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ABSTRACT 
Since caches are commonly used in embedded systems, which 

typically have stringent design constraints imposed by physical 

size, battery capacity, real-time deadlines, etc., much research 

focuses on cache optimizations, such as improved performance 

and/or reduced energy consumption. Cache locking is a popular 

cache optimization that loads and retains/locks selected memory 

contents from an executing application into the cache to increase 

the cache’s predictability. Previous work has shown that cache 

locking also has the potential to improve cache performance and 

energy consumption. In this paper, we introduce phase-based 

cache locking, which leverages an application’s varying runtime 

characteristics to dynamically select the locked memory contents 

to optimize cache performance and energy consumption. 

Experimental results show that our phase-based cache locking 

methodology can improve the data cache’s miss rates and energy 

consumption by an average of 24% and 20%, respectively.  

Categories and Subject Descriptors 
B.3.2 [Hardware]: Memory Structures: Design Styles – cache 

memories. 

General Terms 
Design. 

Keywords 
Cache locking, phase-based tuning, energy savings, configurable 

caches, dynamic optimization. 

1.   INTRODUCTION AND MOTIVATION 
Caches are commonly used in embedded systems to bridge the 

processor-memory performance gap by exploiting the spatial and 

temporal locality of memory accesses. However, caches can 

contribute significantly to overall system energy consumption (e.g., 

the ARM920T’s caches consume up to 44% of the 

microprocessor’s overall energy consumption [15]). Therefore, 

much research focuses on cache optimizations, such as improved 

performance and/or reduced energy consumption, while satisfying 

an embedded system’s intrinsic design constraints imposed by 

physical size, battery capacity, real-time deadlines, consumer 

market competition, etc. 

Cache locking is a popular cache optimization that loads and 

retains/locks selected contents/memory blocks (regions of 

instruction and/or data addresses) from an executing application 

into the cache. Cache locking can be done either at system startup 

(static cache locking) or dynamically during runtime (dynamic 

cache locking), and is available in modern embedded processors, 

such as the ARM Cortex processors [3]. These cores support special 

lock subroutines that lock the selected contents into the cache such 

that locked contents cannot be evicted by the cache’s replacement 

policy. Since accesses to locked contents will always produce a 

cache hit, these addresses’ access times are predictable.  

Cache locking traditionally benefits execution time predictability 

when using caches, especially in real time systems where the worst-

case execution time (WCET) must be estimated. In these systems, 

the cache contents are typically known statically and cache locking 

ensures that the memory access times and cache related preemption 

delays are predictable for the locked contents, allowing tighter 

WCET estimation. Previous work [9] showed that cache locking 

benefits also include improved cache performance in general 

purpose embedded systems by eliminating conflict misses and 

guaranteeing a hit for the locked contents. Additionally, cache 

locking can result in reduced dynamic energy since cache locking 

can reduce cache misses, and thus reduce the energy consumed 

when accessing lower memory levels and associated stalls. 

However, cache locking also reduces the cache’s overall utilization. 

Since portions of the cache are exclusively used for the locked 

contents, the effective cache capacity is reduced and conflict misses 

may increase for the memory blocks that are not locked. For cache 

locking to be effective, the locked contents must represent 

application regions that significantly affect overall cache 

performance and energy consumption. If the contents are poorly 

selected, cache locking can significantly degrade performance [21] 

and/or energy, especially for static cache locking where the locked 

contents are retained throughout the system’s lifetime. 

Prior cache locking methods (e.g., [14]) used static cache locking to 

improve instruction cache predictability in real time systems where 

the applications and cache contents are known at design time. 

However, assuming this a priori knowledge limits these methods’ 

applicability to general purpose embedded systems (e.g., 

smartphones, tablets, etc.), which typically execute a large variety 

of applications that are unknown at design time. Furthermore, those 

studies focused on improving predictability without necessarily 

improving cache performance and/or energy. Alternatively, 

dynamic cache locking [4][7][21] adjusts the locked contents at 

runtime to further improve cache predictability and reduce 

dependence on a priori application and cache content knowledge..  

Anand et al. [2], Liang et al. [9], and Liu et al. [10] used cache 

locking to optimize instruction cache performance in general 

purpose embedded systems, but none of these works evaluated 

cache locking’s energy benefits. Additionally, since an application 

typically processes much more data than the number of instructions 

executed, most prior cache locking methods, if applied directly to 

the data cache, would require a large data cache and/or potentially 

result in runtime overhead in terms of performance and/or energy, 
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since complex runtime analysis would be required due to the 

inherent runtime variability of data caching [21]. 

Therefore, we propose a new methodology for leveraging cache 

locking for data cache performance and energy consumption 

optimizations in general purpose embedded systems. The locked 

data cache contents are dynamically selected, loaded, and retained 

at runtime based on the application’s intrinsic runtime variable 

characteristics (e.g., cache miss rates, branch mispredicts, etc.). 

Unlike instructions, which typically remain fixed during execution, 

applications process different data streams during runtime, thus our 

cache locking method dynamically changes the locked contents 

based on the application’s changing data. Prior work showed that 

phase classification can partition an application’s execution into 

execution intervals and group intervals with similar and stable 

characteristics as phases, which typically exhibit data reuse [16]. 

Our work leverages this data reuse and is based on the premise that 

cache performance and energy consumption can be optimized if 

memory blocks with high reuse are locked in the cache, 

guaranteeing that all accesses to that data are cache hits. Our 

analyses showed that a few persistent phases repeat several times 

throughout an application’s execution, thus we propose to lock 

those persistent phases’ data in the cache, thereby eliminating the 

conflict misses for those phases. 

In this paper, we propose phase-based cache locking to dynamically 

select locked data cache contents for cache performance and energy 

consumption optimization. We empirically show that cache locking 

can significantly reduce the data cache’s energy consumption when 

the locked contents are selected to minimize an application’s 

conflict misses.   

2.   BACKGROUND AND RELATED WORK 
Much previous work studied cache locking’s execution time 

predictability benefits and phase classification for exploiting an 

application’s runtime variability in isolation. However, little prior 

work exploits cache locking for optimizing the cache’s performance 

and/or energy consumption while considering runtime variability. 

In this section, we present general related work and background on 

cache locking and phase classification, which we leverage for 

dynamically selecting the locked contents. 

2.1 Cache Locking  
Cache locking is primarily used in hard real time systems to 

improve the cache’s predictability and facilitate tighter WCET 

estimations as compared to a system without cache locking—a non-

locking cache. Puaut et al. [14] proposed greedy algorithms for 

selecting the locked contents in hard real time systems. Vera et al. 

[21] combined compile-time cache analysis with data cache locking 

to enable tight WCET estimation in real time systems. Since these 

works targeted real time embedded systems where the executing 

applications are typically known a priori, these works have limited 

applicability to general purpose embedded systems. Furthermore, 

even though these works improved cache predictability, these works 

did not explicitly focus on improving the cache performance and 

the proposed cache locking methods could potentially increase the 

conflict misses for the memory blocks that are not locked [21].  

To improve the cache performance in general purpose embedded 

systems, Liang et al. [9] presented an instruction cache locking 

heuristic to select the locked contents in order to realize cache 

locking’s performance benefits by reducing the conflict misses. The 

proposed heuristic reduced the cache miss rates by up to 24%. 

Anand et al. [2] used detailed, iterative cache simulations to 

evaluate the performance benefits for locking different memory 

blocks. However, due to the detailed cache simulations and number 

of iterations involved, this method would incur significant runtime 

overhead if used for dynamic cache locking. Additionally, since the 

authors used static cache locking, this method is not applicable to 

systems where the executing applications are unknown a priori. Liu 

et al. [10] proposed an algorithm that dynamically determined the 

instruction cache’s locked contents to improve the average-case 

execution time (ACET). However, these works did not evaluate the 

energy benefits of cache locking, and since these works focused on 

the instruction cache, the inherent runtime variability of data caches 

were not considered. 

Using simulations, Asaduzzaman et al. [5] showed that cache 

locking could potentially improve cache performance and reduce 

power consumption. Yang et al. [21] used a dynamic programming 

algorithm to determine the locked contents in order to improve the 

data cache’s power consumption and performance. However, the 

authors used a compiler-assisted technique that constrained the 

proposed method to systems where the executing applications were 

known a priori. 

Our work differs from previous cache locking methods by using 

dynamic cache locking in the data cache to optimize the cache’s 

performance and energy consumption. We propose a phase-based 

methodology that dynamically selects the locked contents, incurs 

minimal runtime overhead, and makes our work applicable to 

general purpose embedded systems where the executing 

applications may be unknown a priori. 

2.2 Phase Classification 
Since dynamically leveraging phase characteristics can significantly 

increase optimization potential by specializing the optimizations to 

different phases of execution [1][8][17], much prior work explored 

different phase classification techniques. Sherwood et al. [17] 

showed that phase classification using basic block distribution was 

highly correlated with application characteristics, such as cache 

miss rates, instructions per cycle (IPC), branch mispredictions, etc. 

Hamerly et al. [8] created SimPoint, which used machine-learning 

techniques to identify an application’s phases by analyzing basic 

block vectors that were annotated with the block’s execution 

frequency. Shen et al. [16] showed a strong correlation between 

data locality and an application’s phase characteristics, and showed 

that data reuse patterns could be used to classify phases. Since 

phase characteristics are strongly correlated with the phases’ data 

reuse patterns, our work leverages phase classification and the 

phases’ data reuse to select an application’s locked contents to 

optimize the data cache’s performance and energy consumption. 

3.   PHASE-BASED CACHE LOCKING 
Our phase-based cache locking methodology selects the locked 

contents such that the cache’s performance and energy consumption 

are improved compared to a default non-locking cache. 

Additionally, our methodology determines if an application will 

benefit from cache locking based on the phases’ persistence, such 

that our methodology never degrades the performance and/or 

energy consumption as compared to a non-locking cache. In this 

section, we describe our phase-based cache locking architecture, our 

methodology for selecting the locked contents, and present our 

phase-based cache locking algorithm. 

3.1 Architecture and Implementation 
Our work assumes line locking [7], which is supported in the ARM 

processor family [3]. Line locking enables individual lines to be 

locked for different cache sets, as opposed to way locking, where all 

the lines in a particular cache way are locked. Figure 1 depicts our 

phase-based cache locking architecture for a sample dual-core 

system, where each core has private level one (L1) instruction and 

data caches. The phase-based cache locking module (referred to as 

the locking module for brevity herein) connects directly to each 



core’s L1 data cache, thus this architecture is extendable to any n-

core system by connecting the locking module to each core’s L1 

data cache. Since the locking module contains simple logical 

operations, the locking module can be implemented using small 

custom hardware or a lightweight co-processor process to facilitate 

easy integration into current embedded system microprocessors.  

The locking module contains a phase classification module to 

classify the applications’ phases and determine the phases’ 

persistence, a cache locking algorithm, and a locked contents 

history table (LCHT). The LCHT is a small hardware or software 

data structure with per-application entries that retain information 

(memory addresses and working set sizes) of an application’s 

locked phases’ data for subsequent executions of that application. 

The LCHT’s size can be dynamic or fixed depending on the 

memory constraints of the system, and a replacement policy, such 

as least recently used (LRU), can be used when the table is full. 

When a new application is executed, an entry is added to the LCHT.  

Figure 2 depicts the LCHT entry’s basic structure, which includes: 

application Ai’s identification ID; the memory addresses of Ai’s 

locked contents lockedContents(Ai) as selected by the cache locking 

algorithm; noLockedContents and profile flags, which default to ‘0’ 

and indicate if Ai benefits from cache locking and if Ai has been 

profiled, respectively; and two fields to store Ai’s cache miss rate 

and energy while executing with a non-locking cache for 

determining if Ai benefits from cache locking (Section 3.3). We 

estimate the LCHT’s overhead in Section 3.4. 

Traditional static cache locking restricts the cache’s replacement 

policy from considering locked contents for replacement throughout 

the system’s lifetime. Alternatively, dynamic cache locking inserts 

special lock and unlock instructions that call the microprocessor’s 

cache locking subroutines. These subroutines disable or enable the 

cache’s replacement policy at the beginning and end of locked 

contents, respectively. However, since the application code is 

modified, which alters the application’s memory map, data may be 

written to, and/or read from, the wrong cache sets. Our cache 

locking methodology avoids application code modification by using 

the debug registers, which store program counter values that 

represent the beginning and ending instructions of the locked 

content’s phase. The locking module sets the debug registers such 

that the exception handler loads and locks the contents in the cache. 

Using this method does not modify the application’s memory map, 

and can be directly used with any legacy binary. Previous work [4] 

using a similar method showed that this method accrued negligible 

runtime overhead. 

3.2 Selecting the Locked Contents  
To select the locked contents, our phase-based cache locking 

methodology leverages application execution locality, wherein the 

majority of an application’s execution, measured by the number of 

dynamic instructions executed, typically occurs within a few 

persistent phases that access the same data. To ascertain the extent 

of application execution locality, we analyzed several applications 

and the applications’ phases to evaluate the benefits of locking these 

phases’ data in the cache. Our analysis revealed that for cache 

locking to provide any cache locking benefits, phase Pi’s execution 

must comprise at least 10% of application A’s total execution. 

Based on this observation, we define a phase Pi as persistent if:  

                            Pi ϵ A : IPi ≥ 0.1 * Itotal                                         (1) 

where A represents all of the phases in application A, IPi is Pi’s 

number of instructions, and Itotal is A’s total number of instructions. 

We quantify Pi’s persistence ρ using the percentage of A’s total 

execution that belongs to Pi, where ρ is given as: 

            ρ = 
I𝑃𝑖

I𝑡𝑜𝑡𝑎𝑙
                                            (2) 

and ρ is a percentage between 0 and 100%. We note that persistence 

is a necessary, but not sufficient condition for Pi to provide cache 

locking benefits. 

Figure 3 analyzes phase persistence for an arbitrary subset of 

applications from SPEC CPU2006 [19]. The x-axis depicts the 

applications’ distinct phases (the number of phases per application 

varies) and the y-axis depicts the percentage of each application’s 

execution that belongs to each phase (total phase execution 

percentage for each application totals 100%). We evaluated SPEC 

benchmarks because these benchmarks show a greater variation 

during execution than typical embedded system benchmark suites, 

which typically model specific kernels, rather than complete 

embedded system applications that would be comprised of several 

of these kernels (e.g., a digital camera’s application would contain 

specific kernels, such as JPEG compression and decompression, 

MPEG compression and decompression, etc.).  

Figure 3 shows that the majority of applications have a few phases 

that are significantly more persistent than the other phases, 

suggesting that these application’s phases are amenable to cache 

locking. For example, 56% of calculix’s execution is spent in two 

phases while the remaining 44% of the execution is spent in the 

remaining six phases—7% on average for each remaining phase 

with a 0.03 standard deviation. 51% of gromacs’s execution is spent 

 
Figure 1. Phase-based cache locking architecture 

 

Figure 2. Locked contents history table (LCHT) entry basic structure 

 
Figure 3. Phase persistence for SPEC2006 benchmarks. 
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in two phases while the remaining 49% of the execution time is 

spent in the remaining fourteen phases—3% on average for each 

remaining phase with a 0.02 standard deviation. Since only two 

phases represent nearly half of calculix and gromacs’s execution, 

these applications would benefit the most from cache locking if 

these two most persistent phases were locked in the cache. 

Alternatively, since h264ref’s execution is relatively evenly spread 

across all of the application’s eight phases, h264ref has less 

potential to benefit from phase-based cache locking since no phase 

has a prominent persistence. Our phase-based cache locking 

methodology identifies these applications, and executes these 

applications with a non-locking cache to prevent performance 

and/or energy degradation. Results in Section 4 verify these 

persistence-based cache locking benefit hypotheses. 

Since phase classification has been extensively studied, and data 

reuse is highly correlated with phase characteristics, the phase 

classification module profiles the application with a non-locking 

cache during the application’s first execution. The phase 

classification module uses a phase classification technique similar 

to [17] to partition the application’s execution into phases and uses 

Equations (1) and (2) to determine the phases’ persistence at 

runtime. Low-overhead, custom hardware profiles the application 

and groups the application’s intervals into phases. The phases are 

formed at runtime by tracking the program counter (PC) from 

committed branch instructions and the number of instructions 

between the current and previous branch to create a basic block 

vector for each execution interval. Each interval’s vector is 

compared with previous vectors, and similar intervals are grouped 

into phases. We refer the reader to [17] for additional details. 

Without loss of generality and considering general purpose 

embedded systems, our methodology assumes a system without 

preemption. However, our methodology could easily incorporate 

preemption by saving the LCHT’s profiling state on application 

preemption, and restoring the profiling state on resumption. Our 

future work will evaluate the impact of preemption and context 

switches on our methodology’s effectiveness. 

3.3 Phase-based Cache Locking Algorithm 
 

Algorithm 1 depicts our phase-based cache locking algorithm, 

which takes as input application Ai and outputs an array of Ai’s 

locked contents’ memory addresses lockedContents(Ai) (lines 1-2). 

For each application Ai, if the LCHT contains no entry for Ai, our 

cache locking algorithm profiles and selects Ai’s locked contents 

during Ai’s first execution using the non-locking cache (lines 3-21). 

After Ai completes execution, the algorithm selects Ai’s locked 

contents by sorting Ai’s persistent phases by persistence in 

descending order (lines 7-9), and selects phases for locking in 

descending order until the total data locked by the selected phases 

exceeds maxLockedCache (lines 10-18). The total data is the 

working set size of the locked contents, where the working set size 

is calculated by the number of unique 64-byte blocks accessed by 

the selected phases. maxLockedCache is the maximum percentage 

of the cache that can be locked, and defaults to 50%. We 

empirically determined that at least 50% of the cache must remain 

unlocked to minimize conflict misses for the memory blocks that 

are not locked for an application to benefit from cache locking. 

After selecting the locked contents, a new entry for Ai containing 

Ai’s locked contents’ memory addresses are added to the LCHT 

and the profile flag is set (lines 19-20). For subsequent executions 

of Ai, if the LCHT contains an entry for Ai’s locked contents and 

profile is set, this is Ai’s second execution and the cache locking 

algorithm locks the selected contents, and determines if Ai will 

benefit from cache locking after Ai’s second complete execution. 

The cache locking algorithm determines if Ai benefits from cache 

locking by comparing Ai’s cache miss rate and energy consumption 

while executing with and without locked contents. If cache locking 

increases the cache miss rate or energy consumption with respect to 

the non-locking cache, the cache locking algorithm sets the 

noLockedContents flag to ‘1’, implying that Ai does not benefit 

from cache locking. The cache locking algorithm then sets the 

profile flag to ‘0’ to indicate that cache locking’s benefit has been 

determined for Ai (lines 22-33).  

If Ai’s locked contents’ memory addresses are in the LCHT and the 

profile flag is ‘0’ (i.e., Ai has been previously profiled), 

loadAndLock() triggers the processor’s cache locking subroutines 

(Section 3.1), which load and lock Ai’s locked contents in the cache 

for the duration of Ai’s execution (lines 34-38). Alternatively, if 

noLockedContents is set, Ai is executed with the non-locking cache 

(lines 39-42). 

3.4 Computational Complexity and LCHT 

Hardware Area and Power Overhead 
Our phase-based cache locking algorithm sorts the persistent phases 

N with worst-case time complexity O(N log N) and selects the 

locked contents with worst-case time complexity O(N). Given that 

these operations dominate the algorithm, the algorithm results in 

minimal computational overhead and has good scalability. 

1 Inputs: Ai;  

2 Outputs: @lockedContents(Ai); 

3 if(!(lockedContents(Ai) in LCHT)) { 

4      #profile Ai to determine phases and persistence 

5           execute(Ai);  

6           @phases_Ai, ρ(phases_Ai) <- profile(Ai); 

7           #sort phases’ persistence in descending order 

8           @pers_phases_Ai = sort {ρ{$b} <=> ρ{$a} 

9                } @phases_Ai; 

10           foreach phase(@pers_phases_Ai) { 

11                if(sizeOf(lockedContents(Ai)) <=  

12                     sizeOf(maxLockedCache)) { 

13                          push(@lockedContents(Ai), phase); 

14                }  

15                else { 

16                     break; 

17                } 

18           } 

19           storeLockedContentsLCHT(Ai); 

20           profile = 1; 

21 } 

22 if(lockedContents(Ai) in LCHT &&  

23           profile = 1) {  

24                #Ai previously executed once 

25                loadAndLock(@lockedContents(Ai)); 

26                execute(Ai); 

27                if(missRates(locking) > missRates(non-locking)  

28                     || energy(locking) > energy(non-locking))  

29     { 

30                          noLockedContents = 1; 

31                } 

32                profile = 0; 

33 } 

34 elsif(lockedContents(Ai) in LCHT && 

35      profile = 0) { 

36           #locked contents have been determined 

37           loadAndLock(@lockedContents(Ai)); 

38 } 

39 if(noLockedContents = 1) { 

40      #Ai has no locked contents  

41      break; 

42 } 
 

Algorithm 1. Phase-based cache locking algorithm 



To show that our phase-based cache locking methodology 

constitutes minimal hardware area and power overhead, we estimate 

the LCHT’s hardware/memory requirements. For a 32-entry LCHT, 

5 bits store the ID, 32 bits store lockedContents(Ai), 1 bit each 

stores the noLockedContents and profile flags, and 16 bits each 

store the cache miss rate and energy. Using these assumptions, we 

estimate from a synthesizable VHDL implementation and synthesis 

using Synopsys Design Compiler [20] that the 32-entry LCHT 

constitutes an area of 2.48 µm2 and power consumption of 56.72 

µW. Relative to a MIPS32 M14K [12] 90 nm processor, which has 

an area of 0.21 mm2 and consumes 12 mW of power at 200 MHz, 

the 32-entry LCHT constitutes only 1.3% and 0.5% area and power 

overheads, respectively.  

4.   EXPERIMENTAL RESULTS 

4.1 Experimental Setup 
We quantified our phase-based cache locking methodology’s 

performance improvement and energy savings using fifteen 

benchmarks from the SPEC CPU2006 benchmark suite, compiled 

to Alpha/OSF binaries and executed using the reference input sets. 

We used SPEC benchmarks because SPEC applications exhibit 

greater execution variation (i.e., more distinct phases) than most 

embedded system benchmarks, and thus more rigorously test our 

methodology. Since embedded system benchmarks are typically 

kernels performing a specific task (i.e., few distinct phases), our 

results are pessimistic. We have verified the suitability of 

SPEC2006 benchmarks through conversations with personnel in the 

embedded systems microprocessor manufacturing industry. 

However, our cache locking methodology presented in this paper 

and the results are applicable to both embedded system applications 

and desktop applications. To represent embedded system 

applications, which are typically much smaller than general purpose 

applications, we used the first 10 billion instructions [11] from each 

SPEC benchmark and used SimPoint [8] to classify the 

benchmarks’ phases and determine the phases’ persistence. 

We simulated cache locking using Simplescalar-AlphaLinux’s sim-

outorder [18] and drove our simulations using Perl scripts. We 

modeled an embedded system microprocessor with cache 

configurations similar to the ARM Cortex A15 [3] microprocessor 

with 32 KB, 4-way set associative private L1 instruction and data 

caches with 64 byte line sizes. We used sim-profile to collect 

information about the phases’ memory accesses and data reuse. 

Figure 4 depicts the energy model used to calculate the L1 data 

cache’s energy consumption. The model calculates the data cache’s 

dynamic and static energy, the energy required to fill the cache on a 

miss, the energy consumed during a cache write back, and the 

energy consumed when the processor is stalled during cache fills 

and write backs. We assumed instruction and data cache access 

latencies of 1 cycle and a main memory access latency of 80 cycles, 

similar to previous work [11]. We used Simplescalar to gather 

cache statistics, such as totalMisses, totalAccesses, totalWritebacks, 

etc. We assumed the static energy per cycle to be 25% of the 

cache’s dynamic energy and the CPU idle energy to be 25% of the 

MIPS M14K processor’s active energy [12]. We used CACTI [13] 

to determine the cache’s dynamic energy for 90nm technology. 

4.2 Miss Rate and Energy Consumption 

Analysis Compared to a Non-locking Cache  
Figure 5 depicts the data cache’s miss rates and energy 

consumptions for our phase-based cache locking methodology 

normalized to a non-locking cache (baseline of one). These results 

depict the system after the cache locking algorithm has selected the 

locked contents and evaluated the applications’ cache locking 

benefits (i.e., after the first two executions have completed). On 

average over all of the applications, our cache locking methodology 

improved the data cache miss rate by 24% compared to the non-

locking cache, with improvements as high as 69% for bwaves and 

61% for both gromacs and soplex. These applications’ cache miss 

rate improvements were high because a few phases comprised the 

majority of the applications’ execution, and thus substantiates our 

hypothesis about locking the highly persistent phases. For example, 

four of bwaves’s nineteen phases comprised 47% of bwaves’ 

execution. However, locking all four phases would have reduced 

the effective cache size for the remaining phases and increased 

those phases’ memory blocks’ conflict misses. Thus, our cache 

locking algorithm only locked the two most persistent phases to 

achieve a 69% miss rate improvement. We observed similar trends 

for gromacs and soplex. 

However, h264ref’s and hmmer’s cache miss rates did not improve 

over the non-locking cache because both applications’ phases’ 

persistence were relatively consistent throughout execution, and no 

one phase was more persistent than any other. For example, since 

five of h264ref’s seven phases comprised 80% of the execution, our 

cache locking algorithm determined that both applications would 

not benefit from cache locking, and were executed with the non-

locking cache. These results solidify our hypothesis for locking only 

persistent phases, and if an application’s phases do not exhibit 

persistence, the system should default to a non-locking cache.  

With respect to energy consumption, our cache locking 

methodology improved the data cache’s average energy 

consumption by 20% compared to the non-locking cache, with 

savings as high as 56% for bwaves. Since h264ref and hmmer did 

not have any locked contents, phase-based cache locking resulted in 

the same energy consumption as the non-locking cache. Since our 

phase-based cache tuning methodology successfully evaluates the 

benefits of cache locking, and defaults to a non-locking cache when 

cache locking is not beneficial, there is no cache miss rate and/or 

energy degradation. 

 

Figure 4. Energy model.  

 

 

Figure 5. Cache miss rates and energy consumption of phase-based 

cache locking normalized to a non-locking cache (baseline of one). 

 



4.3 Comparison to Prior Work 
We compared our phase-based cache locking methodology to prior 

work that used the cache miss rate to select the locked contents and 

locked memory blocks with the highest cache miss rates, as 

determined through extensive runtime analysis [6]. We simulated 

this method using Simplescalar to provide a close comparison to the 

state of the art.  

Figure 6 depicts the data cache’s miss rates and energy 

consumption when using our phase-based cache locking 

methodology normalized to prior work (baseline of one). On 

average over all the applications, phase-based cache locking 

improved prior work’s cache miss rates by 18%, with 

improvements as high as 74% for soplex. Our methodology 

outperformed prior work for all applications, except gromacs, milc, 

and bwaves because the memory blocks with the highest miss rates 

in these applications were included in some, but not all, of the most 

persistent phases. For example, for gromacs, our methodology 

locked two phases x and y that comprised of 34% and 17% of the 

application’s execution, respectively. x had memory blocks with 

high miss rates, and these memory blocks were locked by prior 

work, however, y’s memory blocks had very low miss rates, thus, 

prior work locked different memory blocks that had higher miss 

rates than y’s memory blocks. We can improve our methodology by 

carrying out runtime analysis to determine the memory blocks’ miss 

rates to lock phases that are persistent and have high miss rates, and 

we intend to explore this improvement in future work. 

Figure 6 also shows that our phase-based cache locking 

methodology improved the energy consumption as compared to 

prior work by 17% on average over all of the applications, with 

improvements as high as 52% for soplex. Unlike the cache miss rate 

comparisons, prior work only outperformed our work for gromacs 

for energy consumption improvement. Prior work locked memory 

blocks that contributed significantly to gromacs’s energy 

consumption due to those blocks’ high miss rates. In general, our 

methodology also improved over the non-locking cache and 

outperformed prior work on average. These results show that our 

phase-based cache locking methodology successfully optimizes the 

data cache’s miss rates and energy consumption without extensive 

runtime analysis.  

5.   CONCLUSIONS 
In this paper, we proposed phase-based cache locking for improving 

the data cache’s performance and energy consumption in general 

purpose embedded systems where the executing applications may 

be unknown a priori. Phase-based cache locking leverages 

fundamentals of phase classification to dynamically select the data 

cache’s locked contents based on the data’s associated phase’s 

persistence, with minimal runtime overhead. Compared to a non-

locking cache, our phase-based cache locking methodology 

improved the data cache’s miss rates and energy consumptions by 

an average of 24% and 20%, respectively. In future work, we will 

extend our phase-based cache locking methodology to tradeoff the 

phases’ persistence with the phases’ memory blocks’ miss rates to 

further improve the cache miss rates and energy consumptions. We 

will also extend our phase-based cache locking methodology to the 

instruction cache to optimize the instruction cache’s miss rates and 

energy consumption. 
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Figure 6. Cache miss rates and energy consumption for phase-based 

cache locking normalized to prior work (baseline of one). 


