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ABSTRACT 
Phase-based tuning methodologies specialize system parameters 
for each application phase of execution. Parameters are varied 
during execution, as opposed to remaining fixed as in an 
application-based tuning methodology. Prior work and logic 
suggests phase-based tuning may provide significant savings over 
application-based tuning. We investigate this hypothesis using a 
detailed cache model and tune a highly-configurable cache on a 
per-phase basis compared to tuning once per application, and 
found phase-based tuning to yield improvements of up to 37% in 
performance and 20% in energy over application-based tuning. 
Furthermore, we extend previous phase-based tuning of a 
configurable cache by significantly increasing configurability and 
show 14% energy improvement compared to previous methods. In 
addition, we quantify the overhead imposed due to cache 
reconfiguration. 

Categories and Subject Descriptors 
B.3.2 [Design Styles]: Cache Memories 

General Terms 
Design. 

Keywords 
Caches, configurable caches, phase prediction, configurable 
architecture, phase-based reconfiguration, phase-based tuning. 

 

1. INTRODUCTION 
Research shows that applications have vastly different operating 
requirements [19], thus facilitating optimization or tuning of 
system parameters to the needs of a particular application to save 
energy and/or improve performance. Tunable system parameters 
include bus width and encoding, memory configuration, voltage 

scaling, peripheral configuration, processor width configuration, 
etc. An application-based tuning methodology would choose one 
value for each configurable parameter, representing the greatest 
optimization potential for the average run of the entire application. 

However, applications show varying operating requirements 
throughout execution [17]. Application execution can be 
examined and compared on a per interval basis. An interval of 
execution is a snippet of execution time measured by the number 
of dynamic instructions executed. Each interval can be classified 
according to its operating behavior by examining attributes such 
as cache miss rates, cycles per instruction, and specific pipeline 
stalls. Different intervals exhibiting similar execution traits can be 
classified together as belonging to the same phase of execution. 
Distinct phases tend to be revisited throughout application 
execution 

This predictable phase behavior enables phase-based 
optimizations. Phase-based tuning allows for system parameters to 
be specialized for each phase of execution, and thus reconfigured 
during runtime. By allowing for system parameters to be varied 
during runtime, there exists greater potential savings due to 
intense specialization of system parameters to the changing needs 
of the application.  

In this paper, we make three main contributions. First, we 
investigate the benefits of phase-based tuning over application-
based tuning of a highly configurable cache hierarchy with respect 
to energy consumption and performance using a detailed cache 
model. Secondly, we extend previous phase-based tuning of 
configurable caches by significantly increasing cache 
configurability, resulting in an additional 14% energy savings on 
average. And lastly, we carefully quantify the overhead imposed 
by cache reconfiguration in terms of energy and performance due 
to write backs and cache flushing.  

2. RELATED WORK 
One method for phase classification and optimizations is done 
using an offline-profiling step to determine phase boundaries and 
phase configurations. Specialized hardware then supports runtime 
reconfiguration of the parameters. Chaver et al. [4] presented a 
phase-based adaptive fetch mechanism using an offline profiling 
step to determine necessary system resources and encoded these 
changes into the binary. Albonesi et al. [1] presented a method to 
adaptively change cache associativity to the needs of the 
application. Software analysis was done on the code to determine 
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associativity requirements and special instructions were used to 
signal hardware changes during runtime.  

Phase classification and optimizations can also be done in a 
strictly online approach to both characterize phases and determine 
the best configuration for each phase. Dhodapkar et al. [5] 
discussed a method to determine phase changes based on 
examination of the current working set of the application. 
Balasubramonian et al. [3] used miss rates, CPI, and branch 
frequency information to detect changes in application behavior 
for cache specialization. Hallnor et al. [9] used counters within the 
cache to count way accesses to predict miss rates for all cache 
sizes during an interval for bank level shutdown. Shen et al. [14] 
used locality profiling and runtime prediction to predict locality 
phases within the program.  

Our work differs from previous phase-based cache tuning 
methodologies by exploring a significantly larger set of cache 
configurations due to a more highly configurable cache, resulting 
in greater energy and performance benefits on average. We also 
compare phased-based tuning of a configurable cache with 
application-based tuning of a configurable cache. 

3. CONFIGURABLE CACHES AND PHASE 
CLASSIFICATION 
Configurable caches allow for cache parameters such as total size, 
line size, and associativity to be specialized to the needs of an 
application. Core-based processors allow a designer to choose a 
particular cache configuration during system design time [2] and 
methods exist to assist designers in choosing the best 
configuration [7][8][19]. There are even hard processors that 
allow their caches to be configured during system reset or even 
during runtime [1][3][12][19].  

3.1 Configurable Architecture 
To provide intense specialization of the cache hierarchy to the 
changing needs of an application and thus greater potential energy 
savings, we examine a very highly configurable two level 
hierarchy with separate level one instruction and data caches and a 
unified level two cache.  

For the level one cache, we utilized the highly configurable cache 
designed by Zhang et al. [19] offering configurable total size, line 
size, and associativity. Special configuration bits enabled 
reconfiguration of all parameters during runtime. Furthermore, 
hardware layout of the cache showed that reconfigurability did not 
impact cache access time. 

For the level two cache, we used the architecture offered in the 
Motorola M*CORE processor featuring way management [12]. 
With way management, configuration bits specified each way to 
cache instructions only, data only, instructions and data (unified), 
or be shutdown. Each way in a way management cache could be 
designated as one of those four possibilities. In addition to way 
management, we included the same configurable line size as the 
level one caches. Furthermore, fabrication [13] of the cache 
showed that reconfigurability does not impact cache access time. 

Given the configurability of each level, the configurable cache 
hierarchy offered nearly 18,000 different cache configurations. 

3.2 Cache Exploration Heuristic  
Since exhaustive exploration of 18,000 different cache 
configurations is infeasible, we developed a highly effective 
heuristic (ACE-AWT) [8] for the configurable cache architecture 
discussed in section 3.1. ACE-AWT tuned for maximum energy 
savings and found a near optimal solution achieving 62% energy 
savings on average while searching on average only 30 out of the 
18,000 configurations – merely 0.2% of the search space. We 
developed ACE-AWT for an application-based tuning 
environment and, given ACE-AWT’s effectiveness, we sought to 
explore additional savings revealed by phase-based tuning. 
Further details can be found in [8][19]. 

3.3 Phase Classification 
To perform phase classification, application execution must first 
be broken into fixed sized intervals. An interval is measured by 
the number of dynamic instructions executed and is the 
granularity at which phases will be identified. Phase classification 
is the process of grouping intervals showing similar behavior 
patterns together. By grouping intervals together into phases, 
optimizations applied to one phase interval will apply equally as 
well to all intervals classified as that phase. 

For this study, we utilized our offline phase classification 
methodology [15][16], which was extended for online runtime 
phase tracking and prediction [18] using a small amount of 
hardware. Phase classification gathers information about basic 
block execution without compiler support. Specialized hardware 
monitors execution and traps branch instructions and tallies the 
number of instructions executed between subsequent branch 
instructions. The phase classification technique aggregates basic 
block information in a small table and collectively represents a 
footprint of execution. The phase classification technique 
compares current footprints to previous footprints to determine 
new phases of execution and reoccurrences of previously 
identified phases. This tracking method is independent of the 
underlying system architecture. 

After phase classification, phase prediction can predict when a 
phase transition will occur and what phase will be entered using 
two important predictors. The first predictor is the set of phases 
leading up to the prediction and the second predictor is the 
duration of execution spent in those phases.  

We further extended phase classification by not attempting to 
classify transition phases with steady phases [11]. With fixed 
length intervals, there is rarely a clean transition from one phase 
to the next, leaving a period of time with erratic behavior. In our 
methodology, we used this extension to classify transition phases 
for what they are and do not compare them with steady phases and 
thus, we do not attempt to optimize for the transition phases. 

4. RESULTS 
4.1 Experimental Setup 
We examined a large selection of both floating point and integer 
benchmarks from the SPEC2000 benchmark suite because SPEC 
applications show a greater variation during execution than typical 
embedded system kernel benchmarks. However, the general 



methodology presented in this paper and the results are applicable 
to embedded application devices as well as desktop environments. 
We ran each benchmark using the full reference input sets and 
used multiple input sets per application. Benchmarks will be listed 
as the benchmark name followed by the input set. 

We implemented the cache tuning heuristic using a Perl script to 
drive simulation. We simulated each configuration explored using 
SimpleScalar to gather cache hit and miss ratios. We utilized our 
energy estimation model for the highly-configurable cache [8]. 
This model took into consideration all energy associated with the 
cache hierarchy including miss latency and bandwidth, dynamic 
cache access energy, static energy, main memory energy, and 
CPU stall energy. We did not include leakage energy of system 
components during reconfiguration because the granularity chosen 
results in little reconfiguration overhead. We discuss this further 
in section 4.3. 

In order to calculate accurate energy consumption of an 
application with a phase-based configurable cache, we modified 
SimpleScalar to model the reconfigurable cache hierarchy 
allowing variation of the level one and level two cache parameters 
during a single run of the application. We applied ACE-AWT to 
one occurrence of each phase to determine the best cache 
configuration for each phase. We supplied a set of cache 
configurations representing the best configuration for each phase 
to SimpleScalar and at the end of each interval, the phase 
identification of the next interval could be used to look up the 
appropriate cache configuration to switch to. We precisely 
modeled the reconfiguration behavior for each cache, taking great 
care to accurately model runtime behavior so that we could 
accurately quantify flushing due to reconfiguration. 

4.2 Energy and Performance  
To determine energy and performance, we compared the energy 
consumption of the application executing with a tuned cache to 
the energy consumption of the application executing with a base 
cache configuration. For the base cache configuration, we chose a 
cache hierarchy that both reflected the needs of the applications 
and represented a configuration that may be found on a platform 
running these applications. The level one base caches were 32 
Kbyte 4-way set associative caches with a 32 byte line size and 
the level two cache was a 128 Kbyte, fully unified 4-way set 
associative cache with a 64 byte line size. 

Figure 1 shows the energy consumption normalized to the base 

cache configuration for each application for both application-
based tuning and phase-based tuning. On average across all 
benchmarks, application-based tuning resulted in 34% energy 
savings while phase-based tuning resulted in 37% energy savings. 
Phase-based tuning gave an additional 3% energy savings (avg) 
over application-based tuning with additional savings as high as 
11% and 20% for gzip_random and bzip_graphic, respectively. 
However, close inspection of the results showed that some 
benchmarks actually consumed more energy after being phase-
tuned. We investigated these situations and discovered that for 
these benchmarks, a very large percentage of phases were 
classified as transition phases and were thus unclassifiable and not 
tuned for. Unclassified phases ran as high as 80-90% for art_110 
and art_470 and 32% for gcc_200. Taking into consideration that 
such a large portion for the application is unclassified making 
these application unsuitable candidates for phase-based tuning, 
phase-based tuning performed surprisingly well. We point out that 
in these situations, application-based tuning would be used instead 
of phase-based tuning and therefore, we reevaluated the results 
and considered only those benchmarks with positive energy 
savings for phase-based tuning compared to application-based 
tuning. The average energy savings (avg_modified) of application-
based tuning changed to 35% and phase-based rose to 40%. 

Figure 2 shows the execution time normalized to the base cache 
configuration for each application for both application-based 
tuning and phase-based tuning. On average across all benchmarks 
(avg), application-based tuning resulted in a 16% increase in 
execution time while phase-based tuning resulted in only a 10% 
increase in execution time. Phase-based tuning reduced the 
negative performance impact by 6%. A few benchmarks – 
gzip_random, bzip_graphic, and vpr_place – showed performance 
savings as high as 37% for phase-based tuning over application-
based tuning. In addition, when we removed the benchmarks 
where phase-based tuning did not show positive energy savings 
compared to application-based tuning, phase-based tuning 
reduced the negative performance impact (avg_modified) by 10%. 

We also compared our phase-based tuning of a highly 
configurable cache to previous phase-based cache tuning of less 
configurable caches. One previous method offered either a large 
or a small cache and the others offered a small subset of caches 
trading off different requirements [3][6][14]. We examined energy 
consumption for phased-based tuning offering 2 configurations 
per phase (either small or large caches), 5 configurations per 
phase chosen to trade off instruction and data requirements, and 

 

 

 

 

 

 

 

Figure 1: Energy consumption normalized to the energy consumption of the base cache configuration. Avg is the average over all 
benchmarks. Avg_modified is the average over all benchmarks where phase-based tuning offers positive energy savings over application-

based tuning. 
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the highly-configurable cache discussed in this paper offering 
18,000 different configurations per phase. On average, energy 
savings for these methods were 23%, 27%, and 39%, respectively. 
Whereas offering only 2 configurations gave a large initial 
reduction in energy considering the small size of the configuration 
space, increasing the configuration space to 5 configurations only 
netted an additional 4% energy savings. For most benchmarks, 
significant energy savings were only obtained by searching a 
highly configurable cache.  

4.3 Cache Reconfiguration Overhead 
When analyzing the effectiveness of phase-based cache tuning 
compared to application-based cache tuning, it is important to 
consider the overhead incurred while switching between different 
cache configurations. Changing a cache parameter is likely to 
cause flushing of dirty entries. During cache reconfiguration, we 
used SimpleScalar to count the number of additional writebacks 
incurred due to changing cache parameters. On average over all 
benchmarks, the total number of writebacks increased by less than 
1% resulting in a 0.88% increase in energy and a 0.65% increase 
in execution time.  

5. CONCLUSIONS 
We analyzed the benefits of phase-based cache tuning over 
application-based cache tuning using a detailed cache model. We 
conclude that whereas application-based tuning provides the 
largest initial reduction in energy consumption, phase-based 
tuning offers up to 20% additional energy savings. In addition, we 
examined performance and observed that phase-based tuning 
improves the negative impact on performance that is incurred in 
application-based tuning. Application-based tuning incurred a 
19% increase in execution time while phase-based tuning only 
incurred a 9% increase in execution time. In addition, we show 
the need for utilizing a highly configurable cache in phase-based 
cache tuning by comparing our phase-based tuning method with 
previous methods that utilize designs offering only a few possible 
cache configurations. Our method offers 14% additional energy 
savings over previous methods.  
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Figure 2: Execution time normalized to the execution time of the base cache configuration. Avg is the average over all benchmarks. 
Avg_modified is the average over all benchmarks where phase-based tuning offers positive energy savings over application-based tuning. 
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