 

data transfers (S9) can begin along the channel. Since 
MACS uses a circuit-switching methodology, in-order 
data arrival is guaranteed. The channel remains 
established until the switch enters the resource release 
phase, either due to data transfer completion or the denial 
of a channel establishment request, to free all associated 
channel resources. The switch transitions to S11 and 
releases channel resources by removing corresponding 
status table entries. 

5. RESULTS 

We implemented the MACS switch as a highly parametric 
VHDL soft core providing architectural parameters to 
specify the number of switch port lanes (Kl (left), Kr 
(right), Kd (down), Ku (up)), local port lanes (Kll (left 
local), Krl (right local)), and lane data width W. Given the 
prohibitively large design exploration space for all 
possible combinations of all architectural parameters, we 
fix the number of switch port lanes with respect to each 
other (Kl = Kr = Kd = Ku) and number of local port lanes 
with respect to each other (Kll = Krl). Our design targeted 
the Xilinx Virtex-II Pro XC2VP30-7FF1152 device.  

For each combination of Kl, Kr, Kd, Ku and Kll, Krl, 
we evaluated area usage and maximum operating 
frequency. We measured maximum operating frequency 
after place and route using the Xilinx static timing 
analysis tool, trace, with no clock constraint (trce -v-u-a). 
We used the Xilinx ISE simulator to simulate the design. 

5.1 AREA USAGE AND TIMING ANALYSIS 

Fig 3 (top row) depicts switch area usage per PU (total 
switch area is twice these values since each switch has 
two PUs). The x-axis in each graph varies the Kl, Kr, Kd, 
and Ku architectural parameters from 1 to 3 lanes per 
switch port. From left to right, the graphs vary the Kll and 
Krl parameters from 1 to 3 lanes per local port. In 
addition, each graph also depicts the area usage for data 
widths W = 8, 16, and 32 bits. For example, the area usage 
for Kl = Kr = Kd = Ku = Kll = Krl = 1 and W = 16 bits is 
576 slices per PU, which equates to only 4.2% of 
available slices on our test device  

Fig 3 (bottom row) depicts maximum operating 
frequency (for the same parameter values as discussed in 
the previous paragraph) and shows that MACS can 
achieve high operating frequencies ranging from 170 
MHz to 308 MHz. 

We evaluate MACS compared to two previous works, a 
packet-switched architecture [2] and a circuit-switched 
architecture (the PNoC) [6], in terms of area overhead (in 
FPGA slice and block-RAM (BRAM) requirements) and 
attainable operating frequency. We point out that direct 
comparison with previous work is difficult due to a large 
variation in tools, devices, and architectural layout. To 
provide as fair a comparison as possible, we choose 

 
Fig 3. Area usage in number of slices per PU (top row) and 

maximum operating frequency (bottom row) for data widths 
W = 8, 16, and 32 bits for a varying number of lanes per 

switch and local port. The x-axis in each graph varies the Kl, 
Kr, Kd, and Ku parameters from 1 to 3 lanes per switch port. 

From left to right, the graphs vary the Kll and Krl 
parameters from 1 to 3 lanes per local port. 



similar architectural layouts i.e. topology (two-
dimensional mesh), number of PUs (8), number of lanes 
per port (1), data width (16 bits), and the same device 
platform (Xilinx Virtex-II Pro). For MACS, since edge 
switch ports (those on the periphery of the mesh) do not 
connect to any neighboring switches, we tied these switch 
ports to ground, and thus allowed the synthesis tool to 
optimize edge switch ports and reduce area requirements. 

Table 2 compares MACS with the previous NoC 
architectures. We obtained the area and frequency values 
directly from literature for the packet-switched 
architecture [2] and PNoC circuit-switched architecture 
[6]. Compared to a packet-switching architecture, MACS 
provides a 2x reduction in area requirements and a 5x 
improvement in operating frequency. When compared to 
PNoC, MACS imposes a slight area increase but provides 
a 2x improvement in operating frequency. 

6. CONCLUSIONS AND FUTURE WORK  

In this paper, we introduce MACS, a highly parametric 
two-dimensional switch mesh topology NoC. MACS uses 
a minimal adaptive routing algorithm with multiple path 
evaluation for dynamic communication channel 
establishment and communication load balancing. To the 
best of our knowledge, the MACS switch is the first NoC 
switch to use minimal adaptive routing to explore all 
shortest paths and route cost evaluation for 
communication load balancing. In addition, to reduce area 
overhead and increase application specialization, MACS 
connects two processing units (PU) to each switch. 
Whereas the system designer must strategically place 
critical PU pairs on common switches in order to exploit 
this increased performance benefit, critical PU placement 
is not required (this placement only enhances MACS 
specialization abilities). Results show that MACS is 
highly scalable and achieves high operating frequencies 
even for systems with large data buses. Results show that 
MACS offers a 5x increase in communication operating 
frequency and a 2x reduction in area compared to a 
previous packet-switched architecture and a 2x increase in 
communication operating frequency with only a slight 
increase in area compared to a previous circuit-switched 
architecture. 

Future work includes switch power analysis and 
reducing communication channel establishment latency by 
improving the routing algorithm’s round-robin arbitration. 
In addition, we plan to explore bi-directional request and 
data buses to optimize communication, as well as protocol 
development. Detailed simulation is planned for 

visualization and analysis of communication load 
balancing. Finally, we will provide a design exploration 
script with MACS to assist designers in per application 
architectural specialization.  
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