
Abstract—Partial reconfiguration (PR) enhances traditional
FPGA-based systems-on-a-chip (SoCs) by providing benefits such
as reduced area requirements and increased system flexibility. In
multi-application PR SoCs, a dynamic resource manager (DRM)
must efficiently orchestrate PR hardware resource management
(access to and sharing of PR resources) in order to minimize the
percentage of wasted/unused PR resources and reconfiguration
time overhead. In this paper, we present DRM software that
leverages two techniques, hardware module reuse and dynamic
inter-module communication, to reduce wasted/unused PR
hardware resources by 13% and reduce reconfiguration time by
33% as compared to a DRM without these techniques.

Keywords – FPGA; partial reconfiguration; dynamic resource
management; online module placement.

I. INTRODUCTION AND MOTIVATIONS

Partial reconfiguration (PR) [26][27] enhances field-
programmable gate array (FPGA) flexibility by partitioning the
FPGA’s fabric into two main regions: the static region and the
reconfigurable region. The static region, which is never
reconfigured, contains all application functionality that remains
fixed during execution while reconfiguration is isolated to the
reconfigurable region, which is further partitioned into several
disjoint partially reconfigurable regions (PRRs). Each PRR can
be individually reconfigured while all other PRRs and the static
region remain operational.

This isolated reconfiguration provides high system
functionality flexibilty for PR FPGA-based systems-on-chip
(SoCs) by dynamically loading/unloading application hardware
modules (application functionality) without entire system
execution interruption. In multi-application SoCs, a dynamic
resource manager (DRM) manages the applications’ access to
the PR hardware resources (i.e., PRRs) using DRM services,
which automates hardware resource allocation, placement,
scheduling, and control of hardware module execution on the
application’s behalf. The DRM can schedule an hardware
modules to run inside the PRRs, as software modules running
on an embedded microprocessor, or a combination of both.

In order to minimize performance overhead during
reconfiguration, the DRM must provide efficient hardware
resource management. Inefficient hardware resource
management results in unused/wasted PRRs (available PRRs
that the DRM is unable to allocate to an application), which
increases the probability that an application’s request for PR
hardware resources will be denied. Additionally, since PRR
reconfiguration time can be on the order of tens to hundreds of
milliseconds [8][13], which may be unacceptable for stream-

processing applications (e.g., digital signal processing), the
DRM must minimize the reconfiguration time overhead.

Whereas the DRM’s service algorithms dictate hardware
resource management efficiency, mitigating the reconfiguration
time overhead is more challenging. To reduce the
reconfiguration time, the DRM can leverage common hardware
modules across different applications (e.g., two applications
using the same fast Fourier transform (FFT)). The DRM can
identify common hardware modules and cache these hardware
modules for reuse by another application—a process known as
hardware module reuse [6]. Hardware module reuse avoids
PRR reconfiguration time by eliminating the need to
reconfigure PRRs containing common hardware modules [12].

In order to most effectively leverage hardware module
reuse, the DRM must dynamically establish inter-module
communication channels for application’s that require inter-
module data communication and/or control synchronization. If
the PR SoC does not have architectural support for dynamic
inter-module communication, the DRM must place all of an
application’s hardware modules in contiguous PRRs and only
adjacent PRRs can communicate. This restriction limits the
DRM’s resource management flexibility and reduces resource
management efficiency. Alternatively, if the PR SoC contains
architectural support for dynamic inter-module communication,
the DRM can place an application’s hardware modules in any
available, non-contiguous PRRs and dynamically established
inter-module communication channels.

This paper presents a DRM that leverages hardware module
reuse and dynamic inter-module communication to mitigate
PRR reconfiguration time and reduce unused/wasted PRRs.
While previous work provides numerous PR SoCs
[3][10][11][16][18][21][22], we implemented our DRM on
VAPRES (Virtual Architecture for Partially Reconfigurable
Embedded Systems) [10] because VAPRES features a dynamic
inter-module communication architecture, in addition to
numerous customizable architectural parameters. Experimental
results reveal that our DRM decreases reconfiguration time by
33% and reduces the number of unused/wasted PRRs by 13%
on average when compared to a DRM without hardware
module reuse and dynamic inter-module communication.

II. BACKGROUND AND RELATED WORK

To manage FPGA resources, application design
environments can produce near-optimal resource management
solutions using complex offline algorithms before system
deployment. Unfortunately, offline algorithms require full
knowledge of the application behavior at design time, a

Hardware Module Reuse and Runtime Assembly for
Dynamic Management of Reconfigurable Resources

Abelardo Jara-Berrocal and Ann Gordon-Ross

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611

{berrocal, ann}@chrec.org

978-1-4577-1740-6/11/$26.00 ©2011 IEEE

requirement that is not amenable to applications operating in
highly dynamic runtime environments. For dynamic runtime
environments, DRMs perform resource management using
time-efficient, online algorithms1. The FPGA’s area model,
which represents the resource layout on the FPGA fabric, may
severely impact the online algorithm’s performance and
efficiency. The majority of previous research in online resource
management algorithms leverage either a one-dimensional (1-
D) or a two-dimensional (2-D) area model.

The 1-D area model represents the FPGA fabric as a linear
array of predefined, adjacent PRRs (typically referred to as
slots) where hardware modules with equal heights and arbitrary
widths (in slices) can span multiple adjacent PRRs
[3][11][16][21]. While the 1-D area model is simple and
adheres to PR FPGAs with vertical configuration frames (e.g.,
Virtex [23][24][25]), spanning hardware modules across
adjacent PRRs increases external fragmentation (available
PRRs that are not adjacent), which decreases resource
allocation performance. External fragmentation is caused by
loading/unloading hardware modules that span a different
number of PRRs, which scatters the available PRRs across the
FPGA fabric. Even if sufficient total resources exist to execute
a hardware module, external fragmentation increases the
hardware module rejection rate (a hardware module is ready
but unable to execute due to lack of resources) because these
resources are not adjacent. Smaller hardware modules can
partially mitigate external fragmentation by reducing the
number of spanned PRRs. However, smaller hardware modules
cause internal fragmentation (i.e., wasted PRR resources when
a hardware module is smaller than the PRR).

The 2-D area model represents the FPGA fabric as a
reconfigurable surface where arbitrarily-sized hardware
modules (variable heights and widths) can be placed at any
location [1][4][14][17]. This arbitrary placement enables online
resource allocation and module placement algorithms to tightly
pack hardware modules onto the reconfigurable surface and
reduce the hardware module rejection rate as compared to the
1-D area model. Even though the 2-D area model increases
hardware module placement flexibility as compared to the 1-D
area model, no current FPGA fabric supports the 2-D area
model [23][24][25] and the 2-D area model typically does not
support dynamic inter-module communication [20].

Our work contributes to previous research by presenting a
DRM that leverages both hardware module reuse and dynamic
inter-module communication on the 1-D area model. To reduce
the high hardware module rejection rate inherent to large
hardware modules (hardware modules that must span more
than one PRR) in previous 1-D area model research, an
application designer may partition large hardware modules into
several smaller hardware modules, where each smaller
hardware module fits into a single PRR. After module
placement, the DRM performs runtime assembly of the smaller
hardware modules (to implement the original large hardware
module’s functionality) to establish the dynamic inter-module
communication between the smaller constituent hardware
modules.

1 We refer the reader to [2] for details on offline and online

algorithms.

III. VAPRES – AN ARCHITECTURAL FRAMEWORK FOR

PARTIAL RECONFIGURATION AND DYNAMIC INTER-MODULE

COMMUNICATION

A. VAPRES Architecture and Applications
VAPRES consists of two main regions: the controlling

region and the data processing region. The controlling region
resides in the FPGA’s static region and includes a soft-core
MicroBlaze, an internal configuration access port (ICAP)
controller [23][24][25], and application-specific peripherals.
The controlling region manages data processing region
operation using memory-mapped input/output (I/O) registers
(PRSockets), executes application-level and system-level
software (e.g., the DRM services), and performs PR through
the ICAP peripheral. The data processing region contains a set
of PRRs, static hardware modules (I/O modules (IOMs)),
SCORES (a streaming-based dynamic inter-module
communication architecture [9]), and module interfaces
connecting both the PRRs and IOMs to SCORES. We refer to
each PRR and IOM as a VAPRES slot. The DRM program,
which executes in the system control region, dynamically
loads/unloads hardware modules into VAPRES slots for data
processing. The MicroBlaze communicates with the VAPRES
slots using a fast simplex link (FSL) interface [10]. PRRs are
structured as a 1-D linear array and are placed adjacently in the
VAPRES floorplan. Data enters and leaves hardware modules
operating inside VAPRES slots through the module’s consumer
and producer ports, respectively. We refer the reader to [10] for
additional details on the VAPRES architecture and operation.

A VAPRES application typically matches the structure of a
reconfigurable stream processing system (RSPS) [10]. RSPSs
are composed of a set of hardware and software modules
connected together to transform a data input stream into a
processed data output stream. The required data stream
transformations may be dependent on stream characteristics,
application requirements, or available resources. Since
transformation goals may change mid-stream, RSPSs require
mechanisms to dynamically switch stream-processing modules
(i.e., apply a different filtering technique to a security
monitoring video if a critical target is identified). While RSPS
hardware modules operate in VAPRES slots, the software
modules execute inside the embedded microprocessor and
orchestrate RSPS operation by invoking the DRM services.

B. SCORES and RSPS Runtime Assembly
SCORES is composed of a linear array of switches.

Switches communicate with neighboring switches and module
interfaces through bidirectional communication channels
between their input and output ports. Each consumer interface
attaching to SCORES is uniquely identified by the switch’s
SCORES address, which consists of the switch’s horizontal
position (X coordinate) inside the linear array and a local port
identifier that uniquely identifies each consumer interface
connecting to a SCORES switch.

SCORES’s dynamic inter-module communication is the
key component that enables the DRM to perform runtime
assembly of RSPSs. SCORES provides dynamic streaming
routes (DSRs) for low latency streaming data transmission
between the RSPS hardware modules. Each DSR connects an

RSPS’s hardware module’s producer interface with a down-
stream RSPS’s hardware module’s consumer interface by
reserving the required communication channels between the
switches and/or module interfaces. We refer the reader to [9]
for additional details on SCORES.

IV. THE DYNAMIC RUNTIME MANAGER (DRM)

VAPRES’s application execution framework consists of an
embedded Linux operating system (OS) in addition to the
DRM software running in user-level space. Applications
submit service requests to the DRM for resource allocation,
module placement, and RSPS runtime assembly. the DRM
supports multiple service requests from concurrent
applications. In this section, we present an RSPS development
methodology, describe the structure of a DRM service request,
and describe the DRM’s software modules and algorithms to
implement DRM services on VAPRES.

A. RSPS Development and DRM Service Requests
Application designers begin RSPS development by

selecting the RSPS’s composing hardware modules (module
set) from a library of pre-defined hardware macros. A
hardware macro implements a pre-placed and pre-routed
hardware module that can execute inside a VAPRES slot. Since
place-and-route depends on the PRR that the hardware module
will be placed in, the hardware macro library contains multiple
functionally-equivalent hardware macros, one for each
VAPRES PRR. To allow the DRM to leverage hardware
module reuse, the application designer should use a single
hardware macro library. We refer to all RSPS hardware
modules created from the same hardware macro library as
belonging to the same module type. If a specific hardware
module is not available in the hardware macro library, an

application designer can add specialized hardware macros to
the library. After selecting the RSPS’s module set, the
application designer constructs a final RSPS model, which is
comprised of the set of RSPS hardware modules and the
streaming channels that provide communication between these
hardware modules. Application designers can represent an
RSPS model using hardware description language (HDL) code
or an RSPS netlist.

Figure 1 (a) depicts a sample RSPS netlist and Figure 1 (b)
shows the mapping of the RSPS hardware modules and inter-
module communication channels to a sample VAPRES
architecture, which provides two producer interfaces and two
consumer interfaces per PRR to connect with a SCORES
switch, in addition to one FSL per PRR to communicate with
the MicroBlaze processor. Since an RSPS netlist may consist
of multiple instances of the same hardware module type, we
use unique and different hardware module identifiers (h) to
identify each RSPS hardware module. For each RSPS hardware
module, the FSL netlist field indicates if the RSPS requires or
does not require communication between this hardware module
and the MicroBlaze processor through the FSL. Similarly, the
consumer hardware module identifier netlist field lists the
hardware module identifiers for all the RSPS hardware
modules receiving data from each RSPS hardware module. As
hardware modules operate differently on input data based on
the input port that the input data arrives on, the RSPS netlist
includes the consumer switch local port identifier field to
indicate the local port identifier of the consumer interfaces
receiving data from each RSPS hardware module.

B. DRM Algorithms
Figure 2 depicts the VAPRES DRM modular design,

consisting of three data structures and five procedures. The
DRM data structures are: (a) the priority queue (Q); (b) the
resource allocation vector (R); and (c) the dynamic RSPS
representation vector (D). The DRM procedures are: (a) the
application interface; (b) the RSPS scheduler; (c) the resource
allocator; (d) the RSPS assembler; and (e) the module placer.

The priority queue holds the applications’ service requests
to the DRM. The resource allocation vector R = {ri / 0 ≤ i<N-
1} is a fixed-sized vector that represents the current execution
state of each VAPRES slot (assuming there are N slots) where
ri is a four-itemed tuple ri = {pi, hi, ti, ri}. The process identifier

(a) (b)

Figure 1: Sample RSPS netlist (a) and the mapping of hardware modules and communication channels to VAPRES (b)

Figure 2: Modular software design of the dynamic runtime manager (DRM).

pi identifies the application whose hardware module is currently
mapped to the i-th VAPRES slot. If no hardware module is
mapped to the i-th VAPRES slot, pi is 0. The hardware module
identifier hi and the module type ti store the hardware module
identifier and the module type for the hardware module
occupying the i-th VAPRES slot, respectively. The module
reconfigurability ri is a Boolean value that represents the
reconfigurability of the i-th slot, where true designates a PRR
and false designates an IOM.

In addition to the resource allocation vector, the dynamic
RSPS representation vector is a dynamically-sized list D = {dj}
that stores a data representation for any arbitrary RSPS and
where dj is a five-itemed tuple dj = {pj, hj, tj, lj, Sj} containing
information for each hardware module. The process identifier
pj identifies the application requesting a DRM service. The
hardware module identifier hj and the module type tj store the
hardware module identifier and the module type for the RSPS’s
j-th hardware module. lj holds the X coordinate of the VAPRES
slot where the RSPS’s j-th hardware module was placed for
execution (lj = N). Sj contains a collection of sjk tuples (Sj =
{sjk}) where each tuple models the streaming communication
channel between the j-th (producer module) and k-th (consumer
module) hardware modules. For each sjk,={hk, uk, vk}, hk is the
hardware module identifier for the k-th hardware module, and
uk and vk store the SCORES switch address and the SCORES
switch port identifier for the consumer interface receiving data
for the k-th hardware module, respectively.

DRM procedures are invoked when an application requests
a DRM service by submitting a service request to the
application interface procedure. A service request consists of
the application’s process identifier (p), the file name for the
RSPS netlist, and a Boolean flag (s) that indicates the type of
the requested DRM service (for new RSPS execution (s = 1) or
finalization of a currently executing RSPS (s = 0)). The
application interface procedure enqueues all service requests
into the DRM priority queue for subsequent processing by the
RSPS scheduler.

Upon dequeuing a service request from the DRM priority
queue, the RSPS scheduler parses the RSPS netlist file and uses
the dynamic RSPS representation vector (D) to implement a
list-based data model of the application’s RSPSs. In order to
prepare the hardware modules for execution, the DRM
performs resource allocation, module placement, and runtime
assembly on the dynamic RSPS representation vector. The
resource allocator checks for sufficient hardware resources
(available PRRs) using the DRM resource allocation vector
(R). If sufficient hardware resources exist, the DRM places the
hardware modules and performs runtime assembly.

The module placer maps the RSPS hardware modules to
specific VAPRES slots using a module placement algorithm.
For each hardware module, the module placement algorithm
first attempts to avoid PR by scanning the resource allocation
vector for an unused VAPRES slot (pi = 0) that already
contains a hardware module of the same module type as the
module being placed (i.e., hardware module reuse). If the i-th
VAPRES slot is a candidate for hardware module reuse, the
resource allocator updates the resource allocation vector by
setting pi to the RSPS’s application identifier. For each

hardware module that cannot be placed using hardware module
reuse, the module placement algorithm places these hardware
modules in unused VAPRES PRRs. After module placement
concludes, the RSPS assembler procedure updates the SCORES
switch addresses and the SCORES switch port identifiers (uk
and vk entries on the sjk tuple) for all dj tuples in the dynamic
RSPS representation vector. The RSPS assembler procedure
performs RSPS runtime assembly by scanning the dynamic
RSPS representation vector and updating the SCORES switch
addresses and SCORES switch port identifiers at each
VAPRES PRSocket to configure the module communication on
the the producer interfaces.

When an application completes execution, the application
requests finalization from the DRM using a service request. In
response to a finalization service request, the DRM resource
allocator deallocates all VAPRES slots containing hardware
modules associated with the requesting application by setting pi
= 0 in the resource allocation vector elements ri that
correspond to these VAPRES slots. Moreover, the DRM
configures the producer interfaces connecting to these
VAPRES slots (by writing to the VAPRES PRSockets) to
deassert the channel request signals and thus release
communication channel resources associated with the finalized
RSPS. After the DRM releases the occupied hardware
resources (PRRs or SCORES communications channels), these
resources are ready for use by subsequent applications.

V. RESULTS AND PERFORMANCE EVALUATION

In this section, we present a discrete-event simulation of our
DRM algorithms and evaluate the percentage of hardware
module reuse and rejected service requests. We also present
quantitative and qualitative analysis of our DRM from the
obtained simulation results.

A. Experimental Setup for DRM Algorithmic Evaluation
In order to evaluate our DRM algorithms, we implemented

a simulation framework consisting of four software modules:
the DRM, an RSPS offline scheduler, a discrete-event
simulator, and a performance statistics collector. The RSPS
offline scheduler generated multiple synthetic workloads for
the discrete-event simulator. Each synthetic workload
contained 1,000 DRM service requests, each of which was an
execution request for a randomly-generated RSPS for a finite
execution lifetime. The RSPS lifetimes were uniformly
distributed between 5 and 100 time units, where one time unit
was equal to 100 ms (i.e., RSPS lifetimes ranged from 500 ms
to 10 s). Consecutive service requests were separated by a
random length of time between 0 and a maximum time delay
measured in time units. We considered the delay factor as the
ratio between the maximum time delay between two
consecutive service requests and the maximum RSPS lifetime.

To construct each service request in the synthetic workload,
the RSPS offline scheduler invoked the task graph for free
(TGFF) [19] tool to generate a random task graph
representation of the service request’s RSPS. For each
generated random task graph, task graph nodes and directed
edges mapped to RSPS hardware modules and RSPS streaming
communication channels, respectively. To evaluate our
resource allocation and module placement algorithms for a

variety of RSPS configurations, each generated task graph
consisted of three to five nodes with one to four outgoing edges
per node. In order to evaluate our hardware module reuse
technique, the RSPS offline scheduler annotated each task
graph node with a module type integer number between one
and a maximum number of different module types (α).

During the discrete-event simulation, we performed
extensive experiments for a variety of system and application
evaluation cases. Each evaluation case consisted of a synthetic
workload (previously generated by the offline scheduler for a
given delay factor and maximum number of different module
types), and a number of VAPRES PRRs. We considered
systems with 6 to 16 VAPRES PRRs (in increments of 2
PRRs) and varied the maximum number of different module
types from 6 to 20 and the delay factor from 0.1 and 0.4 in
increments of 0.01 (this delay factor range separates
consecutive service requests by 1 to 4 s where the maximum
RSPS execution time is 10 s). For each evaluation case, we
performed 30 different experimental tests using different
random seeds to smooth the results’ variations. Our discrete-
event simulator operated on a synthetic workload and applied
the service requests from this synthetic workload as inputs to
our DRM. After finishing execution of each discrete-event
simulation test, the performance statistic collector recorded
average values for the number of rejected service requests due
to the lack of sufficient available VAPRES PRRs, the number
of unused VAPRES PRRs, and the percentage of reused
hardware modules.

B. Discrete-time Simulation and Evaluation
Figure 3 (a) and (b) depict the average percentage of

rejected service requests and unused/wasted PRRs,
respectively, for a varying number of VAPRES slots and delay
factors for a DRM that leverages hardware module reuse and
RSPS runtime assembly (case A) and a DRM that does not
leverage hardware module reuse and RSPS runtime assembly
(case B). Figure 4 (a) and (b) depict the reduction in the
number of rejected service requests and unused/wasted PRRs,
respectively, for a DRM that leverages RSPS runtime assembly
normalized to a DRM that does not leverage RSPS runtime
assembly for a varying number of VAPRES slots. When the
DRM does not leverage RSPS runtime assembly, the resource
allocation algorithm requires all VAPRES PRRs used by an
RSPS to be contiguous. Simulation results show that a DRM
that leverages RSPS runtime assembly reduces the number of
rejected service requests and the number of unused VAPRES
PRRs by 12% and 13% on average, respectively, as compared
to a DRM that does not leverage RSPS runtime assembly.
Furthermore, Figure 3 also depicts that while increasing the
number of VAPRES slots, the number of unused/wasted
VAPRES PRRs increases slower and the number of rejected
service requests decreases faster for the DRM that leverages
RSPS runtime assembly as compared to a DRM that does not
leverage RSPS runtime assembly. Thus, a DRM that leverages
RSPS runtime assembly is more scalable as the number of
VAPRES slots increases.

Figure 5 depicts the percentage of reused hardware modules
for a varying number of module types, delay factors, and
VAPRES slots. Results show that as the number of different
module types decreases, the percentage of reused hardware
modules increases. This reduction is expected because as the

 (a) (b)

Figure 3: Rejected service requests (a) and unused/wasted PRRs (b) for a varying number of VAPRES slots and delay factors for a DRM that leverages
hardware module reuse and RSPS runtime assembly (case A) and for a DRM that does not leverage hardware module reuse and RSPS runtime assembly (case

B). The dotted lines correspond to the slope of the linear regression functions that approximate the result values.

 (a) (b)

Figure 4: Reduction in rejected service requests (a) and unused/wasted PRRs (b) for a DRM that uses RSPS runtime assembly normalized to a DRM that
does not use RSPS runtime assembly for a varying number of VAPRES slots. For each figure, averages are calculated across all combinations of delay

factors and number of VAPRES slots.

variety of module types decreases, the number of common
hardware modules between different RSPSs (amenable to
hardware module reuse) increases. Figure 5 also shows that as
the number of available PRRs increases, the percentage of
reused hardware modules also increases as a larger number of
available PRRs provides the module placement algorithm with
more reconfigurable area for caching previously used hardware
modules. Our discrete-event simulation shows average
hardware module reuse values of 27%, 32%, 34%, and 37%
when the number of VAPRES slots are 6, 8, 10, and 12,
respectively. Since hardware module reuse enables the DRM to
avoid partial reconfiguration, hardware module reuse reduces
partial reconfiguration time by 33% on average for the four
cases depicted in Figure 5. We also observe that as the delay
factor between consecutive service requests increases, the
percentage of reused hardware modules increases because more
executing RSPSs finalized execution between consecutive
service requests.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a dynamic runtime manager
(DRM) that reduces partial reconfiguration time and
wasted/unused partially reconfigurable regions (PRRs) on
partially reconfigurable (PR) field-programmable gate array
(FPGA)-based systems-on-chip (SoCs) by caching hardware
modules inside PRRs (hardware module reuse) and
orchestrating dynamic inter-module communication.
Algorithmic simulation results showed that reconfiguration
time and unused/wasted PR hardware resources can be reduced
by as much as 33% and 13% on average. Future work includes
algorithmic refinements to specialize the communication
channel parameter values during DRM module placement,
which would enable the DRM to provide the required inter-
module communication with minimal area overhead.

ACKNOWLEDGMENTS

This work was supported in part by the I/UCRC Program of
the National Science Foundation under Grant No. EEC-
0642422. We gratefully acknowledge tools provided by Xilinx.

REFERENCES

[1] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast Template

Placement for Reconfigurable Computing Systems,” IEEE Design
and Test of Computers, vol. 17, no. 1, pp. 68-83, 2000.

[2] C. Bobda. Introduction to Reconfigurable Computing. Architectures,
Algorithms and Applications. Springer, 2007

[3] C. Bobda, M. Majer, A. Ahmadinia, T. Haller, A. Linarth, and J. Teich.
“Increasing the Flexibility in FPGA-based Reconfig-urable Platforms:
The Erlangen Slot Machine,” IEEE Conference on Field-Programmable
Technology (FPT), 2005

[4] G. Brebner, “The Swappable Logic Unit: A Paradigm for Virtual
Hardware,” Proc. IEEE Symp. FPGAs for Custom Computing
Machines (FCCM), pp. 77-86, 1997.

[5] S. Chakraborty, M. Gries, S. Kunzli, and L. Thiele, “Design Space
Exploration of Network Processor Architectures,” Network Processor
Design: Issues and Practices, Volume 1, pp. 55-89 Morgan Kaufmann,
Oct. 2002.

[6] P. Garcia, K. Compton, “Kernel sharing on reconfigurable
multiprocessor systems” . International Conference on ICECE
Technology, 2008. pp. 225-232. FPT 2008.

[7] R. Garcia, A. Gordon-Ross, and A. George. “Exploiting Partially
Reconfigurable FPGAs for Situation-Based Reconfiguration in Wireless
Sensor Networks,”. FCCM 2009

[8] R. Hymel, A. D. George, H. Lam. “Evaluating Partial Reconfiguration
for Embedded FPGA Applications,” HPEC, 2007

[9] A. Jara-Berrocal and A. Gordon-Ross. “SCORES: A Scalable and
Parametric Streams-Based Communication Architecture for Modular
Reconfigurable Systems,” DATE 2009

[10] A. Jara-Berrocal and A. Gordon-Ross. “VAPRES: A Virtual
Architecture for Partially Reconfigurable Embedded Systems,”
IEEE/ACM Design, Automation and Test in Europe (DATE), March
2010.

[11] D. Koch, C. Beckhoff, and J. Teich. ReCoBus-Builder – A Novel Tool
and Technique to Build Statically and Dynamically Reconfigurable
Systems for FPGAS. FPL 2008.

[12] T. Hangpei, G. Deyuan, W. Wu, F. Xiaoya, Z. Yian. “Improving
Performance of Partial Reconfiguration Using Strategy of Virtual
Deletion,”. FCCM 2008

[13] M. Liu, W. Kuehn, Z. Lu et al., “Run-time Partial Reconfiguration speed
investigation and architectural design space exploration,” in Field
Programmable Logic and Applications, 2009. FPL 2009. International
Conference on, 2009, pp. 498 -502.

[14] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins,
“Interconnection Networks Enable Fine-Grain Dynamic Multi-Tasking
on FPGAs,” Proc. Int’l Conf. Field-Programmable Logic and
Applications (FPL), pp. 795-805, 2002.

[15] C. Plessl, R. Enzler, H. Walder, J. Beutel, M. Platzner, L. Thiele, G.
Troster, “The Case for Reconfigurable Hardware in Wearable
Computing,” Personal and Ubiquitous Computing, pp. 299-308, Oct.
2003.

[16] P. Sedcole, P. Cheung, W. Luk: Run-Time Integration of Reconfigurable
Video Processing Systems. IEEE Trans. VLSI Syst. 15(9), 2007

[17] C. Steiger, H. Walder, and M. Platzner, “Operating Systems for
Reconfigurable Embedded Platforms: Online Scheduling of Real-Time
Tasks,” IEEE Trans. Comput., vol. 53, no. 11, 2004.

[18] A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, A. Dasu “Dynamically
Reconfigurable Systolic Array Accelerators: A case Study with EKF and
DWT algorithms,” In-print IET Comput. and Digit. Tech., 2010

[19] Task Graphs for Free. http://ziyang.eecs.umich.edu/~dickrp/tgff/
[20] M. Ullmann, B. Grimm, M. Hübner, J. Becker. An FPGA

Run-Time System for Dynamical On-Demand Reconfiguration. IEEE
Parallel and Distributed Processing Symposium, 2004

[21] H. Walder, S. Nobs, M. Platzner. “XF-board: A Prototyping Platform for
Reconfigurable Hardware Operating Systems,” ERSA 2004

[22] J. Williams and N. Bergmann. Embedded Linux as a Platform for
Dynamically Self-Reconfiguring Systems-On-Chip. Engineering of
Reconfigurable Systems and Algorithms (ERSA) 2004.

[23] Xilinx Inc. “Virtex-4 Configuration User Guide (UG071),” 2006
[24] Xilinx, Inc., "Virtex-5 FPGA Configuration User Guide (UG191)

v3.9.1," 2010.
[25] Xilinx, Inc., "Virtex-6 FPGA Configuration User Guide UG360 v3.1,"

2010.
[26] Xilinx Inc. “EA PR User Guide 208,” March 2009
[27] Xilinx Inc. "Partial Reconfiguration User Guide. UG702 v12.3," 2010.

Figure 5: Percentage of reused hardware modules for a varying number of
module types, delay factors, and VAPRES slots equal to 6 (a), 8 (b), 10 (c), and
12 (d). For each figure, averages are calculated across all combinations of delay

factors and number of module types.

