Introduction

- **Goals**
 - Efficient hardware resource management in partially reconfigurable (PR) system-on-chips (SoCs)
- **Motivations**
 - Enable multiple applications to concurrently execute on a PR SoC while meeting performance deadlines
- **Approach**
 - Leverage scalable and flexible base architecture
 - Virtual Architecture for Partially Reconfigurable Embedded Systems (VAPRES)
 - Implement dynamic resource manager (DRM) to orchestrate SoC hardware resource management
 - Improve hardware resource utilization and reduce reconfiguration time through run-time hardware adaptation

VAPRES Overview

- **VAPRES** is a parametric, scalable, and flexible architecture
 - Number of PR regions (PRRs), FIFO depths, PRR width & height, inter-PRR communication network
 - Inter-PRR communication using SCORES (a streaming-based dynamic inter-module communication architecture)
 - PR modules (PRMs) operate at different clock frequencies
 - Streaming communication with asynchronous FSLs

Dynamic Resource Manager

- **DRM** performs run-time hardware (HW) task scheduling and communication interface management
 - Caches HW modules inside PRRs
 - Enables HW reuse
 - Reduces wasted PR HW resources
 - Updates inter-PRR communication links for reconfigurable stream processing systems (RSPSs)
 - Eliminates HW relocation
 - Decreases overall reconfiguration time

RSPS Run-time Assembly

- **RSPS** netlists allow run-time assembly/ transformation of the inter-PRR data streams
 - Transformation done by dynamically updating SCORES communication channels
 - Allows PRMs to be seamlessly loaded/unloaded to PRRs without loss of processed data
 - DRM software modules execute inside the MicroBlaze CPU to ensure proper handoff