
ABSTRACT
Loop caches provide an effective method for decreasing memory
hierarchy energy consumption by storing frequently executed code
in a more energy efficient structure than the level one cache.
However, due to code structure restrictions and/or costly design
time pre-analysis efforts, previous loop cache designs are not
suitable for all applications and system scenarios. In this paper, we
present an adaptive loop cache that is amenable to a wide range of
system scenarios, providing an additional 20% average instruction
memory hierarchy energy savings (with individual benchmark
energy savings as high as 69%) compared to the best previous loop
cache design.

Categories and Subject Descriptors
B.3.2 [Hardware]: Memory Structures: Design Styles – cache
memories.

General Terms
Design.

Keywords
Loop cache, low energy, architecture tuning, embedded systems.

1. INTRODUCTION
Since an embedded system’s memory hierarchy consumes as much
as 50% of total system power [12], much research focuses on
reducing the memory hierarchy’s power/energy consumption [6]
[15]. Several optimization techniques exploit the 90-10 rule (90%
of execution time is spent in 10% of the code [14] (critical
regions)), such as filter [8][9] and loop caches [4][5][10].

Previous work introduces several loop cache design variations,
however, the main purpose of any loop cache is to service as many
instruction fetches as possible and to provide tagless cache
accesses (eliminating power and time costly cache tag
comparisons). Loop caches must also guarantee a 100% hit rate
making loop cache design difficult because the instruction fetch
location (loop cache or L1 cache) must be determined with 100%
certainty before the instruction fetch is issued.

To ensure a 100% hit rate, not all loop cache designs can store all
types of critical region code structures. The simplest code structure
for a loop cache is straight-line code, or basic blocks, since all
instructions are fetched in succession. Since critical region analysis
shows that many critical regions are basic blocks [14], Motorola
introduced a simple counter-based dynamically loaded tagless loop
cache [10] (DLC) to exploit these types of critical regions. The

DLC detected small loops using short backwards branch (sbb)
instructions (any branch instruction with a small negative offset).
The DLC was attractive because this optimization was completely
transparent, requiring no application designer effort. However, the
DLC was not able to store complex critical regions consisting of
control of flow changes (cof) (i.e. taken jumps, branches,
subroutine calls, etc.). Complex critical code regions include
nested loops and loops with internal cofs (i.e. forward jumps or
if/else statements).

The preloaded tagless loop cache [5] (PLC) expanded the loop
cache’s applicability to a wider range of applications by storing
multiple complex critical regions. The PLC used clever exit bits to
indicate loop exit conditions (cofs which exit the PLC) and ensure
a 100% hit rate, however, the PLC required an application designer
to perform an offline pre-analysis step to determine the critical
regions and associated exit bits, which were preloaded into the
PLC during system startup making the PLC applicable to only
static situations.

Since the system scenario (application behavior and desired
application designer effort) dictates a loop cache’s success and
neither the DLC nor the PLC was best for all system scenarios, the
hybrid loop cache [4] (HLC) combined the advantages of both the
DLC and the PLC. The HLC separated the loop cache into two
partitions: a larger PLC partition and a smaller DLC partition (for
critical regions not preloaded). Whereas the HLC increased the
loop cache’s applicability to a larger set of system scenarios, the
main disadvantage was that the PLC could not cache complex
critical regions that were not preloaded, thus reducing the HLC’s
functionality to that of a DLC.

In order to address disparate loop cache behavior, we present the
adaptive loop cache (ALC), which integrates the PLC’s complex
functionality with the DLC’s runtime flexibility. The PLC adapts
to nearly any system scenario via lightweight runtime critical
region control flow analysis and dynamic loop cache exit condition
evaluation, which eliminates costly designer pre-analysis efforts
and the uncertainly in choosing the “best” loop cache design. We
evaluate the ALC’s system scenario flexibility on several
benchmark suites and reveal additional energy savings as high as
69% as compared to previous loop caches.

2. RELATED WORK
Much previous work focused on decreasing memory hierarchy
energy consumption by reducing energy consumption of the
instruction cache using techniques which replace costly instruction
cache accesses with accesses to smaller, more energy efficient
structures. The filter cache [9], a direct predecessor of tagless loop
caches, reduced L1 instruction cache fetches with an additional
small direct-mapped level zero (L0) (Figure 1 (a)) at the expense
of an increased cache miss penalty.

Several techniques introduced methods to reduce or eliminate filter
cache misses, such as the tagless hit instruction cache (TH-IC) [8].
The TH-IC eliminated the additional miss penalty by including

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’10, May 16–18, 2010, Providence, Rhode Island, USA.
Copyright 2010 ACM 978-1-4503-0012-4/10/05...$10.00.

Lightweight Runtime Control Flow Analysis for Adaptive
Loop Caching

Marisha Rawlins and Ann Gordon-Ross*
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA

mrawlins@ufl.edu & ann@ece.ufl.edu
*Also with the NSF Center for High-Performance Reconfigurable Computing

meta-bits (similar in concept to exit bits) with each instruction and
cache line to ensure a 100% hit rate, but however, imposed several
architectural overheads including a large area overhead for the
meta-bits, considerable instruction fetch unit augmentations and
microprocessor modifications.

Compared to previous loop cache designs, the TH-IC provided the
only advanced mechanism for dynamically caching complex
critical regions. In this paper, we introduce the ALC for complex
critical region caching without incurring the microprocessor
architectural modifications and complex meta-bit invalidation
overheads (area and performance) imposed by the TH-IC.

3. PREVIOUS LOOP CACHE DESIGNS
Even though previous loop cache designs provided methodologies
suitable for different system scenarios, no single loop cache design
is the best loop cache design (lowest energy loop cache) for every
system scenario. An appropriate loop cache design choice based on
the system scenario is critical as an inappropriate loop cache can
increase memory hierarchy energy consumption (Section 5.2).

Figure 1 (b) and (c) depict loop cache architectural layout. The
loop cache is a small instruction cache placed in parallel with the
L1 cache such that either the loop cache or the L1 cache services
an instruction fetch. Minor microprocessor architectural
modifications include two control signals, sbb and cof, asserted by
the instruction decode and branch resolution phases. All loop cache
designs may store loops that are larger than the loop cache size. In
these cases, given a loop cache of size M, the loop cache simply
stores the first M static instructions.

In the remainder of this section, we provide operational
background and architectural fundamentals of previous loop cache
designs necessary to build a foundation for our ALC.

3.1 Dynamic Loop Cache (DLC)
The DLC [10] (Figure 1 (b)) has three operational states: idle, fill,
and active. On a triggering sbb (i.e. a loop’s last branch instruction
is taken, returning execution to the loop’s first instruction), the
DLC transitions from the idle to fill state to store instructions while
the L1 cache services instruction fetches on the second loop
iteration. On the next iteration, the DLC transitions to the active
state and services instruction fetches until the triggering sbb is not
taken.

The DLC’s main limitation is that it must cache all loop
instructions during a single iteration in order to provide a 100% hit
rate. If internal loop cofs such as forward jumps are encountered,
the DLC returns to the idle stage since the DLC must not contain
gaps (DLC locations which do not store valid instructions) because
these gaps cannot be identified during the active state. DLC
advantages include zero application designer effort and excellent
performance for suitable system scenarios, but inappropriate
system scenarios, such as the presence of forward jumps within a
loop and nested loops where the inner loop has few iterations, can

cause DLC thrashing. In these situations, the DLC constantly
transitions between the idle and fill states, and never transitions to
the active state.

3.2 Preloaded Tagless Loop Cache (PLC)
The PLC [5] (Figure 1 (b)) requires additional offline, application
designer effort. During a pre-analysis step, application designers
identify critical regions and determine corresponding loop exit bit
values which are preloaded during system startup and remain
fixed.

The PLC contains sets of loop address registers (LARs) indicating
the start and end address of each stored critical region, as well as
the critical region’s location/offset in the PLC. After a cof, if the
next instruction’s address falls within a PLC’s critical region, the
PLC transitions from the idle to active state. Two exit bits stored
with each PLC instruction provide a seamless transition (no cycle
penalties) between the active and idle states. An instruction’s exit
bits consider cofs and their associated targets and indicate whether
the PLC or the L1 cache should service the next instruction fetch
based on whether or not the cof is taken or not taken.

The PLC provides higher loop cache access rates for straight-line
loops as compared to the DLC (the PLC requires no runtime
filling) and can efficiently cache loops that would thrash the DLC.
However, PLC drawbacks include limitations on the number of
stored critical regions and additional PLC index address
translation. Most importantly, the inherent static nature of the PLC
makes it unsuitable for dynamic system scenarios.

3.3 Hybrid Tagless Loop Cache (HLC)
The HLC [4] (Figure 1(c)) leverages the advantages of both the
DLC and the PLC to increase system scenario amenability. The
HLC partitions the loop cache in to a larger PLC partition and a
smaller DLC partition. During execution, the HLC first checks the
PLC’s LARs on any cof. If this check fails, and the cof is a
triggering sbb, the DLC partition begins filling.

Whereas the HLC appears to provide the best of both techniques,
one main disadvantage is that if the application behavior changes
or an application designer does not perform the necessary pre-
analysis, the PLC is not used (but still expends static energy and
increases DLC dynamic energy) and HLC operation reduces to a
DLC.

4. THE ADAPTIVE LOOP CACHE (ALC)
The ALC’s novelty combines the DLC’s dynamic flexibility with
the PLC’s ability to cache complex critical regions using
lightweight runtime control flow analysis. Thus, the ALC’s system
scenario amenability spans that of the DLC and the PLC.

The ALC is highly flexible and suitable for all system scenarios
and eliminates the costly pre-analysis step required to cache
complex critical regions in the PLC/HLC while accurately
identifying critical regions using actual operating inputs during
runtime. Additionally, whereas the PLC and HLC can be useful in
system scenarios where application behavior is static, this
inflexibility makes the PLC and HLC unsuitable for system
scenarios where behavior changes due to application phase
changes [6], input vectors changes [3], or application updates.

Like the DLC, the ALC is initially filled during the loop’s second
iteration while instructions are fetched from the L1 cache and the
ALC supplies the processor with instructions for the remaining
iterations. Each ALC entry contains an instruction and the
corresponding exit bits indicating whether the next instruction

Figure 1: Architectural placement of the (a) filter cache (b)
the dynamic, preloaded, and adaptive loop caches (DLC, PLC,
and ALC, respectively) and (c) the hybrid loop cache (HLC).

should exit the loop cache and fetch from the L1 cache or continue
fetching from the loop cache. The exit bits are critical for
transferring control from the ALC to the L1 cache without a cycle
penalty as the ALC must guarantee a 100% hit rate to not affect
system performance.

In the fill state, the ALC buffers an instruction during runtime to
evaluate the exit bits. The ALC uses the current instruction
(supplied by the L1 cache) and the previously buffered instruction
to determine the exit bits then writes the previously buffered
instruction and its corresponding exit bits to the loop cache. This
continues until the sbb is taken again (the ALC then transitions to
the active state), a new loop is encountered (the ALC is filled with
the new loop), or the sbb is not taken (the loop is no longer being
executed).

Unlike the DLC, the ALC caches complex critical regions
containing branches. In the active state, the ALC supplies the
processor with instructions and uses the exit bits to determine the
location of the next instruction fetch. The ALC supplies the next
instruction for straight-line code or when a cof is encountered but
not taken and the next_valid exit bit is set, or when a cof
encountered is taken and the taken_next_valid exit bit is set.
Otherwise, the L1 cache supplies the instruction. If execution
remains within the same loop, the ALC returns to the filling state
to fill the gap left during the initial filling cycle (the L1 cache
continues serving instruction fetches) then transitions to the active
state if the sbb is taken again.

Since we do not restrict the ALC to caching only loops with
straight-line code, it is possible to have gaps (invalid instructions)
in the ALC (note that these invalid instructions will never be
fetched from the ALC since the program counter is used to access
the correct ALC instruction). For example, if a loop contains an
if/else cof instruction, the instructions belonging to either the if
clause or the else clause will be initially cached leaving a gap in
the ALC. However, since the loop cache returns to the filling state
when gaps are encountered, it is possible for the ALC to contain
instructions from both the if and else clause and therefore, for the
cof’s next_valid and taken_next_valid exit bits to be set
simultaneously. If the sbb is not taken again or if a cof causes a
jump to a target outside of the ALC range, the ALC transitions to
the idle state while the L1 cache supplies instructions.

4.1 ALC Architectural Layout
The ALC’s architectural placement and use of the sbb and cof
microprocessor signals is identical to the DLC and PLC (Figure 1
(b)). Figure 2 (a) depicts the detailed architectural layout of the
ALC. The ALC contains a loop cache controller (LCC) to
orchestrate loop cache operation, the loop cache to store

instructions, and an address translation unit (ATU) for loop cache
indexing.

The LCC contains three internal registers, tr_sbb, last_PC, and
i_buffer, which collectively enable complex critical region caching
and provide support for loop cache gaps. Tr_sbb stores the
currently cached critical region’s triggering sbb address, thus the
tr_sbb effectively identifies the currently cached critical region.
Therefore, when the microprocessor asserts sbb, the LCC uses the
new triggering sbb’s address to determine if it corresponds to the
currently cached critical region or if execution has entered a new
critical region. If the new triggering sbb address matches tr_sbb,
the LCC asserts an internal signal, same_loop, which enables the
ALC to resume fetching the currently cached critical region (for
critical regions larger than the loop cache). I_buffer and last_PC
assist in control flow analysis by buffering the previously fetched
instruction and address while the next instruction fetch location is
evaluated. Special valid bits appended to each instruction in the
loop cache store control flow analysis information.

4.2 ALC Functionality for Critical Regions
with Forward Branches
Complete ALC operation requires cooperation between the LCC
and the ATU in order to fill the loop cache and service instruction
fetches. In this section, we describe ALC functionality necessary
for caching complex critical regions with forward branches.

4.2.1 Address Translation Unit (ATU)
In order to cache complex critical regions, maintain tagless loop
cache accesses, and use indexing counters, the ATU translates the
current instruction address into a loop cache index. During
straight-line code, the ATU uses an indexing counter to step
through the loop cache. However, when a cof occurs, the ATU
must translate the instruction’s address to the loop cache index.
The ATU contains an internal register, cr_start, which stores the
critical region’s first instruction address. When the LCC asserts
ad_trans indicating a cof, the ATU subtracts cr_start from the
current instruction address (last_PC during loop cache filling or PC
during loop cache fetching) to obtain the loop cache index. This
new loop cache index becomes the indexing counter, which is
incremented for each subsequent straight-line instruction access.

4.2.2 Loop Cache Controller (LCC) and Runtime
Control Flow Analysis
Figure 2 (b) depicts LCC state machine operation. In the idle and
active states, instructions are fetched from the L1 cache and the
loop cache, respectively. In the buffer and fill states, instructions
are fetched from the L1 cache and written to the loop cache after
runtime control flow analysis.

Figure 2: The adaptive loop cache (ALC) (a) architecture and (b) loop cache controller (LCC) state machine operation. Runtime
control flow analysis occurs in the fill state.

ALC operation begins in the idle state, with two possible exit
transitions. If same_loop is asserted (corresponding to a triggering
sbb for a currently cached critical region, Section 4.1), the LCC
transitions to the active state. If sbb is asserted and same_loop is
not asserted, the triggering sbb corresponds to a new critical region
and the LCC transitions to the buffer state.

The LCC spends one cycle in the buffer state to prepare the loop
cache for filling by resetting all valid bits to invalidate the
currently stored critical region. The LCC asserts tr_sbb_ld to store
the triggering sbb address in tr_sbb and asserts i_buffer_ld to
buffer the current instruction and address into i_buffer and
last_PC, respectively.

On the next clock cycle, the LCC transitions to the fill state and
performs an initial runtime control flow analysis pass to
dynamically determine the value of the two valid bits, next_valid
and taken_next_valid (nv and tnv, respectively, in Figure 2(b)),
which store loop exit condition information for each instruction.
Valid bits (similar to the PLCs exit bits) indicate whether the L1
cache or loop cache should service the next instruction fetch.

Valid bits are critical to loop cache operation and maintain a 100%
hit rate as valid bits indentify cofs with targets outside of the loop
cache and allow gaps within the loop cache. During straight-line
code execution in the fill state (including untaken branch
instructions), control flow analysis sets the next_valid bit for these
instructions indicating that the next sequential instruction is stored
in the loop cache. If a cof occurs and the cof’s target is within the
loop cache bounds, control flow analysis sets the taken_next_valid
bit for this instruction indicating that when the cof occurs, the
target instruction is stored in the loop cache. Note that at this point,
control flow analysis sets only one valid bit, leaving the other valid
bit unset. Since the initial control flow analysis pass operates on
one loop iteration, both valid bits cannot be set. In order to fill in
unset valid bits and loop cache gaps, the LCC may return to the fill
state for additional control flow analysis passes.

During the fill state, i_buffer serves two purposes. First, i_buffer
enables control flow analysis to compare the previous instruction
executed with the subsequent instruction executed to evaluate loop
exit conditions. The second purpose significantly reduces loop
cache writes and eliminates the need for a dual-ported loop cache.
Previous loop cache designs simultaneously write instructions as
the instructions are fetched from the L1 cache. However, since the
ALC’s control flow analysis determines an instruction’s valid bits
after the next instruction fetch, each loop cache instruction would
require two updates: one update to write the current instruction and
one update to write the previous instruction’s valid bits.
Furthermore, these updates refer to two different loop cache lines,
resulting in two writes per clock cycle (necessitating a dual-ported
loop cache). In order to avoid a dual-ported loop cache, i_buffer
buffers the previous instruction during control flow analysis such
that each loop cache instruction only requires one loop cache
update. The loop cache is backfilled with the previous instruction
and associated valid bits while the current instruction is fetched
from the L1 cache (backfilling the loop cache and fetching from
the L1 cache take one cycle). Because i_buffer is read at the
beginning of and written at the end of the clock cycle, i_buffer
always latches the current instruction after the previous instruction
is sent to the loop cache.

The LCC continues this backfilling process until one of several
conditions is met. If a new triggering sbb is taken (same_loop is
not asserted), the LCC transitions to the buffer state to prepare for
the new loop. If execution reaches the end of the loop, and the

loop’s triggering sbb (tr_sbb) is taken again (same_loop is
asserted), the LCC transitions to the active state (the LCC
backfilled the last loop instruction at the end of the loop’s first
iteration, thus the last instruction is actually the first instruction
written to the loop cache).

In the active state, the LCC deasserts loop_fill to allow the loop
cache to service instruction fetches (in a single cycle). The LCC
buffers the instruction fetched from the loop cache and associated
valid bits in i_buffer to prepare for additional control flow analysis
passes. The LCC analyzes valid bits to determine the next
instruction’s fetch location. If the current instruction is not a cof
and next_valid is set or if the current instruction is a cof and
taken_next_valid is set, the LCC remains in the active state.
Otherwise, the L1 cache must service the next instruction fetch and
the LCC transitions out of the active state.

There are several LCC transitions out of the active state. If the
next_valid bit is not set and the instruction corresponds to the last
instruction in the loop cache (overflow is asserted), the LCC
transitions to the idle state. Otherwise, the unset next_valid bit
indicates a loop cache gap and the LCC transitions to the fill state
to perform another control flow analysis pass. If the LCC detects a
new loop (a triggering sbb is taken and is not tr_sbb), the LCC
transitions to the buffer state to prepare the loop cache for a new
loop. If the current loop’s triggering sbb (tr_sbb) is not taken, the
LCC transitions to the idle state. Lastly, if a cof’s target (identified
during instruction decode) is outside the loop range (past the
triggering sbb) the controller’s out_of_loop signal is asserted and
the controller transitions to the idle state.

4.3 ALC Functionality for Critical Regions
with Nested Loops
We modified the LCC described in Section 4.2 to include
functionality for caching critical regions with nested loops.
However, experimental results showed no average improvement
and only little improvement in loop cache access rates and energy
savings for a very small number of benchmarks.

5. EXPERIMENTAL RESULTS
5.1 Experimental Setup
To determine the number of instructions fetched from the loop
cache and calculate energy savings for the DLC, PLC, HLC, and
ALC, we executed 31 benchmarks from the EEMBC [2], MiBench
[7], and Powerstone [11] benchmark suites (all benchmarks were
run to completion, however, due to incorrect execution not related
to the loop caches, we could not evaluate the complete suites). We
implemented each loop cache design in SimpleScalar [1] using the
PISA instruction set (64 bit instructions and 32 bit addresses). We
evaluated small loop cache sizes ranging from 4 to 256 entries
Since [4] suggested that the HLC’s ideal DLC partition size was 32
entries, we present HLC results for 64-, 128-, and 256-entry loop
caches only.

To calculate energy consumption for each loop cache
configuration, we augmented the energy model adopted by Zhang
et al. [15] and Gordon-Ross et al. [4] to include loop cache fill and
fetch operations as shown here (IC = instruction cache, LC = loop
cache):

total energy =IC_energy + LC_energy
IC_energy = IC_fill_energy + IC_dynamic_energy + IC_static_energy
IC_fill_energy = ((IC_misses * (IC_linesize / wordsize) *
 mem_energy_perword))+ cpu_stall_energy
IC_dynamic_energy = IC_accesses * IC_access_energy

IC_static_energy =(IC_misses * miss_latency_cycles) +
 (IC_accesses –IC.misses) + LC_hits) * 0.15* IC_access_energy
LC_energy =((LC_hits + LC_fills) * LC_access_energy) +
LC_static_energy
LC_static_energy =(IC_misses * miss_latency_cycles) +

(IC_accesses – IC.misses) + LC_hits) * 0.15*
LC_access_energy

	
We gathered IC_accesses, LC_hits, and LC_fills cache statistics
using SimpleScalar. We used CACTI [13] to determine dynamic
cache energy dissipation for 0.18um technology. Since the loop
cache is tagless, we obtained energy consumption for same sized
direct-mapped caches with an 8-byte line size (corresponding to
one loop cache entry for one instruction) and removed the tag
energy. We assumed static energy per clock cycle for the
instruction and loop caches as 15% of their respective dynamic
access energies.

In order to compare to a system with no loop cache, we define a
base system configuration consisting of an 8 KB L1 instruction
cache with 4-way set associativity and a 32-byte line size – a
configuration shown in [15] to perform well for a variety of
benchmarks on several embedded microprocessors. To calculate
energy savings, we normalize the energy consumption of a system
with a loop cache and the L1 base cache to the base system with no
loop cache.

5.2 Results and System Scenario Analysis
Figure 3 depicts experimental results comparing the DLC, ALC,
PLC, and HLC loop cache designs for various loop cache sizes in
number of entries (entries on the x-axis). In order to show different
loop cache design trends across different benchmark suites, we
present results averaging the EEMBC, MiBench, and Powerstone
benchmark suites separately.

Figure 3 (a), (b), and (c) depict the percentage of instruction
fetches resulting in loop cache hits (loop cache access rate) and
reveal that our ALC always out performs the DLC for all three
benchmark suites and all loop cache sizes. This result is expected
since the DLC caches a subset of the loops that the ALC caches.
These figures also reveal the DLC’s ineffectiveness during
particular system scenarios. For the Powerstone benchmark suite
and all loop cache sizes (Figure 3 (c)), the DLC never resulted in
loop cache hits due to the absence of straight-line loops (we

verified this using a loop analysis tool [14]). Average loop cache
access rate improvements for the ALC compared to the DLC reach
as high as 18.43%, 40.63%, and 74.34% for EEMBC, MiBench,
and Powerstone benchmark suites, respectively.

 For individual benchmarks, the ALC loop cache access rate
reaches as high as 97.91% for the EEMBC benchmark suite and as
high as 99.74% and 99.49% for the MiBench and Powerstone
benchmark suites, respectively. These high access rates and DLC’s
ineffectiveness for certain application scenarios results in loop
cache access rate improvements as high as 97.82% for the ALC
compared to the DLC for EEMBC’s PNTRCH01 benchmark and
as high as 99.70% and 99.48% for MiBench’s CRC and
Powerstone’s blit benchmark, respectively.

Figure 3 (a), (b), and (c) also show that for the EEMBC, MiBench,
and Powerstone benchmark suites, respectively, on average, our
ALC either out performs or performs as well as the PLC and HLC
for loop cache sizes up to 128 entries. In addition, Figure 3(b)
shows that for the MiBench suite, on average, the ALC always out
performs the PLC and the difference between the ALC and HLC
loop cache access rate is only 5% for the a 256 entry loop cache.
Thus, the ALC is ideal for sized constrained applications.
Increasing the loop cache size to 256 entries results in the
PLC/HLC storing almost all of the application’s critical regions,
thus after this point the PLC/HLC outperforms the ALC on
average since the PLC/HLC requires no runtime filling cycles.
However, since the ALC outperforms the PLC/HLC for small loop
caches, this shows that the ALC’s filling overhead is minimal and
the ALC’s inability to cache subroutines and nested loops does not
noticeably affect performance.

Evaluating individual benchmarks reveals that the ALC
consistently outperforms the PLC for applications with a large
critical region or many critical regions, which would require
prohibitively large loop caches, such as with MiBench. For
EEMBC’s TBLOOK01 benchmark, the ALC out performs both
the PLC and HLC for all loop cache sizes since a 256-entry PLC (a
224-entry PLC partition in the case of the HLC) was not large
enough to store a single critical region in its entirety. Although
these larger PLCs/HLCs could potentially incur more loop cache
hits, in some cases the additional loop cache hits would not
compensate for the increased energy consumption incurred by
fetching from a larger loop cache, thus increasing overall energy

Figure 3: Experimental results for the DLC, ALC, PLC, and HLC for varying loop cache sizes (entries) showing percentage of

instruction fetches resulting in loop cache hits (access rate) averaged for the (a) EEMBC, (b) MiBench, and (c) Powerstone
benchmark suites and energy savings (normalized to the base system) averaged for the (d) EEMBC, (e) MiBench, and (f)

Powerstone benchmark suites.

0%
20%
40%
60%
80%

100%

Lo
op

 C
ac

he
 A

cc
es

s R
at

e

Loop Cache Entries

DLC ALC PLC HLC ALC Std Dev ALC Median
(a) (b) (c)

0%
20%
40%
60%
80%

100%

%
 E

ne
rg

y
Sa

vi
ng

s

Loop Cache Entries

DLC ALC PLC HLC ALC Std Dev ALC Median
(d) (e) (f)

consumption. In addition, highly size constrained system scenarios
may not afford the larger loop caches required for optimal
PLC/HLC energy savings or performance.

We further note that certain system scenarios may result in the
PLC outperforming the ALC for all loop cache sizes. In this
scenario, critical loops are executed frequently but only iterate a
few times successively i.e. enough iterations to fill the ALC but
not enough iterations to take advantage of fetching from the ALC
(e.g. EEMBC’s A2TIME01 benchmark). However, we point out
that even in these scenarios, the flexibility of the ALC (no designer
pre-analysis effort and the ability to conform to changes in
application behavior and phases) may still outweigh the increased
PLC performance.

Figure 3 (d), (e), and (f) depict average memory hierarchy energy
savings for the EEMBC, MiBench, and Powerstone benchmarks,
respectively. As expected, for all three benchmark suites, our ALC
outperforms the DLC due to increased ALC hits for a same sized
DLC. Average ALC energy savings improvements over the DLC
reach as high as 12%, 26%, and 49% for the EEMBC, MiBench,
and Powerstone benchmark suites, respectively, and reach as high
as 69% for Powerstone’s blit benchmark. For the Powerstone
benchmark suite, the DLC always increases energy consumption
compared to the base system because thrashing results in no loop
cache accesses. The PLC and ALC can also result in negative
energy savings for the 4-entry loop cache since a 4-entry loop
cache can be too small to incur enough loop cache accesses needed
to translate into energy savings.

Figure 3 (d), (e), and (f) show that our ALC saves more energy
than the PLC for loop cache sizes less than 64 entries. We point
out that on average the ALC does not outperform the PLC/HLC for
larger loop cache sizes due to the absence of PLC/HLC (PLC
partition) filling (however, individual benchmarks show additional
energy savings for the ALC compared to the PLC as high as 53%
for EEMBC’s PNTRCH01 benchmark with a 64-entry loop cache.

Both the PLC and HLC require designer pre-analysis effort to
achieve energy savings – we reiterate that the HLC is a
combination of a fixed size (32-entry) DLC partition and a PLC
partition that can be increased in size to obtain similar results as an
HLC with 64, 128, and 256 entries. Thus, any energy savings
obtained by increasing the HLC size is due to increasing the
HLC’s PLC partition, and therefore requiring designer effort to
achieve these savings. Without designer effort, the HLC would be
reduced to only a 32entry DLC, which cannot match the energy
savings of the ALC. The ALC’s strength is that the ALC can
provide energy savings near that of the PLC/HLC without the
application designer’s pre-analysis effort and without requiring a
static system scenario. Since static pre-analysis is not acceptable
for applications with changing behavior, the PLC and HLC are not
effective for every system scenario.

Figure 3 (d) shows a decrease in energy savings for the ALC with
a 256-entry loop cache. At this point, the additional loop cache hits
for increased loop cache sizes does not outweigh the additional
energy required for the larger loop cache. (Figure 3 (a) shows that
the loop cache hit rate for the ALC levels off at 64 entries).
Additional experiments run for loop cache sizes greater than 256
entries revealed a negligible increase in loop cache energy savings
or a decrease in energy savings for all loop cache designs.

6. CONCLUSIONS
In this paper, we introduced the adaptive loop cache (ALC) – a
dynamic tagless loop cache that combines the flexibility of the

dynamic loop cache (DLC) with the preloaded loop cache’s
(PLC’s) ability to cache complex critical regions. The ALC
significantly increases system scenario amenability compared to
previous loop cache designs using a lightweight runtime control
flow analysis technique to dynamically cache complex critical
regions in an area efficient manner. Furthermore, the ALC
eliminates the need for the costly designer pre-analysis effort
required for the PLC and HLC, making the ALC the most
appropriate design for applications with changing behavior. The
ALC increases the average loop cache access rate and average
energy savings by as much as 74% and 20%, respectively,
compared to previous loop cache designs. Future work includes
investigating benefits gained by combining the ALC with other
dynamic energy saving techniques such as cache configuration.

7. REFERENCES
[1] Burger, D., Austin, T., Bennet, S. Evaluating Future Microprocessors:

The SimpleScalar ToolSet. University of Wisconsin-Madison.
Computer Science Department. Tech. Report CS-TR-1308, July
1996.

[2] EEMBC. http://www.eembc.org/.
[3] Eeckhout, L., Vandierendonck, H., De Bosschere, K. Workload

design: Selecting Representative Program-input Pairs. 2002
International Conference on Parallel Architectures and Compilation
Techniques.

[4] Gordon-Ross, A. and Vahid, F. Dynamic Loop Caching Meets
Preloaded Loop Caching – A Hybrid Approach. IEEE International
Conference on Computer Design (ICCD), 2002.

[5] Gordon-Ross, A., Cotterell, and Vahid, F. Exploiting Fixed Programs
in Embedded Systems: A Loop Cache Example. Computer
Architecture Letters, Volume 1, January 2002.

[6] Gordon-Ross, A., Lau, J., and Calder, B. Phase-based Cache
Reconfiguration for a Highly-configurable Two-level Cache
Hierarchy. 18th ACM Great Lakes Symposium on VLSI . GLSVLSI
'08.

[7] Guthaus, M.R., Ringenberg, J.S., Ernst,D., Austin, T.M., Mudge, T.,
Brown, R.B. MiBench: A Free, Commercially Representative
Embedded Benchmark Suite. IEEE 4th Annual Workshop on
Workload Characterization, December 2001.

[8] Hines, S., Whalley, D., and Tyson, G. Guaranteeing Hits to Improve
the Efficiency of a Small Instruction Cache. IEEE/ACM International
Symposium on Microarchitecture 2007.

[9] Kin, J., Gupta, M., and Mangione-Smith, W. H. The Filter Cache: an
Energy Efficient Memory Structure. ACM/IEEE International
Symposium on Microarchitecture 1997

[10] Lee, L. H., Moyer, W., Arends, J. Low cost Embedded Program Loop
Caching – Revisited. University of Michigan Technical Report
Number CSE-TR-411-99, December 1999.

[11] Scott, J.,Lee, L., Arends, J., Moyer, B. Designing the Low- Power
M~CORE Architecture. International Symposium on Computer
Architecture Power Driven Microarchitecture Workshop, July 1998.

[12] Segars, S. Low Power Design for Microprocessors. International
Solid State Circuit Conference, February 2001.

[13] Shivakumar, P., G., Jouppi, N.P. Cacti3.0: an Integrated Cache
Timing and Power Model. COMPAQ Western Research Lab, 2001.

[14] Villarreal, J., R. Lysecky, S. Cotterell, and F. Vahid. A Study on the
Loop Behavior of Embedded Programs. Technical Report UCR-CSE-
01-03, University of California, Riverside, 2002.

[15] Zhang, C., F. Vahid, W. Najjar. A highly-configurable Cache
Architecture for Embedded Systems. 30th Annual International
Symposium on Computer Architecture, June 2000

