
ABSTRACT 
Loop caches provide an effective method for decreasing memory 
hierarchy energy consumption by storing frequently executed code 
in a more energy efficient structure than the level one cache. 
However, due to code structure restrictions and/or costly design 
time pre-analysis efforts, previous loop cache designs are not 
suitable for all applications and system scenarios. In this paper, we 
present an adaptive loop cache that is amenable to a wide range of 
system scenarios, providing an additional 20% average instruction 
memory hierarchy energy savings (with individual benchmark 
energy savings as high as 69%) compared to the best previous loop 
cache design. 

Categories and Subject Descriptors 
B.3.2 [Hardware]: Memory Structures: Design Styles – cache 
memories.  

General Terms 
Design.  

Keywords 
Loop cache, low energy, architecture tuning, embedded systems. 

1. INTRODUCTION  
Since an embedded system’s memory hierarchy consumes as much 
as 50% of total system power [12], much research focuses on 
reducing the memory hierarchy’s power/energy consumption [6] 
[15]. Several optimization techniques exploit the 90-10 rule (90% 
of execution time is spent in 10% of the code [14] (critical 
regions)), such as filter [8][9] and loop caches [4][5][10].  

Previous work introduces several loop cache design variations, 
however, the main purpose of any loop cache is to service as many 
instruction fetches as possible and to provide tagless cache 
accesses (eliminating power and time costly cache tag 
comparisons). Loop caches must also guarantee a 100% hit rate  
making loop cache design difficult because the instruction fetch 
location (loop cache or L1 cache) must be determined with 100% 
certainty before the instruction fetch is issued.  

To ensure a 100% hit rate, not all loop cache designs can store all 
types of critical region code structures. The simplest code structure 
for a loop cache is straight-line code, or basic blocks, since all 
instructions are fetched in succession. Since critical region analysis 
shows that many critical regions are basic blocks [14], Motorola 
introduced a simple counter-based dynamically loaded tagless loop 
cache [10] (DLC) to exploit these types of critical regions. The 

DLC detected small loops using short backwards branch (sbb) 
instructions (any branch instruction with a small negative offset). 
The DLC was attractive because this optimization was completely 
transparent, requiring no application designer effort. However, the 
DLC was not able to store complex critical regions consisting of 
control of flow changes (cof) (i.e. taken jumps, branches, 
subroutine calls, etc.). Complex critical code regions include 
nested loops and loops with internal cofs (i.e. forward jumps or 
if/else statements). 

The preloaded tagless loop cache [5] (PLC) expanded the loop 
cache’s applicability to a wider range of applications by storing 
multiple complex critical regions. The PLC used clever exit bits to 
indicate loop exit conditions (cofs which exit the PLC) and ensure 
a 100% hit rate, however, the PLC required an application designer 
to perform an offline pre-analysis step to determine the critical 
regions and associated exit bits, which were preloaded into the 
PLC during system startup making the PLC applicable to only 
static situations.  

Since the system scenario (application behavior and desired 
application designer effort) dictates a loop cache’s success and 
neither the DLC nor the PLC was best for all system scenarios, the 
hybrid loop cache [4] (HLC) combined the advantages of both the 
DLC and the PLC. The HLC separated the loop cache into two 
partitions: a larger PLC partition and a smaller DLC partition (for 
critical regions not preloaded). Whereas the HLC increased the 
loop cache’s applicability to a larger set of system scenarios, the 
main disadvantage was that the PLC could not cache complex 
critical regions that were not preloaded, thus reducing the HLC’s 
functionality to that of a DLC. 

In order to address disparate loop cache behavior, we present the 
adaptive loop cache (ALC), which integrates the PLC’s complex 
functionality with the DLC’s runtime flexibility. The PLC adapts 
to nearly any system scenario via lightweight runtime critical 
region control flow analysis and dynamic loop cache exit condition 
evaluation, which eliminates costly designer pre-analysis efforts 
and the uncertainly in choosing the “best” loop cache design. We 
evaluate the ALC’s system scenario flexibility on several 
benchmark suites and reveal additional energy savings as high as 
69% as compared to previous loop caches. 

2. RELATED WORK 
Much previous work focused on decreasing memory hierarchy 
energy consumption by reducing energy consumption of the 
instruction cache using techniques which replace costly instruction 
cache accesses with accesses to smaller, more energy efficient 
structures. The filter cache [9], a direct predecessor of tagless loop 
caches, reduced L1 instruction cache fetches with an additional 
small direct-mapped level zero (L0) (Figure 1 (a)) at the expense 
of an increased cache miss penalty.  

Several techniques introduced methods to reduce or eliminate filter 
cache misses, such as the tagless hit instruction cache (TH-IC) [8]. 
The TH-IC eliminated the additional miss penalty by including 
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meta-bits (similar in concept to exit bits) with each instruction and 
cache line to ensure a 100% hit rate, but however, imposed several 
architectural overheads including a large area overhead for the 
meta-bits, considerable instruction fetch unit augmentations and 
microprocessor modifications.  

Compared to previous loop cache designs, the TH-IC provided the 
only advanced mechanism for dynamically caching complex 
critical regions. In this paper, we introduce the ALC for complex 
critical region caching without incurring the microprocessor 
architectural modifications and complex meta-bit invalidation 
overheads (area and performance) imposed by the TH-IC. 

3. PREVIOUS LOOP CACHE DESIGNS 
Even though previous loop cache designs provided methodologies 
suitable for different system scenarios, no single loop cache design 
is the best loop cache design (lowest energy loop cache) for every 
system scenario. An appropriate loop cache design choice based on 
the system scenario is critical as an inappropriate loop cache can 
increase memory hierarchy energy consumption (Section 5.2).  

Figure 1 (b) and (c) depict loop cache architectural layout. The 
loop cache is a small instruction cache placed in parallel with the 
L1 cache such that either the loop cache or the L1 cache services 
an instruction fetch. Minor microprocessor architectural 
modifications include two control signals, sbb and cof, asserted by 
the instruction decode and branch resolution phases. All loop cache 
designs may store loops that are larger than the loop cache size. In 
these cases, given a loop cache of size M, the loop cache simply 
stores the first M static instructions.   

In the remainder of this section, we provide operational 
background and architectural fundamentals of previous loop cache 
designs necessary to build a foundation for our ALC.  

3.1 Dynamic Loop Cache (DLC) 
The DLC [10] (Figure 1 (b)) has three operational states: idle, fill, 
and active. On a triggering sbb (i.e. a loop’s last branch instruction 
is taken, returning execution to the loop’s first instruction), the 
DLC transitions from the idle to fill state to store instructions while 
the L1 cache services instruction fetches on the second loop 
iteration. On the next iteration, the DLC transitions to the active 
state and services instruction fetches until the triggering sbb is not 
taken.  

The DLC’s main limitation is that it must cache all loop 
instructions during a single iteration in order to provide a 100% hit 
rate. If internal loop cofs such as forward jumps are encountered, 
the DLC returns to the idle stage since the DLC must not contain 
gaps (DLC locations which do not store valid instructions) because 
these gaps cannot be identified during the active state.  DLC 
advantages include zero application designer effort and excellent 
performance for suitable system scenarios, but inappropriate 
system scenarios, such as the presence of forward jumps within a 
loop and nested loops where the inner loop has few iterations, can 

cause DLC thrashing. In these situations, the DLC constantly 
transitions between the idle and fill states, and never transitions to 
the active state. 

3.2 Preloaded Tagless Loop Cache (PLC) 
The PLC [5] (Figure 1 (b)) requires additional offline, application 
designer effort. During a pre-analysis step, application designers 
identify critical regions and determine corresponding loop exit bit 
values which are preloaded during system startup and remain 
fixed.  

The PLC contains sets of loop address registers (LARs) indicating 
the start and end address of each stored critical region, as well as 
the critical region’s location/offset in the PLC. After a cof, if the 
next instruction’s address falls within a PLC’s critical region, the 
PLC transitions from the idle to active state. Two exit bits stored 
with each PLC instruction provide a seamless transition (no cycle 
penalties) between the active and idle states. An instruction’s exit 
bits consider cofs and their associated targets and indicate whether 
the PLC or the L1 cache should service the next instruction fetch 
based on whether or not the cof is taken or not taken.  

The PLC provides higher loop cache access rates for straight-line 
loops as compared to the DLC (the PLC requires no runtime 
filling) and can efficiently cache loops that would thrash the DLC. 
However, PLC drawbacks include limitations on the number of 
stored critical regions and additional PLC index address 
translation. Most importantly, the inherent static nature of the PLC 
makes it unsuitable for dynamic system scenarios. 

3.3 Hybrid Tagless Loop Cache (HLC) 
The HLC [4] (Figure 1(c)) leverages the advantages of both the 
DLC and the PLC to increase system scenario amenability. The 
HLC partitions the loop cache in to a larger PLC partition and a 
smaller DLC partition. During execution, the HLC first checks the 
PLC’s LARs on any cof. If this check fails, and the cof is a 
triggering sbb, the DLC partition begins filling.  

Whereas the HLC appears to provide the best of both techniques, 
one main disadvantage is that if the application behavior changes 
or an application designer does not perform the necessary pre-
analysis, the PLC is not used (but still expends static energy and 
increases DLC dynamic energy) and HLC operation reduces to a 
DLC.  

4. THE ADAPTIVE LOOP CACHE (ALC) 
The ALC’s novelty combines the DLC’s dynamic flexibility with 
the PLC’s ability to cache complex critical regions using 
lightweight runtime control flow analysis. Thus, the ALC’s system 
scenario amenability spans that of the DLC and the PLC.  

The ALC is highly flexible and suitable for all system scenarios 
and eliminates the costly pre-analysis step required to cache 
complex critical regions in the PLC/HLC while accurately 
identifying critical regions using actual operating inputs during 
runtime. Additionally, whereas the PLC and HLC can be useful in 
system scenarios where application behavior is static, this 
inflexibility makes the PLC and HLC unsuitable for system 
scenarios where behavior changes due to application phase 
changes [6], input vectors changes [3], or application updates.  

Like the DLC, the ALC is initially filled during the loop’s second 
iteration while instructions are fetched from the L1 cache and the 
ALC supplies the processor with instructions for the remaining 
iterations. Each ALC entry contains an instruction and the 
corresponding exit bits indicating whether the next instruction 

 
 
 
 
 
 

Figure 1: Architectural placement of the (a) filter cache (b) 
the dynamic, preloaded, and adaptive loop caches (DLC, PLC, 
and ALC, respectively) and (c) the hybrid loop cache (HLC). 

 

 



should exit the loop cache and fetch from the L1 cache or continue 
fetching from the loop cache. The exit bits are critical for 
transferring control from the ALC to the L1 cache without a cycle 
penalty as the ALC must guarantee a 100% hit rate to not affect 
system performance.  

In the fill state, the ALC buffers an instruction during runtime to 
evaluate the exit bits. The ALC uses the current instruction 
(supplied by the L1 cache) and the previously buffered instruction 
to determine the exit bits then writes the previously buffered 
instruction and its corresponding exit bits to the loop cache. This 
continues until the sbb is taken again (the ALC then transitions to 
the active state), a new loop is encountered (the ALC is filled with 
the new loop), or the sbb is not taken (the loop is no longer being 
executed). 

Unlike the DLC, the ALC caches complex critical regions 
containing branches. In the active state, the ALC supplies the 
processor with instructions and uses the exit bits to determine the 
location of the next instruction fetch. The ALC supplies the next 
instruction for straight-line code or when a cof is encountered but 
not taken and the next_valid exit bit is set, or when a cof 
encountered is taken and the taken_next_valid exit bit is set. 
Otherwise, the L1 cache supplies the instruction. If execution 
remains within the same loop, the ALC returns to the filling state 
to fill the gap left during the initial filling cycle (the L1 cache 
continues serving instruction fetches) then transitions to the active 
state if the sbb is taken again.  

Since we do not restrict the ALC to caching only loops with 
straight-line code, it is possible to have gaps (invalid instructions) 
in the ALC (note that these invalid instructions will never be 
fetched from the ALC since the program counter is used to access 
the correct ALC instruction). For example, if a loop contains an 
if/else cof instruction, the instructions belonging to either the if 
clause or the else clause will be initially cached leaving a gap in 
the ALC. However, since the loop cache returns to the filling state 
when gaps are encountered, it is possible for the ALC to contain 
instructions from both the if and else clause and therefore, for the 
cof’s next_valid and taken_next_valid exit bits to be set 
simultaneously. If the sbb is not taken again or if a cof causes a 
jump to a target outside of the ALC range, the ALC transitions to 
the idle state while the L1 cache supplies instructions. 

4.1 ALC Architectural Layout 
The ALC’s architectural placement and use of the sbb and cof 
microprocessor signals is identical to the DLC and PLC (Figure 1 
(b)). Figure 2 (a) depicts the detailed architectural layout of the 
ALC. The ALC contains a loop cache controller (LCC) to 
orchestrate loop cache operation, the loop cache to store 

instructions, and an address translation unit (ATU) for loop cache 
indexing.  

The LCC contains three internal registers, tr_sbb, last_PC, and 
i_buffer, which collectively enable complex critical region caching 
and provide support for loop cache gaps. Tr_sbb stores the 
currently cached critical region’s triggering sbb address, thus the 
tr_sbb effectively identifies the currently cached critical region. 
Therefore, when the microprocessor asserts sbb, the LCC uses the 
new triggering sbb’s address to determine if it corresponds to the 
currently cached critical region or if execution has entered a new 
critical region. If the new triggering sbb address matches tr_sbb, 
the LCC asserts an internal signal, same_loop, which enables the 
ALC to resume fetching the currently cached critical region (for 
critical regions larger than the loop cache). I_buffer and last_PC 
assist in control flow analysis by buffering the previously fetched 
instruction and address while the next instruction fetch location is 
evaluated. Special valid bits appended to each instruction in the 
loop cache store control flow analysis information. 

4.2 ALC Functionality for Critical Regions 
with Forward Branches 
Complete ALC operation requires cooperation between the LCC 
and the ATU in order to fill the loop cache and service instruction 
fetches. In this section, we describe ALC functionality necessary 
for caching complex critical regions with forward branches.  

4.2.1 Address Translation Unit (ATU) 
In order to cache complex critical regions, maintain tagless loop 
cache accesses, and use indexing counters, the ATU translates the 
current instruction address into a loop cache index. During 
straight-line code, the ATU uses an indexing counter to step 
through the loop cache. However, when a cof occurs, the ATU 
must translate the instruction’s address to the loop cache index. 
The ATU contains an internal register, cr_start, which stores the 
critical region’s first instruction address. When the LCC asserts 
ad_trans indicating a cof, the ATU subtracts cr_start from the 
current instruction address (last_PC during loop cache filling or PC 
during loop cache fetching) to obtain the loop cache index. This 
new loop cache index becomes the indexing counter, which is 
incremented for each subsequent straight-line instruction access.  

4.2.2 Loop Cache Controller (LCC) and Runtime 
Control Flow Analysis 
Figure 2 (b) depicts LCC state machine operation. In the idle and 
active states, instructions are fetched from the L1 cache and the 
loop cache, respectively. In the buffer and fill states, instructions 
are fetched from the L1 cache and written to the loop cache after 
runtime control flow analysis. 

 

 

 

 

 

 

 

 

 

Figure 2: The adaptive loop cache (ALC) (a) architecture and (b) loop cache controller (LCC) state machine operation. Runtime 
control flow analysis occurs in the fill state. 

 
 



ALC operation begins in the idle state, with two possible exit 
transitions. If same_loop is asserted (corresponding to a triggering 
sbb for a currently cached critical region, Section 4.1), the LCC 
transitions to the active state. If sbb is asserted and same_loop is 
not asserted, the triggering sbb corresponds to a new critical region 
and the LCC transitions to the buffer state. 

The LCC spends one cycle in the buffer state to prepare the loop 
cache for filling by resetting all valid bits to invalidate the 
currently stored critical region. The LCC asserts tr_sbb_ld to store 
the triggering sbb address in tr_sbb and asserts i_buffer_ld to 
buffer the current instruction and address into i_buffer and 
last_PC, respectively.  

On the next clock cycle, the LCC transitions to the fill state and 
performs an initial runtime control flow analysis pass to 
dynamically determine the value of the two valid bits, next_valid 
and taken_next_valid (nv and tnv, respectively, in Figure 2(b)), 
which store loop exit condition information for each instruction. 
Valid bits (similar to the PLCs exit bits) indicate whether the L1 
cache or loop cache should service the next instruction fetch.  

Valid bits are critical to loop cache operation and maintain a 100% 
hit rate as valid bits indentify cofs with targets outside of the loop 
cache and allow gaps within the loop cache. During straight-line 
code execution in the fill state (including untaken branch 
instructions), control flow analysis sets the next_valid bit for these 
instructions indicating that the next sequential instruction is stored 
in the loop cache. If a cof occurs and the cof’s target is within the 
loop cache bounds, control flow analysis sets the taken_next_valid 
bit for this instruction indicating that when the cof occurs, the 
target instruction is stored in the loop cache. Note that at this point, 
control flow analysis sets only one valid bit, leaving the other valid 
bit unset. Since the initial control flow analysis pass operates on 
one loop iteration, both valid bits cannot be set. In order to fill in 
unset valid bits and loop cache gaps, the LCC may return to the fill 
state for additional control flow analysis passes. 

During the fill state, i_buffer serves two purposes.  First, i_buffer 
enables control flow analysis to compare the previous instruction 
executed with the subsequent instruction executed to evaluate loop 
exit conditions. The second purpose significantly reduces loop 
cache writes and eliminates the need for a dual-ported loop cache. 
Previous loop cache designs simultaneously write instructions as 
the instructions are fetched from the L1 cache. However, since the 
ALC’s control flow analysis determines an instruction’s valid bits 
after the next instruction fetch, each loop cache instruction would 
require two updates: one update to write the current instruction and 
one update to write the previous instruction’s valid bits. 
Furthermore, these updates refer to two different loop cache lines, 
resulting in two writes per clock cycle (necessitating a dual-ported 
loop cache). In order to avoid a dual-ported loop cache, i_buffer 
buffers the previous instruction during control flow analysis such 
that each loop cache instruction only requires one loop cache 
update. The loop cache is backfilled with the previous instruction 
and associated valid bits while the current instruction is fetched 
from the L1 cache (backfilling the loop cache and fetching from 
the L1 cache take one cycle). Because i_buffer is read at the 
beginning of and written at the end of the clock cycle, i_buffer 
always latches the current instruction after the previous instruction 
is sent to the loop cache. 

The LCC continues this backfilling process until one of several 
conditions is met. If a new triggering sbb is taken (same_loop is 
not asserted), the LCC transitions to the buffer state to prepare for 
the new loop. If execution reaches the end of the loop, and the 

loop’s triggering sbb (tr_sbb) is taken again (same_loop is 
asserted), the LCC transitions to the active state (the LCC 
backfilled the last loop instruction at the end of the loop’s first 
iteration, thus the last instruction is actually the first instruction 
written to the loop cache). 

In the active state, the LCC deasserts loop_fill to allow the loop 
cache to service instruction fetches (in a single cycle). The LCC 
buffers the instruction fetched from the loop cache and associated 
valid bits in i_buffer to prepare for additional control flow analysis 
passes. The LCC analyzes valid bits to determine the next 
instruction’s fetch location. If the current instruction is not a cof 
and next_valid is set or if the current instruction is a cof and 
taken_next_valid is set, the LCC remains in the active state. 
Otherwise, the L1 cache must service the next instruction fetch and 
the LCC transitions out of the active state.  

There are several LCC transitions out of the active state. If the 
next_valid bit is not set and the instruction corresponds to the last 
instruction in the loop cache (overflow is asserted), the LCC 
transitions to the idle state. Otherwise, the unset next_valid bit 
indicates a loop cache gap and the LCC transitions to the fill state 
to perform another control flow analysis pass. If the LCC detects a 
new loop (a triggering sbb is taken and is not tr_sbb), the LCC 
transitions to the buffer state to prepare the loop cache for a new 
loop. If the current loop’s triggering sbb (tr_sbb) is not taken, the 
LCC transitions to the idle state. Lastly, if a cof’s target (identified 
during instruction decode) is outside the loop range (past the 
triggering sbb) the controller’s out_of_loop signal is asserted and 
the controller transitions to the idle state. 

4.3 ALC Functionality for Critical Regions 
with Nested Loops 
We modified the LCC described in Section 4.2 to include 
functionality for caching critical regions with nested loops. 
However, experimental results showed no average improvement 
and only little improvement in loop cache access rates and energy 
savings for a very small number of benchmarks.  

5. EXPERIMENTAL RESULTS 
5.1 Experimental Setup 
To determine the number of instructions fetched from the loop 
cache and calculate energy savings for the DLC, PLC, HLC, and 
ALC, we executed 31 benchmarks from the EEMBC [2], MiBench 
[7], and Powerstone [11] benchmark suites (all benchmarks were 
run to completion, however, due to incorrect execution not related 
to the loop caches, we could not evaluate the complete suites). We 
implemented each loop cache design in SimpleScalar [1] using the 
PISA instruction set (64 bit instructions and 32 bit addresses). We 
evaluated small loop cache sizes ranging from 4 to 256 entries 
Since [4] suggested that the HLC’s ideal DLC partition size was 32 
entries, we present HLC results for 64-, 128-, and 256-entry loop 
caches only. 

To calculate energy consumption for each loop cache 
configuration, we augmented the energy model adopted by Zhang 
et al. [15] and Gordon-Ross et al. [4] to include loop cache fill and 
fetch operations as shown here (IC = instruction cache, LC = loop 
cache): 

total energy =IC_energy + LC_energy 
IC_energy = IC_fill_energy + IC_dynamic_energy + IC_static_energy 
IC_fill_energy = ((IC_misses * (IC_linesize / wordsize) *  
  mem_energy_perword ))+ cpu_stall_energy 
IC_dynamic_energy = IC_accesses * IC_access_energy 



IC_static_energy =(IC_misses * miss_latency_cycles) + 
  (IC_accesses –IC.misses) + LC_hits) * 0.15* IC_access_energy 
LC_energy =((LC_hits + LC_fills) * LC_access_energy) + 
LC_static_energy 
LC_static_energy =(IC_misses * miss_latency_cycles) +  

(IC_accesses – IC.misses) + LC_hits) * 0.15* 
LC_access_energy 

	  
We gathered IC_accesses, LC_hits, and LC_fills cache statistics 
using SimpleScalar. We used CACTI [13] to determine dynamic 
cache energy dissipation for 0.18um technology. Since the loop 
cache is tagless, we obtained energy consumption for same sized 
direct-mapped caches with an 8-byte line size (corresponding to 
one loop cache entry for one instruction) and removed the tag 
energy. We assumed static energy per clock cycle for the 
instruction and loop caches as 15% of their respective dynamic 
access energies.  

In order to compare to a system with no loop cache, we define a 
base system configuration consisting of an 8 KB L1 instruction 
cache with 4-way set associativity and a 32-byte line size – a 
configuration shown in [15] to perform well for a variety of 
benchmarks on several embedded microprocessors. To calculate 
energy savings, we normalize the energy consumption of a system 
with a loop cache and the L1 base cache to the base system with no 
loop cache.  

5.2 Results and System Scenario Analysis 
Figure 3 depicts experimental results comparing the DLC, ALC, 
PLC, and HLC loop cache designs for various loop cache sizes in 
number of entries (entries on the x-axis). In order to show different 
loop cache design trends across different benchmark suites, we 
present results averaging the EEMBC, MiBench, and Powerstone 
benchmark suites separately.  

Figure 3 (a), (b), and (c) depict the percentage of instruction 
fetches resulting in loop cache hits (loop cache access rate) and 
reveal that our ALC always out performs the DLC for all three 
benchmark suites and all loop cache sizes. This result is expected 
since the DLC caches a subset of the loops that the ALC caches. 
These figures also reveal the DLC’s ineffectiveness during 
particular system scenarios. For the Powerstone benchmark suite 
and all loop cache sizes (Figure 3 (c)), the DLC never resulted in 
loop cache hits due to the absence of straight-line loops (we 

verified this using a loop analysis tool [14]). Average loop cache 
access rate improvements for the ALC compared to the DLC reach 
as high as 18.43%, 40.63%, and 74.34% for EEMBC, MiBench, 
and Powerstone benchmark suites, respectively. 

 For individual benchmarks, the ALC loop cache access rate 
reaches as high as 97.91% for the EEMBC benchmark suite and as 
high as 99.74% and 99.49% for the MiBench and Powerstone 
benchmark suites, respectively. These high access rates and DLC’s 
ineffectiveness for certain application scenarios results in loop 
cache access rate improvements as high as 97.82% for the ALC 
compared to the DLC for EEMBC’s PNTRCH01 benchmark and 
as high as 99.70% and 99.48% for MiBench’s CRC and 
Powerstone’s blit benchmark, respectively.  

Figure 3 (a), (b), and (c) also show that for the EEMBC, MiBench, 
and Powerstone benchmark suites, respectively, on average, our 
ALC either out performs or performs as well as the PLC and HLC 
for loop cache sizes up to 128 entries. In addition, Figure 3(b) 
shows that for the MiBench suite, on average, the ALC always out 
performs the PLC and the difference between the ALC and HLC 
loop cache access rate is only 5% for the a 256 entry loop cache. 
Thus, the ALC is ideal for sized constrained applications. 
Increasing the loop cache size to 256 entries results in the 
PLC/HLC storing almost all of the application’s critical regions, 
thus after this point the PLC/HLC outperforms the ALC on 
average since the PLC/HLC requires no runtime filling cycles. 
However, since the ALC outperforms the PLC/HLC for small loop 
caches, this shows that the ALC’s filling overhead is minimal and 
the ALC’s inability to cache subroutines and nested loops does not 
noticeably affect performance.  

Evaluating individual benchmarks reveals that the ALC 
consistently outperforms the PLC for applications with a large 
critical region or many critical regions, which would require 
prohibitively large loop caches, such as with MiBench. For 
EEMBC’s TBLOOK01 benchmark, the ALC out performs both 
the PLC and HLC for all loop cache sizes since a 256-entry PLC (a 
224-entry PLC partition in the case of the HLC) was not large 
enough to store a single critical region in its entirety. Although 
these larger PLCs/HLCs could potentially incur more loop cache 
hits, in some cases the additional loop cache hits would not 
compensate for the increased energy consumption incurred by 
fetching from a larger loop cache, thus increasing overall energy 

 

 
Figure 3: Experimental results for the DLC, ALC, PLC, and HLC for varying loop cache sizes (entries) showing percentage of 

instruction fetches resulting in loop cache hits (access rate) averaged for the (a) EEMBC, (b) MiBench, and (c) Powerstone 
benchmark suites and energy savings (normalized to the base system) averaged for the (d) EEMBC, (e) MiBench, and (f) 

Powerstone benchmark suites. 
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consumption. In addition, highly size constrained system scenarios 
may not afford the larger loop caches required for optimal 
PLC/HLC energy savings or performance.   

We further note that certain system scenarios may result in the 
PLC outperforming the ALC for all loop cache sizes. In this 
scenario, critical loops are executed frequently but only iterate a 
few times successively i.e. enough iterations to fill the ALC but 
not enough iterations to take advantage of fetching from the ALC 
(e.g. EEMBC’s A2TIME01 benchmark). However, we point out 
that even in these scenarios, the flexibility of the ALC (no designer 
pre-analysis effort and the ability to conform to changes in 
application behavior and phases) may still outweigh the increased 
PLC performance. 

Figure 3 (d), (e), and (f) depict average memory hierarchy energy 
savings for the EEMBC, MiBench, and Powerstone benchmarks, 
respectively. As expected, for all three benchmark suites, our ALC 
outperforms the DLC due to increased ALC hits for a same sized 
DLC. Average ALC energy savings improvements over the DLC 
reach as high as 12%, 26%, and 49% for the EEMBC, MiBench, 
and Powerstone benchmark suites, respectively, and reach as high 
as 69% for Powerstone’s blit benchmark. For the Powerstone 
benchmark suite, the DLC always increases energy consumption 
compared to the base system because thrashing results in no loop 
cache accesses. The PLC and ALC can also result in negative 
energy savings for the 4-entry loop cache since a 4-entry loop 
cache can be too small to incur enough loop cache accesses needed 
to translate into energy savings.   

Figure 3 (d), (e), and (f) show that our ALC saves more energy 
than the PLC for loop cache sizes less than 64 entries. We point 
out that on average the ALC does not outperform the PLC/HLC for 
larger loop cache sizes due to the absence of PLC/HLC (PLC 
partition) filling (however, individual benchmarks show additional 
energy savings for the ALC compared to the PLC as high as 53% 
for EEMBC’s PNTRCH01 benchmark with a 64-entry loop cache.  

Both the PLC and HLC require designer pre-analysis effort to 
achieve energy savings – we reiterate that the HLC is a 
combination of a fixed size (32-entry) DLC partition and a PLC 
partition that can be increased in size to obtain similar results as an 
HLC with 64, 128, and 256 entries. Thus, any energy savings 
obtained by increasing the HLC size is due to increasing the 
HLC’s PLC partition, and therefore requiring designer effort to 
achieve these savings. Without designer effort, the HLC would be 
reduced to only a 32entry DLC, which cannot match the energy 
savings of the ALC. The ALC’s strength is that the ALC can 
provide energy savings near that of the PLC/HLC without the 
application designer’s pre-analysis effort and without requiring a 
static system scenario. Since static pre-analysis is not acceptable 
for applications with changing behavior, the PLC and HLC are not 
effective for every system scenario. 

Figure 3 (d) shows a decrease in energy savings for the ALC with 
a 256-entry loop cache. At this point, the additional loop cache hits 
for increased loop cache sizes does not outweigh the additional 
energy required for the larger loop cache. (Figure 3 (a) shows that 
the loop cache hit rate for the ALC levels off at 64 entries). 
Additional experiments run for loop cache sizes greater than 256 
entries revealed a negligible increase in loop cache energy savings 
or a decrease in energy savings for all loop cache designs. 

6. CONCLUSIONS 
In this paper, we introduced the adaptive loop cache (ALC) – a 
dynamic tagless loop cache that combines the flexibility of the 

dynamic loop cache (DLC) with the preloaded loop cache’s 
(PLC’s) ability to cache complex critical regions. The ALC 
significantly increases system scenario amenability compared to 
previous loop cache designs using a lightweight runtime control 
flow analysis technique to dynamically cache complex critical 
regions in an area efficient manner. Furthermore, the ALC 
eliminates the need for the costly designer pre-analysis effort 
required for the PLC and HLC, making the ALC the most 
appropriate design for applications with changing behavior. The 
ALC increases the average loop cache access rate and average 
energy savings by as much as 74% and 20%, respectively, 
compared to previous loop cache designs. Future work includes 
investigating benefits gained by combining the ALC with other 
dynamic energy saving techniques such as cache configuration. 
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