
 Phase-based Cache Locking for Embedded Systems

Tosiron Adegbija and Ann Gordon-Ross*
Department of Electrical and Computer Engineering, University of Florida (UF), Gainesville, FL 32611, USA

tosironkbd@ufl.edu & ann@ece.ufl.edu
*Also affiliated with the NSF Center for High-Performance Reconfigurable Computing (CHREC) at UF

ABSTRACT
Since caches are commonly used in embedded systems, which

typically have stringent design constraints imposed by physical

size, battery capacity, real-time deadlines, etc., much research

focuses on cache optimizations, such as improved performance

and/or reduced energy consumption. Cache locking is a popular

cache optimization that loads and retains/locks selected memory

contents from an executing application into the cache to increase

the cache’s predictability. Previous work has shown that cache

locking also has the potential to improve cache performance and

energy consumption. In this paper, we introduce phase-based

cache locking, which leverages an application’s varying runtime

characteristics to dynamically select the locked memory contents

to optimize cache performance and energy consumption.

Experimental results show that our phase-based cache locking

methodology can improve the data cache’s miss rates and energy

consumption by an average of 24% and 20%, respectively.

Categories and Subject Descriptors
B.3.2 [Hardware]: Memory Structures: Design Styles – cache

memories.

General Terms
Design.

Keywords
Cache locking, phase-based tuning, energy savings, configurable

caches, dynamic optimization.

1. INTRODUCTION AND MOTIVATION
Caches are commonly used in embedded systems to bridge the

processor-memory performance gap by exploiting the spatial and

temporal locality of memory accesses. However, caches can

contribute significantly to overall system energy consumption (e.g.,

the ARM920T’s caches consume up to 44% of the

microprocessor’s overall energy consumption [15]). Therefore,

much research focuses on cache optimizations, such as improved

performance and/or reduced energy consumption, while satisfying

an embedded system’s intrinsic design constraints imposed by

physical size, battery capacity, real-time deadlines, consumer

market competition, etc.

Cache locking is a popular cache optimization that loads and

retains/locks selected contents/memory blocks (regions of

instruction and/or data addresses) from an executing application

into the cache. Cache locking can be done either at system startup

(static cache locking) or dynamically during runtime (dynamic

cache locking), and is available in modern embedded processors,

such as the ARM Cortex processors [3]. These cores support special

lock subroutines that lock the selected contents into the cache such

that locked contents cannot be evicted by the cache’s replacement

policy. Since accesses to locked contents will always produce a

cache hit, these addresses’ access times are predictable.

Cache locking traditionally benefits execution time predictability

when using caches, especially in real time systems where the worst-

case execution time (WCET) must be estimated. In these systems,

the cache contents are typically known statically and cache locking

ensures that the memory access times and cache related preemption

delays are predictable for the locked contents, allowing tighter

WCET estimation. Previous work [9] showed that cache locking

benefits also include improved cache performance in general

purpose embedded systems by eliminating conflict misses and

guaranteeing a hit for the locked contents. Additionally, cache

locking can result in reduced dynamic energy since cache locking

can reduce cache misses, and thus reduce the energy consumed

when accessing lower memory levels and associated stalls.

However, cache locking also reduces the cache’s overall utilization.

Since portions of the cache are exclusively used for the locked

contents, the effective cache capacity is reduced and conflict misses

may increase for the memory blocks that are not locked. For cache

locking to be effective, the locked contents must represent

application regions that significantly affect overall cache

performance and energy consumption. If the contents are poorly

selected, cache locking can significantly degrade performance [21]

and/or energy, especially for static cache locking where the locked

contents are retained throughout the system’s lifetime.

Prior cache locking methods (e.g., [14]) used static cache locking to

improve instruction cache predictability in real time systems where

the applications and cache contents are known at design time.

However, assuming this a priori knowledge limits these methods’

applicability to general purpose embedded systems (e.g.,

smartphones, tablets, etc.), which typically execute a large variety

of applications that are unknown at design time. Furthermore, those

studies focused on improving predictability without necessarily

improving cache performance and/or energy. Alternatively,

dynamic cache locking [4][7][21] adjusts the locked contents at

runtime to further improve cache predictability and reduce

dependence on a priori application and cache content knowledge..

Anand et al. [2], Liang et al. [9], and Liu et al. [10] used cache

locking to optimize instruction cache performance in general

purpose embedded systems, but none of these works evaluated

cache locking’s energy benefits. Additionally, since an application

typically processes much more data than the number of instructions

executed, most prior cache locking methods, if applied directly to

the data cache, would require a large data cache and/or potentially

result in runtime overhead in terms of performance and/or energy,

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee. Request permissions

from permissions@acm.org.
GLSVLSI’15, May 20–22, 2015, Pittsburgh, PA, USA.

Copyright © 2015 ACM 978-1-4503-3474-7/15/05…$15.00.

http://dx.doi.org/10.1145/2742060.2742076

mailto:permissions@acm.org
http://dx.doi.org/10.1145/2742060.2742076

since complex runtime analysis would be required due to the

inherent runtime variability of data caching [21].

Therefore, we propose a new methodology for leveraging cache

locking for data cache performance and energy consumption

optimizations in general purpose embedded systems. The locked

data cache contents are dynamically selected, loaded, and retained

at runtime based on the application’s intrinsic runtime variable

characteristics (e.g., cache miss rates, branch mispredicts, etc.).

Unlike instructions, which typically remain fixed during execution,

applications process different data streams during runtime, thus our

cache locking method dynamically changes the locked contents

based on the application’s changing data. Prior work showed that

phase classification can partition an application’s execution into

execution intervals and group intervals with similar and stable

characteristics as phases, which typically exhibit data reuse [16].

Our work leverages this data reuse and is based on the premise that

cache performance and energy consumption can be optimized if

memory blocks with high reuse are locked in the cache,

guaranteeing that all accesses to that data are cache hits. Our

analyses showed that a few persistent phases repeat several times

throughout an application’s execution, thus we propose to lock

those persistent phases’ data in the cache, thereby eliminating the

conflict misses for those phases.

In this paper, we propose phase-based cache locking to dynamically

select locked data cache contents for cache performance and energy

consumption optimization. We empirically show that cache locking

can significantly reduce the data cache’s energy consumption when

the locked contents are selected to minimize an application’s

conflict misses.

2. BACKGROUND AND RELATED WORK
Much previous work studied cache locking’s execution time

predictability benefits and phase classification for exploiting an

application’s runtime variability in isolation. However, little prior

work exploits cache locking for optimizing the cache’s performance

and/or energy consumption while considering runtime variability.

In this section, we present general related work and background on

cache locking and phase classification, which we leverage for

dynamically selecting the locked contents.

2.1 Cache Locking
Cache locking is primarily used in hard real time systems to

improve the cache’s predictability and facilitate tighter WCET

estimations as compared to a system without cache locking—a non-

locking cache. Puaut et al. [14] proposed greedy algorithms for

selecting the locked contents in hard real time systems. Vera et al.

[21] combined compile-time cache analysis with data cache locking

to enable tight WCET estimation in real time systems. Since these

works targeted real time embedded systems where the executing

applications are typically known a priori, these works have limited

applicability to general purpose embedded systems. Furthermore,

even though these works improved cache predictability, these works

did not explicitly focus on improving the cache performance and

the proposed cache locking methods could potentially increase the

conflict misses for the memory blocks that are not locked [21].

To improve the cache performance in general purpose embedded

systems, Liang et al. [9] presented an instruction cache locking

heuristic to select the locked contents in order to realize cache

locking’s performance benefits by reducing the conflict misses. The

proposed heuristic reduced the cache miss rates by up to 24%.

Anand et al. [2] used detailed, iterative cache simulations to

evaluate the performance benefits for locking different memory

blocks. However, due to the detailed cache simulations and number

of iterations involved, this method would incur significant runtime

overhead if used for dynamic cache locking. Additionally, since the

authors used static cache locking, this method is not applicable to

systems where the executing applications are unknown a priori. Liu

et al. [10] proposed an algorithm that dynamically determined the

instruction cache’s locked contents to improve the average-case

execution time (ACET). However, these works did not evaluate the

energy benefits of cache locking, and since these works focused on

the instruction cache, the inherent runtime variability of data caches

were not considered.

Using simulations, Asaduzzaman et al. [5] showed that cache

locking could potentially improve cache performance and reduce

power consumption. Yang et al. [21] used a dynamic programming

algorithm to determine the locked contents in order to improve the

data cache’s power consumption and performance. However, the

authors used a compiler-assisted technique that constrained the

proposed method to systems where the executing applications were

known a priori.

Our work differs from previous cache locking methods by using

dynamic cache locking in the data cache to optimize the cache’s

performance and energy consumption. We propose a phase-based

methodology that dynamically selects the locked contents, incurs

minimal runtime overhead, and makes our work applicable to

general purpose embedded systems where the executing

applications may be unknown a priori.

2.2 Phase Classification
Since dynamically leveraging phase characteristics can significantly

increase optimization potential by specializing the optimizations to

different phases of execution [1][8][17], much prior work explored

different phase classification techniques. Sherwood et al. [17]

showed that phase classification using basic block distribution was

highly correlated with application characteristics, such as cache

miss rates, instructions per cycle (IPC), branch mispredictions, etc.

Hamerly et al. [8] created SimPoint, which used machine-learning

techniques to identify an application’s phases by analyzing basic

block vectors that were annotated with the block’s execution

frequency. Shen et al. [16] showed a strong correlation between

data locality and an application’s phase characteristics, and showed

that data reuse patterns could be used to classify phases. Since

phase characteristics are strongly correlated with the phases’ data

reuse patterns, our work leverages phase classification and the

phases’ data reuse to select an application’s locked contents to

optimize the data cache’s performance and energy consumption.

3. PHASE-BASED CACHE LOCKING
Our phase-based cache locking methodology selects the locked

contents such that the cache’s performance and energy consumption

are improved compared to a default non-locking cache.

Additionally, our methodology determines if an application will

benefit from cache locking based on the phases’ persistence, such

that our methodology never degrades the performance and/or

energy consumption as compared to a non-locking cache. In this

section, we describe our phase-based cache locking architecture, our

methodology for selecting the locked contents, and present our

phase-based cache locking algorithm.

3.1 Architecture and Implementation
Our work assumes line locking [7], which is supported in the ARM

processor family [3]. Line locking enables individual lines to be

locked for different cache sets, as opposed to way locking, where all

the lines in a particular cache way are locked. Figure 1 depicts our

phase-based cache locking architecture for a sample dual-core

system, where each core has private level one (L1) instruction and

data caches. The phase-based cache locking module (referred to as

the locking module for brevity herein) connects directly to each

core’s L1 data cache, thus this architecture is extendable to any n-

core system by connecting the locking module to each core’s L1

data cache. Since the locking module contains simple logical

operations, the locking module can be implemented using small

custom hardware or a lightweight co-processor process to facilitate

easy integration into current embedded system microprocessors.

The locking module contains a phase classification module to

classify the applications’ phases and determine the phases’

persistence, a cache locking algorithm, and a locked contents

history table (LCHT). The LCHT is a small hardware or software

data structure with per-application entries that retain information

(memory addresses and working set sizes) of an application’s

locked phases’ data for subsequent executions of that application.

The LCHT’s size can be dynamic or fixed depending on the

memory constraints of the system, and a replacement policy, such

as least recently used (LRU), can be used when the table is full.

When a new application is executed, an entry is added to the LCHT.

Figure 2 depicts the LCHT entry’s basic structure, which includes:

application Ai’s identification ID; the memory addresses of Ai’s

locked contents lockedContents(Ai) as selected by the cache locking

algorithm; noLockedContents and profile flags, which default to ‘0’

and indicate if Ai benefits from cache locking and if Ai has been

profiled, respectively; and two fields to store Ai’s cache miss rate

and energy while executing with a non-locking cache for

determining if Ai benefits from cache locking (Section 3.3). We

estimate the LCHT’s overhead in Section 3.4.

Traditional static cache locking restricts the cache’s replacement

policy from considering locked contents for replacement throughout

the system’s lifetime. Alternatively, dynamic cache locking inserts

special lock and unlock instructions that call the microprocessor’s

cache locking subroutines. These subroutines disable or enable the

cache’s replacement policy at the beginning and end of locked

contents, respectively. However, since the application code is

modified, which alters the application’s memory map, data may be

written to, and/or read from, the wrong cache sets. Our cache

locking methodology avoids application code modification by using

the debug registers, which store program counter values that

represent the beginning and ending instructions of the locked

content’s phase. The locking module sets the debug registers such

that the exception handler loads and locks the contents in the cache.

Using this method does not modify the application’s memory map,

and can be directly used with any legacy binary. Previous work [4]

using a similar method showed that this method accrued negligible

runtime overhead.

3.2 Selecting the Locked Contents
To select the locked contents, our phase-based cache locking

methodology leverages application execution locality, wherein the

majority of an application’s execution, measured by the number of

dynamic instructions executed, typically occurs within a few

persistent phases that access the same data. To ascertain the extent

of application execution locality, we analyzed several applications

and the applications’ phases to evaluate the benefits of locking these

phases’ data in the cache. Our analysis revealed that for cache

locking to provide any cache locking benefits, phase Pi’s execution

must comprise at least 10% of application A’s total execution.

Based on this observation, we define a phase Pi as persistent if:

 Pi ϵ A : IPi ≥ 0.1 * Itotal (1)

where A represents all of the phases in application A, IPi is Pi’s

number of instructions, and Itotal is A’s total number of instructions.

We quantify Pi’s persistence ρ using the percentage of A’s total

execution that belongs to Pi, where ρ is given as:

 ρ =
I𝑃𝑖

I𝑡𝑜𝑡𝑎𝑙
 (2)

and ρ is a percentage between 0 and 100%. We note that persistence

is a necessary, but not sufficient condition for Pi to provide cache

locking benefits.

Figure 3 analyzes phase persistence for an arbitrary subset of

applications from SPEC CPU2006 [19]. The x-axis depicts the

applications’ distinct phases (the number of phases per application

varies) and the y-axis depicts the percentage of each application’s

execution that belongs to each phase (total phase execution

percentage for each application totals 100%). We evaluated SPEC

benchmarks because these benchmarks show a greater variation

during execution than typical embedded system benchmark suites,

which typically model specific kernels, rather than complete

embedded system applications that would be comprised of several

of these kernels (e.g., a digital camera’s application would contain

specific kernels, such as JPEG compression and decompression,

MPEG compression and decompression, etc.).

Figure 3 shows that the majority of applications have a few phases

that are significantly more persistent than the other phases,

suggesting that these application’s phases are amenable to cache

locking. For example, 56% of calculix’s execution is spent in two

phases while the remaining 44% of the execution is spent in the

remaining six phases—7% on average for each remaining phase

with a 0.03 standard deviation. 51% of gromacs’s execution is spent

Figure 1. Phase-based cache locking architecture

Figure 2. Locked contents history table (LCHT) entry basic structure

Figure 3. Phase persistence for SPEC2006 benchmarks.

M
a

in
 m

e
m

o
ry

Instruction cache
L1

Data cache
Processing core 1

Instruction cache
L1

Data cache
Processing core 1

Phase-based cache locking module

Cache locking
algorithm

Phase classification
module

Locked contents
history table (LCHT)

0

noLockedContents

profilelockedContents(Ai)
cacheMissRate

energyID

0

in two phases while the remaining 49% of the execution time is

spent in the remaining fourteen phases—3% on average for each

remaining phase with a 0.02 standard deviation. Since only two

phases represent nearly half of calculix and gromacs’s execution,

these applications would benefit the most from cache locking if

these two most persistent phases were locked in the cache.

Alternatively, since h264ref’s execution is relatively evenly spread

across all of the application’s eight phases, h264ref has less

potential to benefit from phase-based cache locking since no phase

has a prominent persistence. Our phase-based cache locking

methodology identifies these applications, and executes these

applications with a non-locking cache to prevent performance

and/or energy degradation. Results in Section 4 verify these

persistence-based cache locking benefit hypotheses.

Since phase classification has been extensively studied, and data

reuse is highly correlated with phase characteristics, the phase

classification module profiles the application with a non-locking

cache during the application’s first execution. The phase

classification module uses a phase classification technique similar

to [17] to partition the application’s execution into phases and uses

Equations (1) and (2) to determine the phases’ persistence at

runtime. Low-overhead, custom hardware profiles the application

and groups the application’s intervals into phases. The phases are

formed at runtime by tracking the program counter (PC) from

committed branch instructions and the number of instructions

between the current and previous branch to create a basic block

vector for each execution interval. Each interval’s vector is

compared with previous vectors, and similar intervals are grouped

into phases. We refer the reader to [17] for additional details.

Without loss of generality and considering general purpose

embedded systems, our methodology assumes a system without

preemption. However, our methodology could easily incorporate

preemption by saving the LCHT’s profiling state on application

preemption, and restoring the profiling state on resumption. Our

future work will evaluate the impact of preemption and context

switches on our methodology’s effectiveness.

3.3 Phase-based Cache Locking Algorithm

Algorithm 1 depicts our phase-based cache locking algorithm,

which takes as input application Ai and outputs an array of Ai’s

locked contents’ memory addresses lockedContents(Ai) (lines 1-2).

For each application Ai, if the LCHT contains no entry for Ai, our

cache locking algorithm profiles and selects Ai’s locked contents

during Ai’s first execution using the non-locking cache (lines 3-21).

After Ai completes execution, the algorithm selects Ai’s locked

contents by sorting Ai’s persistent phases by persistence in

descending order (lines 7-9), and selects phases for locking in

descending order until the total data locked by the selected phases

exceeds maxLockedCache (lines 10-18). The total data is the

working set size of the locked contents, where the working set size

is calculated by the number of unique 64-byte blocks accessed by

the selected phases. maxLockedCache is the maximum percentage

of the cache that can be locked, and defaults to 50%. We

empirically determined that at least 50% of the cache must remain

unlocked to minimize conflict misses for the memory blocks that

are not locked for an application to benefit from cache locking.

After selecting the locked contents, a new entry for Ai containing

Ai’s locked contents’ memory addresses are added to the LCHT

and the profile flag is set (lines 19-20). For subsequent executions

of Ai, if the LCHT contains an entry for Ai’s locked contents and

profile is set, this is Ai’s second execution and the cache locking

algorithm locks the selected contents, and determines if Ai will

benefit from cache locking after Ai’s second complete execution.

The cache locking algorithm determines if Ai benefits from cache

locking by comparing Ai’s cache miss rate and energy consumption

while executing with and without locked contents. If cache locking

increases the cache miss rate or energy consumption with respect to

the non-locking cache, the cache locking algorithm sets the

noLockedContents flag to ‘1’, implying that Ai does not benefit

from cache locking. The cache locking algorithm then sets the

profile flag to ‘0’ to indicate that cache locking’s benefit has been

determined for Ai (lines 22-33).

If Ai’s locked contents’ memory addresses are in the LCHT and the

profile flag is ‘0’ (i.e., Ai has been previously profiled),

loadAndLock() triggers the processor’s cache locking subroutines

(Section 3.1), which load and lock Ai’s locked contents in the cache

for the duration of Ai’s execution (lines 34-38). Alternatively, if

noLockedContents is set, Ai is executed with the non-locking cache

(lines 39-42).

3.4 Computational Complexity and LCHT

Hardware Area and Power Overhead
Our phase-based cache locking algorithm sorts the persistent phases

N with worst-case time complexity O(N log N) and selects the

locked contents with worst-case time complexity O(N). Given that

these operations dominate the algorithm, the algorithm results in

minimal computational overhead and has good scalability.

1 Inputs: Ai;

2 Outputs: @lockedContents(Ai);

3 if(!(lockedContents(Ai) in LCHT)) {

4 #profile Ai to determine phases and persistence

5 execute(Ai);

6 @phases_Ai, ρ(phases_Ai) <- profile(Ai);

7 #sort phases’ persistence in descending order

8 @pers_phases_Ai = sort {ρ{$b} <=> ρ{$a}

9 } @phases_Ai;

10 foreach phase(@pers_phases_Ai) {

11 if(sizeOf(lockedContents(Ai)) <=

12 sizeOf(maxLockedCache)) {

13 push(@lockedContents(Ai), phase);

14 }

15 else {

16 break;

17 }

18 }

19 storeLockedContentsLCHT(Ai);

20 profile = 1;

21 }

22 if(lockedContents(Ai) in LCHT &&

23 profile = 1) {

24 #Ai previously executed once

25 loadAndLock(@lockedContents(Ai));

26 execute(Ai);

27 if(missRates(locking) > missRates(non-locking)

28 || energy(locking) > energy(non-locking))

29 {

30 noLockedContents = 1;

31 }

32 profile = 0;

33 }

34 elsif(lockedContents(Ai) in LCHT &&

35 profile = 0) {

36 #locked contents have been determined

37 loadAndLock(@lockedContents(Ai));

38 }

39 if(noLockedContents = 1) {

40 #Ai has no locked contents

41 break;

42 }

Algorithm 1. Phase-based cache locking algorithm

To show that our phase-based cache locking methodology

constitutes minimal hardware area and power overhead, we estimate

the LCHT’s hardware/memory requirements. For a 32-entry LCHT,

5 bits store the ID, 32 bits store lockedContents(Ai), 1 bit each

stores the noLockedContents and profile flags, and 16 bits each

store the cache miss rate and energy. Using these assumptions, we

estimate from a synthesizable VHDL implementation and synthesis

using Synopsys Design Compiler [20] that the 32-entry LCHT

constitutes an area of 2.48 µm2 and power consumption of 56.72

µW. Relative to a MIPS32 M14K [12] 90 nm processor, which has

an area of 0.21 mm2 and consumes 12 mW of power at 200 MHz,

the 32-entry LCHT constitutes only 1.3% and 0.5% area and power

overheads, respectively.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup
We quantified our phase-based cache locking methodology’s

performance improvement and energy savings using fifteen

benchmarks from the SPEC CPU2006 benchmark suite, compiled

to Alpha/OSF binaries and executed using the reference input sets.

We used SPEC benchmarks because SPEC applications exhibit

greater execution variation (i.e., more distinct phases) than most

embedded system benchmarks, and thus more rigorously test our

methodology. Since embedded system benchmarks are typically

kernels performing a specific task (i.e., few distinct phases), our

results are pessimistic. We have verified the suitability of

SPEC2006 benchmarks through conversations with personnel in the

embedded systems microprocessor manufacturing industry.

However, our cache locking methodology presented in this paper

and the results are applicable to both embedded system applications

and desktop applications. To represent embedded system

applications, which are typically much smaller than general purpose

applications, we used the first 10 billion instructions [11] from each

SPEC benchmark and used SimPoint [8] to classify the

benchmarks’ phases and determine the phases’ persistence.

We simulated cache locking using Simplescalar-AlphaLinux’s sim-

outorder [18] and drove our simulations using Perl scripts. We

modeled an embedded system microprocessor with cache

configurations similar to the ARM Cortex A15 [3] microprocessor

with 32 KB, 4-way set associative private L1 instruction and data

caches with 64 byte line sizes. We used sim-profile to collect

information about the phases’ memory accesses and data reuse.

Figure 4 depicts the energy model used to calculate the L1 data

cache’s energy consumption. The model calculates the data cache’s

dynamic and static energy, the energy required to fill the cache on a

miss, the energy consumed during a cache write back, and the

energy consumed when the processor is stalled during cache fills

and write backs. We assumed instruction and data cache access

latencies of 1 cycle and a main memory access latency of 80 cycles,

similar to previous work [11]. We used Simplescalar to gather

cache statistics, such as totalMisses, totalAccesses, totalWritebacks,

etc. We assumed the static energy per cycle to be 25% of the

cache’s dynamic energy and the CPU idle energy to be 25% of the

MIPS M14K processor’s active energy [12]. We used CACTI [13]

to determine the cache’s dynamic energy for 90nm technology.

4.2 Miss Rate and Energy Consumption

Analysis Compared to a Non-locking Cache
Figure 5 depicts the data cache’s miss rates and energy

consumptions for our phase-based cache locking methodology

normalized to a non-locking cache (baseline of one). These results

depict the system after the cache locking algorithm has selected the

locked contents and evaluated the applications’ cache locking

benefits (i.e., after the first two executions have completed). On

average over all of the applications, our cache locking methodology

improved the data cache miss rate by 24% compared to the non-

locking cache, with improvements as high as 69% for bwaves and

61% for both gromacs and soplex. These applications’ cache miss

rate improvements were high because a few phases comprised the

majority of the applications’ execution, and thus substantiates our

hypothesis about locking the highly persistent phases. For example,

four of bwaves’s nineteen phases comprised 47% of bwaves’

execution. However, locking all four phases would have reduced

the effective cache size for the remaining phases and increased

those phases’ memory blocks’ conflict misses. Thus, our cache

locking algorithm only locked the two most persistent phases to

achieve a 69% miss rate improvement. We observed similar trends

for gromacs and soplex.

However, h264ref’s and hmmer’s cache miss rates did not improve

over the non-locking cache because both applications’ phases’

persistence were relatively consistent throughout execution, and no

one phase was more persistent than any other. For example, since

five of h264ref’s seven phases comprised 80% of the execution, our

cache locking algorithm determined that both applications would

not benefit from cache locking, and were executed with the non-

locking cache. These results solidify our hypothesis for locking only

persistent phases, and if an application’s phases do not exhibit

persistence, the system should default to a non-locking cache.

With respect to energy consumption, our cache locking

methodology improved the data cache’s average energy

consumption by 20% compared to the non-locking cache, with

savings as high as 56% for bwaves. Since h264ref and hmmer did

not have any locked contents, phase-based cache locking resulted in

the same energy consumption as the non-locking cache. Since our

phase-based cache tuning methodology successfully evaluates the

benefits of cache locking, and defaults to a non-locking cache when

cache locking is not beneficial, there is no cache miss rate and/or

energy degradation.

Figure 4. Energy model.

Figure 5. Cache miss rates and energy consumption of phase-based

cache locking normalized to a non-locking cache (baseline of one).

4.3 Comparison to Prior Work
We compared our phase-based cache locking methodology to prior

work that used the cache miss rate to select the locked contents and

locked memory blocks with the highest cache miss rates, as

determined through extensive runtime analysis [6]. We simulated

this method using Simplescalar to provide a close comparison to the

state of the art.

Figure 6 depicts the data cache’s miss rates and energy

consumption when using our phase-based cache locking

methodology normalized to prior work (baseline of one). On

average over all the applications, phase-based cache locking

improved prior work’s cache miss rates by 18%, with

improvements as high as 74% for soplex. Our methodology

outperformed prior work for all applications, except gromacs, milc,

and bwaves because the memory blocks with the highest miss rates

in these applications were included in some, but not all, of the most

persistent phases. For example, for gromacs, our methodology

locked two phases x and y that comprised of 34% and 17% of the

application’s execution, respectively. x had memory blocks with

high miss rates, and these memory blocks were locked by prior

work, however, y’s memory blocks had very low miss rates, thus,

prior work locked different memory blocks that had higher miss

rates than y’s memory blocks. We can improve our methodology by

carrying out runtime analysis to determine the memory blocks’ miss

rates to lock phases that are persistent and have high miss rates, and

we intend to explore this improvement in future work.

Figure 6 also shows that our phase-based cache locking

methodology improved the energy consumption as compared to

prior work by 17% on average over all of the applications, with

improvements as high as 52% for soplex. Unlike the cache miss rate

comparisons, prior work only outperformed our work for gromacs

for energy consumption improvement. Prior work locked memory

blocks that contributed significantly to gromacs’s energy

consumption due to those blocks’ high miss rates. In general, our

methodology also improved over the non-locking cache and

outperformed prior work on average. These results show that our

phase-based cache locking methodology successfully optimizes the

data cache’s miss rates and energy consumption without extensive

runtime analysis.

5. CONCLUSIONS
In this paper, we proposed phase-based cache locking for improving

the data cache’s performance and energy consumption in general

purpose embedded systems where the executing applications may

be unknown a priori. Phase-based cache locking leverages

fundamentals of phase classification to dynamically select the data

cache’s locked contents based on the data’s associated phase’s

persistence, with minimal runtime overhead. Compared to a non-

locking cache, our phase-based cache locking methodology

improved the data cache’s miss rates and energy consumptions by

an average of 24% and 20%, respectively. In future work, we will

extend our phase-based cache locking methodology to tradeoff the

phases’ persistence with the phases’ memory blocks’ miss rates to

further improve the cache miss rates and energy consumptions. We

will also extend our phase-based cache locking methodology to the

instruction cache to optimize the instruction cache’s miss rates and

energy consumption.

6. ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation

(CNS-0953447). Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science

Foundation.

7. REFERENCES
[1] T. Adegbija, A. Gordon-Ross, and A. Munir, “Phase distance

mapping: a phase-based cache tuning methodology for embedded

systems,” Springer Design Automation for Embedded Systems

(DAEM), January 2014.

[2] K. Anand and R. Barua, “Instruction cache locking inside a binary

writer,” International Conference on Compilers, Architectures and

Synthesis for Embedded Systems (CASES), October 2009.

[3] ARM: http://www.arm.com

[4] A. Arnaud and I. Puaut, “Dynamic instruction cache locking in hard

real-time systems,” International Conference on Real-Time and

Network Systems (RTNS), October 2006.

[5] A. Asaduzzaman, I. Mahgoub, and F. Sibai, “Impact of L1 entire

locking and L2 way locking on the performance, power consumption,

and predictability of multicore real-time systems,” International

Conference on Computer Systems and Applications, May 2009.

[6] A. Asaduzzaman, F. Sibai, and M. Rani, “Improving cache locking

performance of modern embedded systems via the addition of a miss

table at the L2 cache level,” Journal of System Architecture, April

2010, pp 151-162.

[7] H. Ding, Y. Liang, and T. Mitra, “WCET-Centric Dynamic

Instruction Cache Locking,” Design, Automation, and Test in Europe

(DATE), March 2014.

[8] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “SimPoint 3.0: faster

and more flexible program analysis,” Journal of Instruction-Level

Parallelism, 2005, pp 1-28.

[9] Y. Liang and T. Mitra, “Instruction cache locking using temporal

reuse profile,” Design Automation Conference (DAC), June 2010.

[10] T. Liu, M. Li, and C. Xue, “Instruction cache locking for embedded

systems using probability profile,” Journal of Signal Processing

Systems, November 2012.

[11] A. Lukefahr, et al., “Composite cores: pushing heterogeneity into a

core,” International Symposium on Microarchitecture, Dec. 2012.

[12] MIPS32 M14K.

http://files.tomek.cedro.info/electronics/doc/mips/MD00688-2B-

M14K-APP-01.00.pdf. Accessed 30 July 2014.

[13] N. Muralimanohar and N. P. Jouppi, “Cacti6.0: A tool to model large

caches,” COMPAQ Western Research Lab, 2009.

[14] I. Puaut and D. Decotigny, “Low-complexity algorithms for static

cache locking in multitasking hard real-time systems,” Real-Time

Systems Symposium (RTSS), 2002.

[15] S. Segars, “Low-power design techniques for microprocessor,”

International Solid-State Circuits Conference Tutorial, Feb. 2001.

[16] X. Shen, Y. Zhong, and C. Ding, “Locality phase prediction,”

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), December 2004.

[17] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,”

International Symposium on Computer Architecture, December 2003.

[18] Simplescalar ported to Alpha/Linux with Linux System Calls.

http://hhnajafabadi.s3-website-us-east-1.amazonaws.com/mase-

alphalinux.htm

[19] SPEC CPU2006. http://www.spec.org/cpu2006

[20] Synopsys Design Compiler, Synopsys Inc. www.synopsys.com

[21] X. Vera, B. Lisper, and J. Xue, “Data cache locking for higher

program predictability,” ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems,

June 2003.

Figure 6. Cache miss rates and energy consumption for phase-based

cache locking normalized to prior work (baseline of one).

