
Abstract—Partial reconfiguration (PR) enhances traditional 
FPGA-based systems-on-a-chip (SoCs) by providing benefits such 
as reduced area requirements and increased system flexibility. In 
multi-application PR SoCs, a dynamic resource manager (DRM) 
must efficiently orchestrate PR hardware resource management 
(access to and sharing of PR resources) in order to minimize the 
percentage of wasted/unused PR resources and reconfiguration 
time overhead. In this paper, we present DRM software that 
leverages two techniques, hardware module reuse and dynamic 
inter-module communication, to reduce wasted/unused PR 
hardware resources by 13% and reduce reconfiguration time by 
33% as compared to a DRM without these techniques. 

Keywords – FPGA; partial reconfiguration; dynamic resource 
management; online module placement. 

I. INTRODUCTION AND MOTIVATIONS 

Partial reconfiguration (PR) [26][27] enhances field-
programmable gate array (FPGA) flexibility by partitioning the 
FPGA’s fabric into two main regions: the static region and the 
reconfigurable region. The static region, which is never 
reconfigured, contains all application functionality that remains 
fixed during execution while reconfiguration is isolated to the 
reconfigurable region, which is further partitioned into several 
disjoint partially reconfigurable regions (PRRs). Each PRR can 
be individually reconfigured while all other PRRs and the static 
region remain operational.  

This isolated reconfiguration provides high system 
functionality flexibilty for PR FPGA-based systems-on-chip 
(SoCs) by dynamically loading/unloading application hardware 
modules (application functionality) without entire system 
execution interruption. In multi-application SoCs, a dynamic 
resource manager (DRM) manages the applications’ access to 
the PR hardware resources (i.e., PRRs) using DRM services, 
which automates hardware resource allocation, placement, 
scheduling, and control of hardware module execution on the 
application’s behalf. The DRM can schedule an hardware 
modules to run inside the PRRs, as software modules running 
on an embedded microprocessor, or a combination of both.  

In order to minimize performance overhead during 
reconfiguration, the DRM must provide efficient hardware 
resource management. Inefficient hardware resource 
management results in unused/wasted PRRs (available PRRs 
that the DRM is unable to allocate to an application), which 
increases the probability that an application’s request for PR 
hardware resources will be denied. Additionally, since PRR 
reconfiguration time can be on the order of tens to hundreds of 
milliseconds [8][13], which may be unacceptable for stream-

processing applications (e.g., digital signal processing), the 
DRM must minimize the reconfiguration time overhead.   

Whereas the DRM’s service algorithms dictate hardware 
resource management efficiency, mitigating the reconfiguration 
time overhead is more challenging. To reduce the 
reconfiguration time, the DRM can leverage common hardware 
modules across different applications (e.g., two applications 
using the same fast Fourier transform (FFT)). The DRM can 
identify common hardware modules and cache these hardware 
modules for reuse by another application—a process known as 
hardware module reuse [6]. Hardware module reuse avoids 
PRR reconfiguration time by eliminating the need to 
reconfigure PRRs containing common hardware modules [12].  

In order to most effectively leverage hardware module 
reuse, the DRM must dynamically establish inter-module 
communication channels for application’s that require inter-
module data communication and/or control synchronization. If 
the PR SoC does not have architectural support for dynamic 
inter-module communication, the DRM must place all of an 
application’s hardware modules in contiguous PRRs and only 
adjacent PRRs can communicate. This restriction limits the 
DRM’s resource management flexibility and reduces resource 
management efficiency. Alternatively, if the PR SoC contains 
architectural support for dynamic inter-module communication, 
the DRM can place an application’s hardware modules in any 
available, non-contiguous PRRs and dynamically established 
inter-module communication channels.  

This paper presents a DRM that leverages hardware module 
reuse and dynamic inter-module communication to mitigate 
PRR reconfiguration time and reduce unused/wasted PRRs. 
While previous work provides numerous PR SoCs 
[3][10][11][16][18][21][22], we implemented our DRM on 
VAPRES (Virtual Architecture for Partially Reconfigurable 
Embedded Systems) [10] because VAPRES features a dynamic 
inter-module communication architecture, in addition to 
numerous customizable architectural parameters. Experimental 
results reveal that our DRM decreases reconfiguration time by 
33% and reduces the number of unused/wasted PRRs by 13% 
on average when compared to a DRM without hardware 
module reuse and dynamic inter-module communication.  

II. BACKGROUND AND RELATED WORK 

To manage FPGA resources, application design 
environments can produce near-optimal resource management 
solutions using complex offline algorithms before system 
deployment. Unfortunately, offline algorithms require full 
knowledge of the application behavior at design time, a 
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requirement that is not amenable to applications operating in 
highly dynamic runtime environments. For dynamic runtime 
environments, DRMs perform resource management using 
time-efficient, online algorithms1. The FPGA’s area model, 
which represents the resource layout on the FPGA fabric, may 
severely impact the online algorithm’s performance and 
efficiency. The majority of previous research in online resource 
management algorithms leverage either a one-dimensional (1-
D) or a two-dimensional (2-D) area model.  

The 1-D area model represents the FPGA fabric as a linear 
array of predefined, adjacent PRRs (typically referred to as 
slots) where hardware modules with equal heights and arbitrary 
widths (in slices) can span multiple adjacent PRRs 
[3][11][16][21]. While the 1-D area model is simple and 
adheres to PR FPGAs with vertical configuration frames (e.g., 
Virtex [23][24][25]), spanning hardware modules across 
adjacent PRRs increases external fragmentation (available 
PRRs that are not adjacent), which decreases resource 
allocation performance. External fragmentation is caused by 
loading/unloading hardware modules that span a different 
number of PRRs, which scatters the available PRRs across the 
FPGA fabric. Even if sufficient total resources exist to execute 
a hardware module, external fragmentation increases the 
hardware module rejection rate (a hardware module is ready 
but unable to execute due to lack of resources) because these 
resources are not adjacent. Smaller hardware modules can 
partially mitigate external fragmentation by reducing the 
number of spanned PRRs. However, smaller hardware modules 
cause internal fragmentation (i.e., wasted PRR resources when 
a hardware module is smaller than the PRR).  

The 2-D area model represents the FPGA fabric as a  
reconfigurable surface where arbitrarily-sized hardware 
modules (variable heights and widths) can be placed at any 
location [1][4][14][17]. This arbitrary placement enables online 
resource allocation and module placement algorithms to tightly 
pack hardware modules onto the reconfigurable surface and 
reduce the hardware module rejection rate as compared to the 
1-D area model. Even though the 2-D area model increases 
hardware module placement flexibility as compared to the 1-D 
area model, no current FPGA fabric supports the 2-D area 
model [23][24][25] and the 2-D area model typically does not 
support dynamic inter-module communication [20].  

Our work contributes to previous research by presenting a 
DRM that leverages both hardware module reuse and dynamic 
inter-module communication on the 1-D area model. To reduce 
the high hardware module rejection rate inherent to large 
hardware modules (hardware modules that must span more 
than one PRR) in previous 1-D area model research, an 
application designer may partition large hardware modules into 
several smaller hardware modules, where each smaller 
hardware module fits into a single PRR. After module 
placement, the DRM performs runtime assembly of the smaller 
hardware modules (to implement the original large hardware 
module’s functionality) to establish the dynamic inter-module 
communication between the smaller constituent hardware 
modules. 

                                                             
1 We refer the reader to [2] for details on offline and online 

algorithms. 

III. VAPRES – AN ARCHITECTURAL FRAMEWORK FOR 

PARTIAL RECONFIGURATION AND DYNAMIC INTER-MODULE 

COMMUNICATION 

A. VAPRES Architecture and Applications 
VAPRES consists of two main regions: the controlling 

region and the data processing region. The controlling region 
resides in the FPGA’s static region and includes a soft-core 
MicroBlaze, an internal configuration access port (ICAP)  
controller [23][24][25], and application-specific peripherals. 
The controlling region manages data processing region 
operation using memory-mapped input/output (I/O) registers 
(PRSockets), executes application-level and system-level 
software (e.g., the DRM services), and performs PR through 
the ICAP peripheral. The data processing region contains a set 
of PRRs, static hardware modules (I/O modules (IOMs)), 
SCORES (a streaming-based dynamic inter-module 
communication architecture [9]), and module interfaces 
connecting both the PRRs and IOMs to SCORES. We refer to 
each PRR and IOM as a VAPRES slot. The DRM program, 
which executes in the system control region, dynamically 
loads/unloads hardware modules into VAPRES slots for data 
processing. The MicroBlaze communicates with the VAPRES 
slots using a fast simplex link (FSL) interface [10]. PRRs are 
structured as a 1-D linear array and are placed adjacently in the 
VAPRES floorplan. Data enters and leaves hardware modules 
operating inside VAPRES slots through the module’s consumer 
and producer ports, respectively. We refer the reader to [10] for 
additional details on the VAPRES architecture and operation. 

A VAPRES application typically matches the structure of a 
reconfigurable stream processing system (RSPS) [10]. RSPSs 
are composed of a set of hardware and software modules 
connected together to transform a data input stream into a 
processed data output stream. The required data stream 
transformations may be dependent on stream characteristics, 
application requirements, or available resources. Since 
transformation goals may change mid-stream, RSPSs require 
mechanisms to dynamically switch stream-processing modules 
(i.e., apply a different filtering technique to a security 
monitoring video if a critical target is identified). While RSPS 
hardware modules operate in VAPRES slots, the software 
modules execute inside the embedded microprocessor and 
orchestrate RSPS operation by invoking the DRM services.  

B. SCORES and RSPS Runtime Assembly 
SCORES is composed of a linear array of switches. 

Switches communicate with neighboring switches and module 
interfaces through bidirectional communication channels 
between their input and output ports. Each consumer interface 
attaching to SCORES is uniquely identified by the switch’s 
SCORES address, which consists of the switch’s horizontal 
position (X coordinate) inside the linear array and a local port 
identifier that uniquely identifies each consumer interface 
connecting to a SCORES switch. 

SCORES’s dynamic inter-module communication is the 
key component that enables the DRM to perform runtime 
assembly of RSPSs. SCORES provides dynamic streaming 
routes (DSRs) for low latency streaming data transmission 
between the RSPS hardware modules. Each DSR connects an 



RSPS’s hardware module’s producer interface with a down-
stream RSPS’s hardware module’s consumer interface by 
reserving the required communication channels between the 
switches and/or module interfaces. We refer the reader to [9] 
for additional details on SCORES. 

IV. THE DYNAMIC RUNTIME MANAGER (DRM) 

VAPRES’s application execution framework consists of an 
embedded Linux operating system (OS) in addition to the 
DRM software running in user-level space. Applications 
submit service requests to the DRM for resource allocation, 
module placement, and RSPS runtime assembly. the DRM 
supports multiple service requests from concurrent 
applications. In this section, we present an RSPS development 
methodology, describe the structure of a DRM service request, 
and describe the DRM’s software modules and algorithms to 
implement DRM services on VAPRES.  

A. RSPS Development and DRM Service Requests 
Application designers begin RSPS development by 

selecting the RSPS’s composing hardware modules (module 
set) from a library of pre-defined hardware macros. A 
hardware macro implements a pre-placed and pre-routed 
hardware module that can execute inside a VAPRES slot. Since 
place-and-route depends on the PRR that the hardware module 
will be placed in, the hardware macro library contains multiple 
functionally-equivalent hardware macros, one for each 
VAPRES PRR. To allow the DRM to leverage hardware 
module reuse, the application designer should use a single 
hardware macro library. We refer to all RSPS hardware 
modules created from the same hardware macro library as 
belonging to the same module type. If a specific hardware 
module is not available in the hardware macro library, an 

application designer can add specialized hardware macros to 
the library. After selecting the RSPS’s module set, the 
application designer constructs a final RSPS model, which is 
comprised of the set of RSPS hardware modules and the 
streaming channels that provide communication between these 
hardware modules. Application designers can represent an 
RSPS model using hardware description language (HDL) code 
or an RSPS netlist.  

Figure 1 (a) depicts a sample RSPS netlist and Figure 1 (b) 
shows the mapping of the RSPS hardware modules and inter-
module communication channels to a sample VAPRES 
architecture, which provides two producer interfaces and two 
consumer interfaces per PRR to connect with a SCORES 
switch, in addition to one FSL per PRR to communicate with 
the MicroBlaze processor. Since an RSPS netlist may consist 
of multiple instances of the same hardware module type, we 
use unique and different hardware module identifiers (h) to 
identify each RSPS hardware module. For each RSPS hardware 
module, the FSL netlist field indicates if the RSPS requires or 
does not require communication between this hardware module 
and the MicroBlaze processor through the FSL. Similarly, the 
consumer hardware module identifier netlist field lists the 
hardware module identifiers for all the RSPS hardware 
modules receiving data from each RSPS hardware module. As 
hardware modules operate differently on input data based on 
the input port that the input data arrives on, the RSPS netlist 
includes the consumer switch local port identifier field to 
indicate the local port identifier of the consumer interfaces 
receiving data from each RSPS hardware module.  

B. DRM Algorithms 
Figure 2 depicts the VAPRES DRM modular design, 

consisting of three data structures and five procedures. The 
DRM data structures are: (a) the priority queue (Q); (b) the 
resource allocation vector (R); and (c) the dynamic RSPS 
representation vector (D). The DRM procedures are: (a) the 
application interface; (b) the RSPS scheduler; (c) the resource 
allocator; (d) the RSPS assembler; and (e) the module placer.  

The priority queue holds the applications’ service requests 
to the DRM. The resource allocation vector R = {ri / 0 ≤ i<N-
1} is a fixed-sized vector that represents the current execution 
state of each VAPRES slot (assuming there are N slots) where 
ri is a four-itemed tuple ri = {pi, hi, ti, ri}. The process identifier 

                  
(a)                                                                                                         (b) 

 

 
Figure 1: Sample RSPS netlist (a) and the mapping of hardware modules and communication channels to VAPRES (b) 

Figure 2: Modular software design of the dynamic runtime manager (DRM). 



pi identifies the application whose hardware module is currently 
mapped to the i-th VAPRES slot. If no hardware module is 
mapped to the i-th VAPRES slot, pi is 0. The hardware module 
identifier hi and the module type ti store the hardware module 
identifier and the module type for the hardware module 
occupying the i-th VAPRES slot, respectively. The module 
reconfigurability ri is a Boolean value that represents the 
reconfigurability of the i-th slot, where true designates a PRR 
and false designates an IOM.  

In addition to the resource allocation vector, the dynamic 
RSPS representation vector is a dynamically-sized list D = {dj} 
that stores a data representation for any arbitrary RSPS and 
where dj is a five-itemed tuple dj = {pj, hj, tj, lj, Sj} containing 
information for each hardware module. The process identifier 
pj identifies the application requesting a DRM service. The 
hardware module identifier hj and the module type tj store the 
hardware module identifier and the module type for the RSPS’s 
j-th hardware module. lj holds the X coordinate of the VAPRES 
slot where the RSPS’s j-th hardware module was placed for 
execution (lj = N). Sj contains a collection of sjk tuples (Sj = 
{sjk}) where each tuple models the streaming communication 
channel between the j-th (producer module) and k-th (consumer 
module) hardware modules. For each sjk,={hk, uk, vk}, hk is the 
hardware module identifier for the k-th hardware module, and 
uk and vk store the SCORES switch address and the SCORES 
switch port identifier for the consumer interface receiving data 
for the k-th hardware module, respectively. 

DRM procedures are invoked when an application requests 
a DRM service by submitting a service request to the 
application interface procedure. A service request consists of 
the application’s process identifier (p), the file name for the 
RSPS netlist, and a Boolean flag (s) that indicates the type of 
the requested DRM service (for new RSPS execution (s = 1) or 
finalization of a currently executing RSPS (s = 0)). The 
application interface procedure enqueues all service requests 
into the DRM priority queue for subsequent processing by the 
RSPS scheduler. 

Upon dequeuing a service request from the DRM priority 
queue, the RSPS scheduler parses the RSPS netlist file and uses 
the dynamic RSPS representation vector (D) to implement a 
list-based data model of the application’s RSPSs. In order to 
prepare the hardware modules for execution, the DRM 
performs resource allocation, module placement, and runtime 
assembly on the dynamic RSPS representation vector. The 
resource allocator checks for sufficient hardware resources 
(available PRRs) using the DRM resource allocation vector 
(R). If sufficient hardware resources exist, the DRM places the 
hardware modules and performs runtime assembly. 

The module placer maps the RSPS hardware modules to 
specific VAPRES slots using a module placement algorithm. 
For each hardware module, the module placement algorithm 
first attempts to avoid PR by scanning the resource allocation 
vector for an unused VAPRES slot (pi = 0) that already 
contains a hardware module of the same module type as the 
module being placed (i.e., hardware module reuse). If the i-th 
VAPRES slot is a candidate for hardware module reuse, the 
resource allocator updates the resource allocation vector by 
setting pi to the RSPS’s application identifier. For each 

hardware module that cannot be placed using hardware module 
reuse, the module placement algorithm places these hardware 
modules in unused VAPRES PRRs. After module placement 
concludes, the RSPS assembler procedure updates the SCORES 
switch addresses and the SCORES switch port identifiers (uk 
and vk entries on the sjk tuple) for all dj tuples in the dynamic 
RSPS representation vector. The RSPS assembler procedure 
performs RSPS runtime assembly by scanning the dynamic 
RSPS representation vector and updating the SCORES switch 
addresses and SCORES switch port identifiers at each 
VAPRES PRSocket to configure the module communication on 
the the producer interfaces. 

When an application completes execution, the application 
requests finalization from the DRM using a service request. In 
response to a finalization service request, the DRM resource 
allocator deallocates all VAPRES slots containing hardware 
modules associated with the requesting application by setting pi 
= 0 in the resource allocation vector elements ri that 
correspond to these VAPRES slots. Moreover, the DRM 
configures the producer interfaces connecting to these 
VAPRES slots (by writing to the VAPRES PRSockets) to 
deassert the channel request signals and thus release 
communication channel resources associated with the finalized 
RSPS. After the DRM releases the occupied hardware 
resources (PRRs or SCORES communications channels), these 
resources are ready for use by subsequent applications. 

V. RESULTS AND PERFORMANCE EVALUATION 

In this section, we present a discrete-event simulation of our 
DRM algorithms and evaluate the percentage of hardware 
module reuse and rejected service requests. We also present 
quantitative and qualitative analysis of our DRM from the 
obtained simulation results. 

A. Experimental Setup for DRM Algorithmic Evaluation 
In order to evaluate our DRM algorithms, we implemented 

a simulation framework consisting of four software modules: 
the DRM, an RSPS offline scheduler, a discrete-event 
simulator, and a performance statistics collector. The RSPS 
offline scheduler generated multiple synthetic workloads for 
the discrete-event simulator. Each synthetic workload 
contained 1,000 DRM service requests, each of which was an 
execution request for a randomly-generated RSPS for a finite 
execution lifetime. The RSPS lifetimes were uniformly 
distributed between 5 and 100 time units, where one time unit 
was equal to 100 ms (i.e., RSPS lifetimes ranged from 500 ms 
to 10 s). Consecutive service requests were separated by a 
random length of time between 0 and a maximum time delay 
measured in time units. We considered the delay factor as the 
ratio between the maximum time delay between two 
consecutive service requests and the maximum RSPS lifetime. 

To construct each service request in the synthetic workload, 
the RSPS offline scheduler invoked the task graph for free 
(TGFF) [19] tool to generate a random task graph 
representation of the service request’s RSPS. For each 
generated random task graph, task graph nodes and directed 
edges mapped to RSPS hardware modules and RSPS streaming 
communication channels, respectively. To evaluate our 
resource allocation and module placement algorithms for a 



variety of RSPS configurations, each generated task graph 
consisted of three to five nodes with one to four outgoing edges 
per node. In order to evaluate our hardware module reuse 
technique, the RSPS offline scheduler annotated each task 
graph node with a module type integer number between one 
and a maximum number of different module types (α). 

During the discrete-event simulation, we performed 
extensive experiments for a variety of system and application 
evaluation cases. Each evaluation case consisted of a synthetic 
workload (previously generated by the offline scheduler for a 
given delay factor and maximum number of different module 
types), and a number of VAPRES PRRs. We considered 
systems with 6 to 16 VAPRES PRRs (in increments of 2 
PRRs) and varied the maximum number of different module 
types from 6 to 20 and the delay factor from 0.1 and 0.4 in 
increments of 0.01 (this delay factor range separates 
consecutive service requests by 1 to 4 s where the maximum 
RSPS execution time is 10 s). For each evaluation case, we 
performed 30 different experimental tests using different 
random seeds to smooth the results’ variations. Our discrete-
event simulator operated on a synthetic workload and applied 
the service requests from this synthetic workload as inputs to 
our DRM. After finishing execution of each discrete-event 
simulation test, the performance statistic collector recorded 
average values for the number of rejected service requests due 
to the lack of sufficient available VAPRES PRRs, the number 
of unused VAPRES PRRs, and the percentage of reused 
hardware modules.  

B. Discrete-time Simulation and Evaluation 
Figure 3 (a) and (b) depict the average percentage of 

rejected service requests and unused/wasted PRRs, 
respectively, for a varying number of VAPRES slots and delay 
factors for a DRM that leverages hardware module reuse and 
RSPS runtime assembly (case A) and a DRM that does not 
leverage hardware module reuse and RSPS runtime assembly 
(case B). Figure 4 (a) and (b) depict the reduction in the 
number of rejected service requests and unused/wasted PRRs, 
respectively, for a DRM that leverages RSPS runtime assembly 
normalized to a DRM that does not leverage RSPS runtime 
assembly for a varying number of VAPRES slots. When the 
DRM does not leverage RSPS runtime assembly, the resource 
allocation algorithm requires all VAPRES PRRs used by an 
RSPS to be contiguous. Simulation results show that a DRM 
that leverages RSPS runtime assembly reduces the number of 
rejected service requests and the number of unused VAPRES 
PRRs by 12% and 13% on average, respectively, as compared 
to a DRM that does not leverage RSPS runtime assembly. 
Furthermore, Figure 3 also depicts that while increasing the 
number of VAPRES slots, the number of unused/wasted 
VAPRES PRRs increases slower and the number of rejected 
service requests decreases faster for the DRM that leverages 
RSPS runtime assembly as compared to a DRM that does not 
leverage RSPS runtime assembly. Thus, a DRM that leverages 
RSPS runtime assembly is more scalable as the number of 
VAPRES slots increases. 

Figure 5 depicts the percentage of reused hardware modules 
for a varying number of module types, delay factors, and 
VAPRES slots. Results show that as the number of different 
module types decreases, the percentage of reused hardware 
modules increases. This reduction is expected because as the 

     
                                                               (a)                                                                                                                         (b) 

Figure 3: Rejected service requests (a) and unused/wasted PRRs (b) for a varying number of VAPRES slots and delay factors for a DRM that leverages 
hardware module reuse and RSPS runtime assembly (case A) and for a DRM that does not leverage hardware module reuse and RSPS runtime assembly (case 

B). The dotted lines correspond to the slope of the linear regression functions that approximate the result values.  

                   
                                                                (a)                                                                                                                                     (b) 

 

Figure 4: Reduction in rejected service requests (a) and unused/wasted PRRs (b) for a DRM that uses RSPS runtime assembly normalized to a DRM that 
does not use RSPS runtime assembly for a varying number of VAPRES slots. For each figure, averages are calculated across all combinations of delay 

factors and number of VAPRES slots. 



variety of module types decreases, the number of common 
hardware modules between different RSPSs (amenable to 
hardware module reuse) increases. Figure 5 also shows that as 
the number of available PRRs increases, the percentage of 
reused hardware modules also increases as a larger number of 
available PRRs provides the module placement algorithm with 
more reconfigurable area for caching previously used hardware 
modules. Our discrete-event simulation shows average 
hardware module reuse values of 27%, 32%, 34%, and 37% 
when the number of VAPRES slots are 6, 8, 10, and 12, 
respectively. Since hardware module reuse enables the DRM to 
avoid partial reconfiguration, hardware module reuse reduces 
partial reconfiguration time by 33% on average for the four 
cases depicted in Figure 5. We also observe that as the delay 
factor between consecutive service requests increases, the 
percentage of reused hardware modules increases because more 
executing RSPSs finalized execution between consecutive 
service requests.  

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a dynamic runtime manager 
(DRM) that reduces partial reconfiguration time and 
wasted/unused partially reconfigurable regions (PRRs) on 
partially reconfigurable (PR) field-programmable gate array 
(FPGA)-based systems-on-chip (SoCs) by caching hardware 
modules inside PRRs (hardware module reuse) and 
orchestrating dynamic inter-module communication. 
Algorithmic simulation results showed that reconfiguration 
time and unused/wasted PR hardware resources can be reduced 
by as much as 33% and 13% on average. Future work includes 
algorithmic refinements to specialize the communication 
channel parameter values during DRM module placement, 
which would enable the DRM to provide the required inter-
module communication with minimal area overhead.  

ACKNOWLEDGMENTS 

This work was supported in part by the I/UCRC Program of 
the National Science Foundation under Grant No. EEC-
0642422. We gratefully acknowledge tools provided by Xilinx. 

REFERENCES 

[1] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast Template 

Placement for Reconfigurable Computing Systems,” IEEE Design 
and Test of Computers, vol. 17, no. 1, pp. 68-83, 2000. 

[2] C. Bobda. Introduction to Reconfigurable Computing. Architectures, 
Algorithms and Applications. Springer, 2007 

[3] C. Bobda, M. Majer, A. Ahmadinia, T. Haller, A. Linarth, and J. Teich. 
“Increasing the Flexibility in FPGA-based Reconfig-urable Platforms: 
The Erlangen Slot Machine,” IEEE Conference on Field-Programmable 
Technology (FPT), 2005 

[4] G. Brebner, “The Swappable Logic Unit: A Paradigm for Virtual 
Hardware,” Proc. IEEE Symp. FPGAs for Custom Computing 
Machines (FCCM), pp. 77-86, 1997. 

[5] S. Chakraborty, M. Gries, S. Kunzli, and L. Thiele, “Design Space 
Exploration of Network Processor Architectures,” Network Processor 
Design: Issues and Practices, Volume 1, pp. 55-89 Morgan Kaufmann, 
Oct. 2002. 

[6] P. Garcia, K. Compton, “Kernel sharing on reconfigurable 
multiprocessor systems” . International Conference on ICECE 
Technology, 2008. pp. 225-232. FPT 2008. 

[7] R. Garcia, A. Gordon-Ross, and A. George. “Exploiting Partially 
Reconfigurable FPGAs for Situation-Based Reconfiguration in Wireless 
Sensor Networks,”. FCCM 2009 

[8] R. Hymel, A. D. George, H. Lam. “Evaluating Partial Reconfiguration 
for Embedded FPGA Applications,” HPEC, 2007 

[9] A. Jara-Berrocal  and A. Gordon-Ross. “SCORES: A Scalable and 
Parametric Streams-Based Communication Architecture for Modular 
Reconfigurable Systems,” DATE 2009 

[10] A. Jara-Berrocal and A. Gordon-Ross. “VAPRES: A Virtual 
Architecture for Partially Reconfigurable Embedded Systems,” 
IEEE/ACM Design, Automation and Test in Europe (DATE), March 
2010. 

[11] D. Koch, C. Beckhoff, and J. Teich. ReCoBus-Builder – A Novel Tool 
and Technique to Build Statically and Dynamically Reconfigurable 
Systems for FPGAS. FPL 2008. 

[12] T. Hangpei,  G. Deyuan, W. Wu, F. Xiaoya, Z. Yian. “Improving 
Performance of Partial Reconfiguration Using Strategy of Virtual 
Deletion,”. FCCM 2008 

[13] M. Liu, W. Kuehn, Z. Lu et al., “Run-time Partial Reconfiguration speed 
investigation and architectural design space exploration,” in Field 
Programmable Logic and Applications, 2009. FPL 2009. International 
Conference on, 2009, pp. 498 -502. 

[14] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins, 
“Interconnection Networks Enable Fine-Grain Dynamic Multi-Tasking 
on FPGAs,” Proc. Int’l Conf. Field-Programmable Logic and 
Applications (FPL), pp. 795-805, 2002. 

[15] C. Plessl, R. Enzler, H. Walder, J. Beutel, M. Platzner, L. Thiele, G. 
Troster, “The Case for Reconfigurable Hardware in Wearable 
Computing,” Personal and Ubiquitous Computing, pp. 299-308, Oct. 
2003. 

[16] P. Sedcole, P. Cheung, W. Luk: Run-Time Integration of Reconfigurable 
Video Processing Systems. IEEE Trans. VLSI Syst. 15(9), 2007 

[17] C. Steiger, H. Walder, and M. Platzner, “Operating Systems for 
Reconfigurable Embedded Platforms: Online Scheduling of Real-Time 
Tasks,” IEEE Trans. Comput., vol. 53, no. 11, 2004. 

[18] A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, A. Dasu “Dynamically 
Reconfigurable Systolic Array Accelerators: A case Study with EKF and 
DWT algorithms,” In-print IET Comput. and Digit. Tech., 2010 

[19] Task Graphs for Free. http://ziyang.eecs.umich.edu/~dickrp/tgff/ 
[20] M. Ullmann, B. Grimm, M. Hübner, J. Becker. An FPGA 

Run-Time System for Dynamical On-Demand Reconfiguration. IEEE 
Parallel and Distributed Processing Symposium, 2004 

[21] H. Walder, S. Nobs, M. Platzner. “XF-board: A Prototyping Platform for 
Reconfigurable Hardware Operating Systems,” ERSA 2004 

[22] J. Williams and N. Bergmann. Embedded Linux as a Platform for 
Dynamically Self-Reconfiguring Systems-On-Chip. Engineering of 
Reconfigurable Systems and Algorithms (ERSA) 2004. 

[23] Xilinx Inc. “Virtex-4 Configuration User Guide (UG071),” 2006 
[24] Xilinx, Inc., "Virtex-5 FPGA Configuration User Guide (UG191) 

v3.9.1," 2010. 
[25] Xilinx, Inc., "Virtex-6 FPGA Configuration User Guide UG360 v3.1," 

2010. 
[26] Xilinx Inc. “EA PR User Guide 208,” March 2009 
[27] Xilinx Inc. "Partial Reconfiguration User Guide. UG702 v12.3," 2010. 

 

Figure 5: Percentage of reused hardware modules for a varying number of 
module types, delay factors, and VAPRES slots equal to 6 (a), 8 (b), 10 (c), and 
12 (d). For each figure, averages are calculated across all combinations of delay 

factors and number of module types.  


