
Abstract—To meet energy and quality of service (QoS)
constraints in consumer/user-based embedded devices (CEDs),
configurable caches can be tuned to a best configuration that
consumes the least amount of energy while adhering to QoS
expectations. However, due to disparate consumer QoS
expectations and a myriad of unknown, third-party CED
applications, tuning caches in CEDs is very challenging. In this
paper, we propose a quality of service-aware, scalable tuning
algorithm for configurable caches, which requires no a priori
knowledge of applications or design-time efforts.

I. INTRODUCTION AND BACKGROUND
Consumer-based embedded devices (CEDs) (e.g., smartphones,

tablets, wearable computing, etc.) have quality of service (QoS)
expectations, which is the user-expected system performance (e.g.,
expected response time to user touch-input, global positioning system
(GPS) accuracy, etc.). CEDs executing applications, such as drawing,
audio compression and recording, video frame decoding, heartrate
reading/monitoring, speech-to-text/text-to-speech translation, GPS
route tracking, etc. can be viewed as soft real time systems, wherein
the application’s execution-time constraints are tightly coupled with
the QoS (i.e., missed deadlines degrade the user’s satisfaction with
system performance). Due to increasing consumer demands for these
applications, and the proliferation of increasingly performance-
capable multicore CEDs with limited battery reserves, reducing
energy consumption while meeting QoS expectations is a key design
challenge, since reducing the energy consumption trades off
performance capabilities and potentially degrades QoS.

QoS degradation occurs when an application executes below an
expected performance level—a performance threshold—which may
be evaluated as slower-than-expected response to consumer/user
touch-input, GPS route updates, choppy video playback, etc. Thus,
the key challenge is to reduce the CED’s energy consumption by as
much as possible without falling below this performance threshold,
which is highly user-subjective.

One of the most effective way to regulate energy consumption
while maintaining acceptable QoS is optimizing system components
that have high impacts on both energy and QoS; the cache/memory
hierarchy [3][9][10][11]. Configurable caches [10] enable adherence
to an application’s unique locality requirements using configurable
parameters. Configurable parameters’ values can be tuned/adjusted to
the best configuration that most closely adheres to locality
requirements, and thus most closely adheres to the energy and QoS
expectations. However, determining the best configuration imposes
tuning overhead [6] that degrades QoS or requires static application
profiling [9] that may not scale to unknown applications, which limits
applicability to the rapidly expanding number of, largely third-party,
applications.

To address these challenges, we propose a quality of service-

aware, scalable cache tuning algorithm for multicore CEDs with
configurable caches that maintains user-expected QoS expectations
while reducing energy consumption. We architect a dynamic, general
purpose CED cache-tuning algorithm that requires no a priori
knowledge or static profiling of the applications. To accommodate our
tuning algorithm’s hardware requirement, we build our work based on
hardware cache tuners [1] and design a low hardware overhead tuning
table to hold the required tuning information used by our algorithm.

Our results reveal disjointed trends for energy savings and
tuning-time QoS degradation, which allows our tuning algorithm to
prioritize QoS or energy savings. Our algorithm exploited this
flexibility using two tuning modes and achieved average energy
savings as high as 20.68% and 25.14%, for the data and instruction
caches, respectively, and imposed average tuning-time QoS
degradation as low as 0.7 occurrences on average, as compared to an
off-the-shelf, base configuration commonly found on CEDs.
Compared to our results, prior work could reveal additional energy
savings, however, prior required a priori knowledge of the
applications to avoid a high QoS degradation of 7.7 on average.

II. HARDWARE LAYOUT AND
REQUIREMENTS
Without loss of generality, we illustrate our methods using a

quad core system with configurable cache size, line size, and
associativity, and a runtime cache tuner, as depicted in Figure 1. To
limit runtime intrusion, we use a global hardware cache tuner
connected to all cores. For a quad core system, this tuner imposes 322
cycles overhead [1], which negligible considering the number of
cycles to execute 1 million instructions. Prior work shows that this
tuning interval is long enough to warm up and stabilize the caches [2].

The cache tuner monitors the cores’ states (busy, idle, etc.) and
reads the application’s execution characteristics (e.g., cache miss rate,
number of instructions, cycle count) at the end of each tuning interval.
Tuning intervals are the length of time that the core executes in a
particular configuration in order to determine that configuration’s
execution characteristics. Tuning decisions guide how the design
space is explored (i.e., the order and number of configurations
evaluated), and the cache tuner makes a tuning decision at the end of
each tuning interval using a dynamic tuning algorithm (Section III),
the application’s execution characteristics, and the application’s
performance threshold. We assume the performance threshold can be

Quality of Service-Aware, Scalable Cache Tuning Algorithm
in Consumer-based Embedded Devices

Mohamad Hammam Alsafrjalani and Ann Gordon-Ross

Department of Electrical and Computer Engineering University of Florida (UF), Gainesville, FL, USA
E-mail: mha8@ufl.edu, ann@ece.ufl.edu

Figure 1: Quad core system with configurable caches and a global

cache tuner.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than the author(s)
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
GLSVLSI '16, May 18 - 20, 2016, Boston, MA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4274-2/16/05…$15.00
DOI: http://dx.doi.org/10.1145/2902961.2902987

Core 4Core 3Core 2Core 1

Data Cache

Instruction
Cache

Data Cache

Instruction
Cache

Data Cache

Instruction
Cache

Data Cache

Instruction
Cache

Main Memory

Lookup
table Aux.

table
Aux.
table

Lookup
table Aux.

table

Lookup
tableAux.

table

Lookup
table

Cache Tuner

Level 1 CacheLevel 1 CacheLevel 1 CacheLevel 1 Cache

relayed to the tuner by the operating system using memory mapped
I/O, special instructions, etc. depending on the implementation
details [2].

 Our tuner stores the tuning information for tuning decisions in
lookup tables, with one entry per application, which includes: the
energy consumption of the best configuration explored thus far and
configuration characteristics, which contain per-configuration
information. The per-configuration lookup table includes: explored,
lowest energy, and QoS adherence, which flag whether or not that
configuration has been previously explored, is the lowest energy
configuration explored thus far, and adheres to the application’s QoS
expectations, respectively. The per-application tuning information
storage requirement m in bits is:

 ݉	 = 	݁	 + 	ܾ ∗ (1) ⌈(ܿ)ଶ݃݋݈⌉
where e and b are the number of bits required to store the energy
consumption and configuration characteristic information,
respectively, and c is the number of configurations in the design
space. To evaluate the storage requirements as compared to prior
work, we assume that e is 32 bits, similarly to [1], and b is 3 bits, one
for each configuration’s characteristic flag.

To limit area overhead, this complete tuning information is only
stored for an application during tuning. After the best configuration is
determined, only that configuration is retained in a smaller auxiliary
lookup table. To enable scalability to an arbitrary number of
applications we utilize a least recently used replacement policy to
govern the auxiliary table’s information. Thus, given a applications,
the total tuning information storage requirement M in bits is: ܯ =	 log2(ܽ) ∗ 	 ⌈(ܿ)ଶ݃݋݈⌉ ∗ 	݉ (2)

III. DYNAMIC TUNING ALGORITHM
A. Overview

Algorithm 1 depicts our dynamic tuning algorithm’s finite state
machine, which contains three states (Section III.B): information
input, exploration, and evaluation. For each application, the algorithm
explores the design space, one configuration per tuning interval, based
on the tuning mode. Tuning is complete when the algorithm meets the
tuning mode’s stop-tuning condition (e.g., the conservative mode
evaluates one cache parameter only) (Section III.B.iii).

B. Algorithm States
(i) Information Input State: When an application is

scheduled to a core, either at inception or resumption, the algorithm
begins in the information input state. First, the algorithm checks the
auxiliary table to determine if this application’s best configuration has
already been determined. If the application is in the auxiliary table,
the algorithm tunes the cache directly to the application’s best
configuration. Otherwise, the algorithm checks if the application is
tuned for another core, and if so copies the tuning information from
the other core’s table to the current core’s table, before tuning
resumption. Otherwise, the algorithm attempts to the application’s
read the tuning information from the core’s lookup table, and
begins/resumes design space exploration in the exploration state.

 (ii) Exploration state: The application’s lookup table
information provides the algorithm with information about all of the
previously explored configurations. Using this information, the
algorithm determines the next configuration to explore, and the
application executes in that configuration for one tuning interval, after
which the algorithm transitions to the evaluation state.

If there is no tuning information, design space exploration begins
in the base configuration, which is a configuration that is guaranteed
to meet QoS expectations. Even though the base configuration could
be any of the CED’s configurations, we select the configuration with
the largest cache size, line size, and associativity as the base
configuration since this configuration has the best potential for being
the highest performance configuration. Considering the cache
behavior and requirements for our test applications, and to compare

our work to prior work [10], our base configuration is an 8KB, 4-way
associativity cache with a 32B line size.

If there is tuning information, the algorithm resumes design
space exploration using this information. Since the lookup table
contains per-configuration information for only configurations that
have already been explored, denoted with a set explored flag, the
algorithm can determine the next parameter and value to explore by
traversing the exploration ordering and locating the first configuration
that does not have explored set. This configuration becomes the
current configuration to evaluate.

Exploration ordering determines the order in which the
configurable parameters and parameter values are explored. To
minimize tuning-time QoS degradation, the algorithm traverses the
design space in the reverse order of the parameters’ impacts on
performance [11] (i.e., lower impact to higher impact). This reverse
parameter-performance-impact ordering reduces QoS degradation
incurred during design space exploration. Since the base configuration
is set to the largest parameter values, the algorithm explores
configurations similar to the base configuration first.

In order to attain better energy savings, the algorithm will
explore configurations with higher energy savings potential, but these
configurations also have a higher risk of larger QoS degradation
during tuning—extremist configurations that have energy
consumptions extremely higher than the base configuration [3]. The
algorithm regulates energy savings to QoS degradation using two
tuning modes: moderate and conservative modes. Additionally, since
larger parameter values have higher performance capabilities as
compared to smaller parameter values [11], the algorithm traverses
the parameters’ values from largest to smallest.

The exploration state begins design space exploration with all
parameters set to the parameters’ largest values. Starting with the
associativity, the algorithm evaluates the associativity values from
largest to smallest. After the algorithm explores all of the associativity
values, the algorithm reduces the line size value, and re-explores all of
the associativity values (largest to smallest) for that line size, and
repeats this process until all line size values have been explored.
Similarly, once all of the line size values have been explored, the
algorithm reduces the cache size, and re-explores all of the line size
values (largest to smallest), and repeats this process until all cache
size values have been explored. After each explored configuration, the
algorithm sets the application’s configuration’s explored flag and
proceeds to the evaluation state.

(iii) Evaluation state: In the evaluation state, the algorithm
evaluates the current configuration’s energy consumption and
adherence to QoS expectations. Based on this evaluation’s outcome,
the tuning mode, and any prior tuning information, the algorithm
makes tuning decisions.

If this is the first tuning interval, the algorithm does not have any
tuning information in the lookup table. The algorithm adds a new
entry to the lookup table for this application, the current
configuration’s energy consumption is stored in the energy
consumption (i.e., this is the lowest energy configuration thus far),
and the current configuration’s lowest energy flag is set.

If this is not the first tuning interval, the algorithm compares the
current configuration’s energy consumption to the lowest energy
configuration explored thus far. If the current configuration’s energy
is lower, the algorithm sets the current configuration’s lowest energy
flag, and proceeds to evaluate the configuration’s QoS adherence
before invalidating the prior lowest energy configuration’s lowest
energy flag or updating the energy consumption field (i.e., the
configuration must both reduce energy as compared to the prior
lowest energy configuration and adhere to QoS).

The algorithm evaluates QoS adherence by comparing the
current configuration’s execution characteristics to the application’s
performance threshold. If the current configuration meets the

application’s performance threshold, then the current configuration
adheres to QoS expectations, and the algorithm sets the current
configuration’s QoS adherence flag, invalidates the prior lowest
energy configuration’s lowest energy flag, and updates the energy
consumption field to the current configuration’s energy consumption.

After this comparison, the algorithm makes tuning decisions,
which uses the explored configurations’ flags’ values and the mode’s
stop-tuning stopping condition. The moderate mode limits tuning-
time QoS degradation by only exploring one configuration that
degrades QoS. Thus, moderate mode stops tuning as soon as the
algorithm explores one configuration with the adherence to QoS flag
unset (i.e., that configuration did not adhere to QoS requirements). To
further limit tuning-time QoS degradation, not only does the
conservative mode stop tuning as soon as a configuration with an
unset adherence to QoS flag is explored, but also as soon as the
algorithm explores all parameters with low performance impacts—
associativity or line size, whichever comes first. Since high-
performance-impact parameters have a higher possibility of degrading
QoS, this additional stopping condition reduces the probability of
exploring QoS-degrading configurations.

If the algorithm stops tuning, the best configuration has been
determined, which is the configuration with the lowest energy and
adherence to QoS flags set. The algorithm removes the application
from the lookup table and stores the application’s best configuration

in the auxiliary table (Section II).

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

To quantify our tuning algorithm’s efficacy, we selected ten
applications, from MiBench [7] suite, that represent consumer
applications typically execute on CED systems. Our applications
included audio (adpcm code/decode), image (jpeg code/decode),
networking (dijkstra, patricia), security (sha), office (string search),
and telecomm (gsm code/decode) applications.

We test our algorithm’s ability to save energy while maintaining
QoS expectations by designating a minimum performance threshold
for our applications. Since these applications do not have/require
defined QoS expectations, we determined reasonable performance
thresholds based on the execution times for the configurations in the
design space (Section II). To ensure that a reasonable number of
configurations are able to meet QoS expectations (i.e., our algorithm
would not be rigorously tested if all configurations could meet QoS
expectations), for each application, we calculated the average
performance across all of the configurations, and used that average as
the application’s performance threshold. Given m = 10 and c = 18
and Equations (1) and (2), our tuner and auxiliary table required 940
bits. For comparison, a prior work’s hardware cache tuner with more
storage requirements as compared to our design (e.g., per-
configuration energy consumption was also stored) imposed only a
4.7% area overhead in a very small MIPS M4K processor [1], thus
our tuner’s area overhead will be less than 4.7%. Our tuner and

auxiliary table imposed less than 0.5% power overhead for our
experimental system (Figure 1), which we based on our extrapolations
from [1] and the tuner size.

Since our system has private, dedicated L1 data and instruction
caches that connect directly to main memory, we can assume that
there are no tuning dependencies between the data and instruction
caches, and the caches can be tuned simultaneously and evaluated
independently. Our algorithm could also explore design spaces with
multiple levels of caches in a similar manner, however, since the L1
cache interdependencies introduced through a shared level-two cache
vastly increases the design space, multi-cache, multi-pass evaluation
heuristics can be used for efficient exploration [6]. We executed our
applications using cycle-accurate simulator, gem5 [5] to obtain
performance values, and McPAT [8] to calculate the energy values for
contemporary 40nm technology.

B. Evaluation Methodology
We evaluate our algorithm’s energy savings for each tuning

mode by normalizing our algorithm’s determined configurations’
energy consumptions to a base, non-configurable quad-core system’s
energy consumption (largest parameter values). We quantify the
tuning energy overhead by normalizing the application’s energy
consumption during tuning to the application’s energy consumption
while executing with the base configuration for the same execution
time as tuning required.

We evaluated the adaptability of each tuning mode to meet
disparate QoS expectations during tuning by counting the number of
times the algorithm explored a QoS-degrading configuration. Since
QoS-degrading configurations have disparate execution times, QoS
degradation varied in severity based on the configuration’s
performance. Since the severity of QoS degradation varies between
configurations and we plan to quantify this severity in future work.

To compare our algorithm to prior work [11], we modified our
algorithm analogously to [11]. We incorporated an exhaustive mode
to search the complete design space, regardless of QoS degradations.
Additionally, the exhaustive mode reveals the energy savings that
would be obtained using prior work [9]. However, that prior work
required a priori knowledge of the applications to alleviate tuning
overhead. Since the exhaustive mode does not require a priori
application knowledge, and imposes tuning overhead, our results for
the exhaustive mode provides insights on the tradeoffs between
energy savings and a priori application knowledge requirements.

C. Results and Analysis
 (i) Energy Savings: Figure 2 depicts the percentage of

average energy savings achieved by the algorithm’s best

Algorithm 1: Dyanamic tuning algorithm’s finite state machine

Figure 2. Average best configurations’ energy consumptions

normalized to the base configuration for all applications and tuning
mode for the (a) data and (b) instruction caches

39.76%

20.68%
19.00%

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Tuning Mode

P
er

ce
nt

 o
f

E
ne

rg
y

sa
vi

n
gs

Prior work Moderate Conservative

(a)

34.98%

25.14%
23.49%

0.15

0.2

0.25

0.3

0.35

0.4

Tuning Mode

Prior work Moderate Conservative

(b)

configurations for our ten applications, with respect to the base
configuration’s energy consumption for each tuning mode for the (a)
data and (b) instruction caches.

The tuning modes exhibit similar trends for both the data and
instruction caches. As expected, the aggressive mode (as in prior
work [9][11]) achieved the highest average energy savings of 39.76%
and 34.98% for the data and instruction caches, respectively. Even
though the moderate and conservative modes explored fewer
configurations, these modes still achieved average energy savings of
20.68% and 25.14%, and 19.00% and 23.49%, respectively.

Our energy overhead analysis revealed that all tuning modes
imposed tuning overhead while exploring inferior, non-best
configurations. However these overheads are amortized while the
algorithm explored configurations that resulted in energy savings, as
compared to the base configurations. Furthermore, the aggressive
mode imposed more energy overhead, as compared to the moderate
and conservative mode. However, the aggressive mode also explored
more energy saving configurations, as compared to the moderate and
aggressive mode. Since the moderate and conservative modes
explored fewer configurations, these modes had a lower probability of
exploring extreme configurations, while also exploring energy-saving
configurations without exhaustively exploring the design space.

Since our algorithm explores configurations with large parameter
values first, the moderate and conservative modes have a lower
probability of exploring configurations with small parameter values,
which can lead to QoS degradation. The energy and overhead results
and our algorithm’s parameter and value exploration ordering reveal
that high-energy-saving configurations tend to have smaller parameter
values. However, extreme configurations also tend to have small
parameter values, thus leading to high-risk/high-reward design space
exploration methods. Our different tuning modes enable
users/designers to moderate this decision.

Since an application’s execution time and execution frequency in
CED’s is subjective to costumer usage, the three tuning modes’
beneficence is contingent on consumer usage patterns. Applications
that execute frequently, or for extended periods of continuous
operation, benefit more from high energy savings over these periods,
and thus can tolerate high tuning overhead (i.e., the moderate mode).
Alternatively, applications that are expected to execute for a short
period of time benefit more from tuning modes that incur lower
tuning overhead (i.e., the conservative mode). These short-executing
applications do not benefit from the aggressive mode since these
applications will not execute for a period of time long enough to
amortize the high tuning overhead.

 (ii) Adherence to QoS: Since prior work explored the entire
design space, prior work had the highest number of QoS degradation
occurrences, with an average of 7.7 tuning-time QoS degradations.
Alternatively, since the moderate mode stopped tuning as soon as the
algorithm explored one QoS-degrading configuration, the moderate
mode had one QoS degradation occurrence regardless of the cache
hierarchy. Since the conservative mode stopped tuning as soon as the
algorithm finished exploring all of the low-performance-impact
parameters, the conservative mode had the lowest number of QoS
degradation occurrences, with an average of 0.7. These averages are
low because the conservative mode only explored configurations with
large cache sizes, which typically have higher performance
capabilities, and thus lower QoS degradation potential.

Even though the conservative mode limits tuning-time QoS
degradation, the conservative mode did not guarantee that the best
configuration found adheres to QoS expectations. This suggests that
not only configuration design space size, but also the number of
configurations with low/high performance-impact parameters impact
both tuning-time QoS degradation and post-tuning QoS adherence. A
design space that has a low percentage of configurations with large
parameter values leads to a high number of tuning-time QoS

degradation occurrences for the aggressive mode. Alternatively, since
high-energy-saving configurations tend to be small parameter value
configurations, a design space that has a high percentage of
configurations with large parameter values leads to less energy
savings.

The difference between the numbers of tuning-time QoS
degradation occurrences for the different tuning modes provides the
algorithm with the flexibility to adhere to disparate user QoS
expectations, which is a necessity for CEDs. Since user expectations
vary based on the user’s mood, experience level, location (e.g., work,
commute, home, etc.), usage (e.g., naval, space, entertainment, etc.),
gender, age, environment, time of day, etc. [4], our algorithm is
capable of adhering to disparate QoS expectations for different user-
defined experiences.

V. CONCLUSIONS AND FUTURE WORK
In this work, we proposed a tuning algorithm, which determined

the best cache configuration while considering tuning-time QoS
degradation and energy consumption. Our algorithm requires no a
priori application information, profiling information, or design time
effort, and tunes the cache during runtime while avoiding tuning-time
QoS degradation using two tuning mode options that trade off these
competing constraints. Our results revealed average energy savings as
high as 20.68% and 25.14%, for the data and instruction caches,
respectively, and average tuning-time QoS degradation as low as 0.7.
Future work will extend our algorithm to multi-level cache
optimization for CEDs, additional tuning heuristics, and disparate
QoS and energy savings tradeoffs.

VI. ACKNOWLEDGEMENT
This work was supported by the National Science Foundation

(CNS-0953447). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation.

VII. REFERENCES
[1] Adegbija, T.; Gordon-Ross, A.; Rawlins, M. “Analysis of cache tuner

architectural layouts for multicore embedded systems,” Int. Con. on
Performance Computing and Communications, 2014.

[2] Adegbija, T., Gordon-Ross, A. “Energy-efficient phase-based cache
tuning for multimedia applications in embedded systems,” IEEE
Consumer Communications and Networking Conference, 2014.

[3] Alsafrjalani, M.H.; Gordon-Ross, A. “Dynamic Scheduling for Reduced
Energy in Configuration-Subsetted Heterogeneous Multicore Systems,”
Int. Con. on Embedded and Ubiquitous Computing, 2014.

[4] Amin, R., Jackson, F., Gilbert, J, Martin, J., Shaw, T. “Assessing the
Impact of Latency and Jitter on the Perceived Quality of Call of Duty
Modern Warfare 2,” Int. Con. on Human Computer Interaction, 2013.

[5] Binkert, N.; Beckmann, B.; Black, G.; et al. "The gem5 simulator,"
SIGARCH Comput. Archit. News 39, 2 (August 2011), 1-7.

[6] Gordon-Ross, A., Viana, P., Vahid, F., Najjar W. Barros, E. “A One-Shot
Configurable-Cache Tuner for Improved Energy and Performance,”
IEEE/ACM Design, Automation and Test in Europe. 2007

[7] Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., and Brown,
R., “MiBench: a free, commercially representative embedded benchmark
suite,” Int. Workshop on Workload Characterization, 2001

[8] Li, S.; Ahn, Jung Ho; Strong, R.D.; et al. "McPAT: An integrated power,
area, and timing modeling framework for multicore and manycore
architectures," IEEE/ACM Int. Symp. on Microarchitecture, Dec. 2009

[9] Wang, W., Mishra, P., Gordon-Ross, A. “SACR: Scheduling-Aware
Cache Reconfiguration for Real-Time Embedded Systems,” Int. Con. on
VLSI Design, 2009.

[10] Zhang, C., Vahid, F., Najjar, W. “A highly configurable cache
architecture for embedded systems,” In Proc. of International Symposium
on Computer Architecture, 2003.

[11] Zhang, C., Vahid, F. “Cache configuration exploration on prototyping
platforms,” IEEE International Workshop on Rapid Systems Prototyping,
20

