
Phase-based Cache Reconfiguration For a Highly-
Configurable Two-Level Cache Hierarchy

ABSTRACT
Phase-based tuning methodologies specialize system parameters
for each application phase of execution. Parameters are varied
during execution, as opposed to remaining fixed as in an
application-based tuning methodology. Prior work and logic
suggests phase-based tuning may provide significant savings over
application-based tuning. We investigate this hypothesis using a
detailed cache model and tune a highly-configurable cache on a
per-phase basis compared to tuning once per application, and
found phase-based tuning to yield improvements of up to 37% in
performance and 20% in energy over application-based tuning.
Furthermore, we extend previous phase-based tuning of a
configurable cache by significantly increasing configurability and
show 14% energy improvement compared to previous methods. In
addition, we quantify the overhead imposed due to cache
reconfiguration.

Categories and Subject Descriptors
B.3.2 [Design Styles]: Cache Memories

General Terms
Design.

Keywords
Caches, configurable caches, phase prediction, configurable
architecture, phase-based reconfiguration, phase-based tuning.

1. INTRODUCTION
Research shows that applications have vastly different operating
requirements [19], thus facilitating optimization or tuning of
system parameters to the needs of a particular application to save
energy and/or improve performance. Tunable system parameters
include bus width and encoding, memory configuration, voltage

scaling, peripheral configuration, processor width configuration,
etc. An application-based tuning methodology would choose one
value for each configurable parameter, representing the greatest
optimization potential for the average run of the entire application.

However, applications show varying operating requirements
throughout execution [17]. Application execution can be
examined and compared on a per interval basis. An interval of
execution is a snippet of execution time measured by the number
of dynamic instructions executed. Each interval can be classified
according to its operating behavior by examining attributes such
as cache miss rates, cycles per instruction, and specific pipeline
stalls. Different intervals exhibiting similar execution traits can be
classified together as belonging to the same phase of execution.
Distinct phases tend to be revisited throughout application
execution

This predictable phase behavior enables phase-based
optimizations. Phase-based tuning allows for system parameters to
be specialized for each phase of execution, and thus reconfigured
during runtime. By allowing for system parameters to be varied
during runtime, there exists greater potential savings due to
intense specialization of system parameters to the changing needs
of the application.

In this paper, we make three main contributions. First, we
investigate the benefits of phase-based tuning over application-
based tuning of a highly configurable cache hierarchy with respect
to energy consumption and performance using a detailed cache
model. Secondly, we extend previous phase-based tuning of
configurable caches by significantly increasing cache
configurability, resulting in an additional 14% energy savings on
average. And lastly, we carefully quantify the overhead imposed
by cache reconfiguration in terms of energy and performance due
to write backs and cache flushing.

2. RELATED WORK
One method for phase classification and optimizations is done
using an offline-profiling step to determine phase boundaries and
phase configurations. Specialized hardware then supports runtime
reconfiguration of the parameters. Chaver et al. [4] presented a
phase-based adaptive fetch mechanism using an offline profiling
step to determine necessary system resources and encoded these
changes into the binary. Albonesi et al. [1] presented a method to
adaptively change cache associativity to the needs of the
application. Software analysis was done on the code to determine

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GLSVLSI’08, May 4-6, 2008, Orlando, Fl, USA.
Copyright 2008 ACM 1-58113-000-0/00/0004…$5.00.

Ann Gordon-Ross
University of Florida

Department of Electrical and Computer Engineering
ann@ece.ufl.edu, http://www.ann.ece.ufl.edu/

Also with the NSF Center for High-Performance Reconfigurable
Computing at the University of Florida

Jeremy Lau1

Google Inc.
lauj@google.com

Brad Calder1

Microsoft Corporation

1 This works was done while the author was affiliated with the University of California, San Diego.

associativity requirements and special instructions were used to
signal hardware changes during runtime.

Phase classification and optimizations can also be done in a
strictly online approach to both characterize phases and determine
the best configuration for each phase. Dhodapkar et al. [5]
discussed a method to determine phase changes based on
examination of the current working set of the application.
Balasubramonian et al. [3] used miss rates, CPI, and branch
frequency information to detect changes in application behavior
for cache specialization. Hallnor et al. [9] used counters within the
cache to count way accesses to predict miss rates for all cache
sizes during an interval for bank level shutdown. Shen et al. [14]
used locality profiling and runtime prediction to predict locality
phases within the program.

Our work differs from previous phase-based cache tuning
methodologies by exploring a significantly larger set of cache
configurations due to a more highly configurable cache, resulting
in greater energy and performance benefits on average. We also
compare phased-based tuning of a configurable cache with
application-based tuning of a configurable cache.

3. CONFIGURABLE CACHES AND PHASE
CLASSIFICATION
Configurable caches allow for cache parameters such as total size,
line size, and associativity to be specialized to the needs of an
application. Core-based processors allow a designer to choose a
particular cache configuration during system design time [2] and
methods exist to assist designers in choosing the best
configuration [7][8][19]. There are even hard processors that
allow their caches to be configured during system reset or even
during runtime [1][3][12][19].

3.1 Configurable Architecture
To provide intense specialization of the cache hierarchy to the
changing needs of an application and thus greater potential energy
savings, we examine a very highly configurable two level
hierarchy with separate level one instruction and data caches and a
unified level two cache.

For the level one cache, we utilized the highly configurable cache
designed by Zhang et al. [19] offering configurable total size, line
size, and associativity. Special configuration bits enabled
reconfiguration of all parameters during runtime. Furthermore,
hardware layout of the cache showed that reconfigurability did not
impact cache access time.

For the level two cache, we used the architecture offered in the
Motorola M*CORE processor featuring way management [12].
With way management, configuration bits specified each way to
cache instructions only, data only, instructions and data (unified),
or be shutdown. Each way in a way management cache could be
designated as one of those four possibilities. In addition to way
management, we included the same configurable line size as the
level one caches. Furthermore, fabrication [13] of the cache
showed that reconfigurability does not impact cache access time.

Given the configurability of each level, the configurable cache
hierarchy offered nearly 18,000 different cache configurations.

3.2 Cache Exploration Heuristic
Since exhaustive exploration of 18,000 different cache
configurations is infeasible, we developed a highly effective
heuristic (ACE-AWT) [8] for the configurable cache architecture
discussed in section 3.1. ACE-AWT tuned for maximum energy
savings and found a near optimal solution achieving 62% energy
savings on average while searching on average only 30 out of the
18,000 configurations – merely 0.2% of the search space. We
developed ACE-AWT for an application-based tuning
environment and, given ACE-AWT’s effectiveness, we sought to
explore additional savings revealed by phase-based tuning.
Further details can be found in [8][19].

3.3 Phase Classification
To perform phase classification, application execution must first
be broken into fixed sized intervals. An interval is measured by
the number of dynamic instructions executed and is the
granularity at which phases will be identified. Phase classification
is the process of grouping intervals showing similar behavior
patterns together. By grouping intervals together into phases,
optimizations applied to one phase interval will apply equally as
well to all intervals classified as that phase.

For this study, we utilized our offline phase classification
methodology [15][16], which was extended for online runtime
phase tracking and prediction [18] using a small amount of
hardware. Phase classification gathers information about basic
block execution without compiler support. Specialized hardware
monitors execution and traps branch instructions and tallies the
number of instructions executed between subsequent branch
instructions. The phase classification technique aggregates basic
block information in a small table and collectively represents a
footprint of execution. The phase classification technique
compares current footprints to previous footprints to determine
new phases of execution and reoccurrences of previously
identified phases. This tracking method is independent of the
underlying system architecture.

After phase classification, phase prediction can predict when a
phase transition will occur and what phase will be entered using
two important predictors. The first predictor is the set of phases
leading up to the prediction and the second predictor is the
duration of execution spent in those phases.

We further extended phase classification by not attempting to
classify transition phases with steady phases [11]. With fixed
length intervals, there is rarely a clean transition from one phase
to the next, leaving a period of time with erratic behavior. In our
methodology, we used this extension to classify transition phases
for what they are and do not compare them with steady phases and
thus, we do not attempt to optimize for the transition phases.

4. RESULTS
4.1 Experimental Setup
We examined a large selection of both floating point and integer
benchmarks from the SPEC2000 benchmark suite because SPEC
applications show a greater variation during execution than typical
embedded system kernel benchmarks. However, the general

methodology presented in this paper and the results are applicable
to embedded application devices as well as desktop environments.
We ran each benchmark using the full reference input sets and
used multiple input sets per application. Benchmarks will be listed
as the benchmark name followed by the input set.

We implemented the cache tuning heuristic using a Perl script to
drive simulation. We simulated each configuration explored using
SimpleScalar to gather cache hit and miss ratios. We utilized our
energy estimation model for the highly-configurable cache [8].
This model took into consideration all energy associated with the
cache hierarchy including miss latency and bandwidth, dynamic
cache access energy, static energy, main memory energy, and
CPU stall energy. We did not include leakage energy of system
components during reconfiguration because the granularity chosen
results in little reconfiguration overhead. We discuss this further
in section 4.3.

In order to calculate accurate energy consumption of an
application with a phase-based configurable cache, we modified
SimpleScalar to model the reconfigurable cache hierarchy
allowing variation of the level one and level two cache parameters
during a single run of the application. We applied ACE-AWT to
one occurrence of each phase to determine the best cache
configuration for each phase. We supplied a set of cache
configurations representing the best configuration for each phase
to SimpleScalar and at the end of each interval, the phase
identification of the next interval could be used to look up the
appropriate cache configuration to switch to. We precisely
modeled the reconfiguration behavior for each cache, taking great
care to accurately model runtime behavior so that we could
accurately quantify flushing due to reconfiguration.

4.2 Energy and Performance
To determine energy and performance, we compared the energy
consumption of the application executing with a tuned cache to
the energy consumption of the application executing with a base
cache configuration. For the base cache configuration, we chose a
cache hierarchy that both reflected the needs of the applications
and represented a configuration that may be found on a platform
running these applications. The level one base caches were 32
Kbyte 4-way set associative caches with a 32 byte line size and
the level two cache was a 128 Kbyte, fully unified 4-way set
associative cache with a 64 byte line size.

Figure 1 shows the energy consumption normalized to the base

cache configuration for each application for both application-
based tuning and phase-based tuning. On average across all
benchmarks, application-based tuning resulted in 34% energy
savings while phase-based tuning resulted in 37% energy savings.
Phase-based tuning gave an additional 3% energy savings (avg)
over application-based tuning with additional savings as high as
11% and 20% for gzip_random and bzip_graphic, respectively.
However, close inspection of the results showed that some
benchmarks actually consumed more energy after being phase-
tuned. We investigated these situations and discovered that for
these benchmarks, a very large percentage of phases were
classified as transition phases and were thus unclassifiable and not
tuned for. Unclassified phases ran as high as 80-90% for art_110
and art_470 and 32% for gcc_200. Taking into consideration that
such a large portion for the application is unclassified making
these application unsuitable candidates for phase-based tuning,
phase-based tuning performed surprisingly well. We point out that
in these situations, application-based tuning would be used instead
of phase-based tuning and therefore, we reevaluated the results
and considered only those benchmarks with positive energy
savings for phase-based tuning compared to application-based
tuning. The average energy savings (avg_modified) of application-
based tuning changed to 35% and phase-based rose to 40%.

Figure 2 shows the execution time normalized to the base cache
configuration for each application for both application-based
tuning and phase-based tuning. On average across all benchmarks
(avg), application-based tuning resulted in a 16% increase in
execution time while phase-based tuning resulted in only a 10%
increase in execution time. Phase-based tuning reduced the
negative performance impact by 6%. A few benchmarks –
gzip_random, bzip_graphic, and vpr_place – showed performance
savings as high as 37% for phase-based tuning over application-
based tuning. In addition, when we removed the benchmarks
where phase-based tuning did not show positive energy savings
compared to application-based tuning, phase-based tuning
reduced the negative performance impact (avg_modified) by 10%.

We also compared our phase-based tuning of a highly
configurable cache to previous phase-based cache tuning of less
configurable caches. One previous method offered either a large
or a small cache and the others offered a small subset of caches
trading off different requirements [3][6][14]. We examined energy
consumption for phased-based tuning offering 2 configurations
per phase (either small or large caches), 5 configurations per
phase chosen to trade off instruction and data requirements, and

Figure 1: Energy consumption normalized to the energy consumption of the base cache configuration. Avg is the average over all
benchmarks. Avg_modified is the average over all benchmarks where phase-based tuning offers positive energy savings over application-

based tuning.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

gz
ip
_g

ra
ph

ic

gz
ip
_l
og

gz
ip
_r

an
do

m

gc
c_

sc
ila

b

gc
c_

16
6

gc
c_

ex
pr

gc
c_

20
0

gc
c_

in
te
gr

at
e

eq
ua

ke

ar
t_

11
0

ar
t_

47
0

vp
r_

pl
ac

e

vp
r_

ro
ut

e

vo
rt
ex

_o
ne

vo
rt
ex

_t
w
o

vo
rt
ex

_t
hr

ee

bz
ip
_s

ou
rc
e

bz
ip
_g

ra
ph

ic

bz
ip
_p

ro
gr

am av
g

av
g
m
od

ifi
ed

E
n

e
r
g

y
 c

o
n

s
u

m
p

ti
o

n
 n

o
r
m

a
li
z
e
d

 t
o

th

e
 b

a
s
e
 c

a
c
h

e
 c

o
n

fi
g

u
r
a
ti

o
n

Application
based/highly
configurable
cache

Phase
Based/highly
configurable
cache

the highly-configurable cache discussed in this paper offering
18,000 different configurations per phase. On average, energy
savings for these methods were 23%, 27%, and 39%, respectively.
Whereas offering only 2 configurations gave a large initial
reduction in energy considering the small size of the configuration
space, increasing the configuration space to 5 configurations only
netted an additional 4% energy savings. For most benchmarks,
significant energy savings were only obtained by searching a
highly configurable cache.

4.3 Cache Reconfiguration Overhead
When analyzing the effectiveness of phase-based cache tuning
compared to application-based cache tuning, it is important to
consider the overhead incurred while switching between different
cache configurations. Changing a cache parameter is likely to
cause flushing of dirty entries. During cache reconfiguration, we
used SimpleScalar to count the number of additional writebacks
incurred due to changing cache parameters. On average over all
benchmarks, the total number of writebacks increased by less than
1% resulting in a 0.88% increase in energy and a 0.65% increase
in execution time.

5. CONCLUSIONS
We analyzed the benefits of phase-based cache tuning over
application-based cache tuning using a detailed cache model. We
conclude that whereas application-based tuning provides the
largest initial reduction in energy consumption, phase-based
tuning offers up to 20% additional energy savings. In addition, we
examined performance and observed that phase-based tuning
improves the negative impact on performance that is incurred in
application-based tuning. Application-based tuning incurred a
19% increase in execution time while phase-based tuning only
incurred a 9% increase in execution time. In addition, we show
the need for utilizing a highly configurable cache in phase-based
cache tuning by comparing our phase-based tuning method with
previous methods that utilize designs offering only a few possible
cache configurations. Our method offers 14% additional energy
savings over previous methods.

6. ACKNOWLEDGEMENTS
This work was supported in part by the National Science
Foundation (CNS-0614957) and the Semiconductor Research
Corporation (2005-HJ-1331).

7. REFERENCES
[1] Albonesi, D. Selective cache ways: on-demand cache resource

allocation. MICRO 1999
[2] Arc International, www.arccores.com
[3] Balasubramonian, R., Albonesi, D., Byuktosunoglu, A., Dwarkada,

S. Memory hierarchy reconfiguration for energy and performance in
general-purpose processor architectures. MICRO 2000.

[4] Chaver, D., Rojas, M, Pinuel, L., Prieto, M., Tirado, F., Huang, M.
Energy-aware fetch mechanism: trace cache and BTB customization.
International Symposium on Low Power Electronics and Design,
2005.

[5] Dhodapkar, A, Smith, J, Comparing program phase detection
techniques. MICRO 2003

[6] Dhodapkar, A., Smith. Managing multi-configuration hardware via
dynamic working set analysis. 29th Annual International Symposium
on Computer Architecture.

[7] Givargis, T., Vahid, F. Platune: a tuning framework for system-on-a-
chip platforms. IEEE Transactions on Computer Aided Design,
November 2002.

[8] Gordon-Ross, A., Vahid, F., Dutt, N. Fast configurable-cache tuning
with a unified second level cache. International Symposium on Low
Power Electronics and Design, 2005.

[9] Hallnor, E., Reinhardt, S. Dynamic leakage energy management of
secondary caches. Technical Report CSE-TR-459-03, University of
Michigan, 2002.

[10] Lau, J., Perelman, E., Calder, B. Selecting software phase markers
with code structure analysis. International Symposium on Code
Generation and Optimizatoin, 2006.

[11] Lau, J., Schoenmakers, S., Calder, B., Transition phase classification
and prediction. HPCA 2005

[12] Malik, A., Moyer, W., Cermak, D. A low power unified cache
architecture providing power and performance flexibility.
International Symposium on Low Power Electronics and Design.
2000.

[13] Personal communication with M*Core developers
[14] Shen, X., Zhong, Y., Ding, C. Locality phase prediction. 11th

International Conference on Architectural Support for Programming
Languages and Operating Systens, 2004.

[15] Sherwood, T., Perelman, E., Calder, B. Basic block distribution
analysis to find periodic behavior and simulation points in
applications. International Conference on Parallel Architectures and
Compilation Techniques, 2001

[16] Sherwood, T., Perelman, E., Hamerly, G., Calder, B. Automatically
characterizing large scale program behavior. 10th International
Conference on Architectural Support for Programming Languages
and Operating Systems, 2002.

[17] Sherwood, T, Perelman, E., Hamerly, G., Sair, S., Calder, B.
Discovering and exploiting program phases. IEEE Micro: Micro’s
Top Picks from Computer Architecture Conferences, December
2003.

[18] Sherwood, T., Sair, S., Calder, B. Phase tracking and prediction.
30th International Symposium on Computer Architecture, 2003

[19] Zhang, C., Vahid, F., Najjar, W. A highly-configurable cache
architecture for embedded systems. 30th Annual International
Symposium on Computer Architecture, June 2003.

Figure 2: Execution time normalized to the execution time of the base cache configuration. Avg is the average over all benchmarks.
Avg_modified is the average over all benchmarks where phase-based tuning offers positive energy savings over application-based tuning.

0%

20%

40%

60%

80%

100%

120%

140%

gz
ip
_g

ra
ph

ic

gz
ip
_l
og

gz
ip
_r

an
do

m

gc
c_

sc
ila

b

gc
c_

16
6

gc
c_

ex
pr

gc
c_

20
0

gc
c_

in
te
gr

at
e

eq
ua

ke

ar
t_

11
0

ar
t_

47
0

vp
r_

pl
ac

e

vp
r_

ro
ut

e

vo
rt
ex

_o
ne

vo
rt
ex

_t
w
o

vo
rt
ex

_t
hr

ee

bz
ip
_s

ou
rc
e

bz
ip
_g

ra
ph

ic

bz
ip
_p

ro
gr

am av
g

av
g
m
od

ifi
ed

E
x
e
c
u

ti
o

n
 t

im
e
 n

o
r
m

a
li
z
e
d

 t
o

 t
h

e
 b

a
s
e

c
a
c
h

e

c
o

n
fi

g
u

r
a
ti

o
n

Application
based/highly
configurable
cache

Phase
Based/highly
configurable
cache

