
Abstract—To meet energy and quality of service (QoS) 
constraints in consumer/user-based embedded devices (CEDs), 
configurable caches can be tuned to a best configuration that 
consumes the least amount of energy while adhering to QoS 
expectations. However, due to disparate consumer QoS 
expectations and a myriad of unknown, third-party CED 
applications, tuning caches in CEDs is very challenging. In this 
paper, we propose a quality of service-aware, scalable tuning 
algorithm for configurable caches, which requires no a priori 
knowledge of applications or design-time efforts. 

I. INTRODUCTION AND BACKGROUND  
Consumer-based embedded devices (CEDs) (e.g., smartphones, 

tablets, wearable computing, etc.) have quality of service (QoS) 
expectations, which is the user-expected system performance (e.g., 
expected response time to user touch-input, global positioning system 
(GPS) accuracy, etc.). CEDs executing applications, such as drawing, 
audio compression and recording, video frame decoding, heartrate 
reading/monitoring, speech-to-text/text-to-speech translation, GPS 
route tracking, etc. can be viewed as soft real time systems, wherein 
the application’s execution-time constraints are tightly coupled with 
the QoS (i.e., missed deadlines degrade the user’s satisfaction with 
system performance). Due to increasing consumer demands for these 
applications, and the proliferation of increasingly performance-
capable multicore CEDs with limited battery reserves, reducing 
energy consumption while meeting QoS expectations is a key design 
challenge, since reducing the energy consumption trades off 
performance capabilities and potentially degrades QoS.  

QoS degradation occurs when an application executes below an 
expected performance level—a performance threshold—which may 
be evaluated as slower-than-expected response to consumer/user 
touch-input, GPS route updates, choppy video playback, etc. Thus, 
the key challenge is to reduce the CED’s energy consumption by as 
much as possible without falling below this performance threshold, 
which is highly user-subjective. 

One of the most effective way to regulate energy consumption 
while maintaining acceptable QoS is optimizing system components 
that have high impacts on both energy and QoS; the cache/memory 
hierarchy [3][9][10][11]. Configurable caches [10] enable adherence 
to an application’s unique locality requirements using configurable 
parameters. Configurable parameters’ values can be tuned/adjusted to 
the best configuration that most closely adheres to locality 
requirements, and thus most closely adheres to the energy and QoS 
expectations. However, determining the best configuration imposes 
tuning overhead [6] that degrades QoS or requires static application 
profiling [9] that may not scale to unknown applications, which limits 
applicability to the rapidly expanding number of, largely third-party, 
applications. 

To address these challenges, we propose a quality of service-

aware, scalable cache tuning algorithm for multicore CEDs with 
configurable caches that maintains user-expected QoS expectations 
while reducing energy consumption. We architect a dynamic, general 
purpose CED cache-tuning algorithm that requires no a priori 
knowledge or static profiling of the applications. To accommodate our 
tuning algorithm’s hardware requirement, we build our work based on 
hardware cache tuners [1] and design a low hardware overhead tuning 
table to hold the required tuning information used by our algorithm.  

Our results reveal disjointed trends for energy savings and 
tuning-time QoS degradation, which allows our tuning algorithm to 
prioritize QoS or energy savings. Our algorithm exploited this 
flexibility using two tuning modes and achieved average energy 
savings as high as 20.68% and 25.14%, for the data and instruction 
caches, respectively, and imposed average tuning-time QoS 
degradation as low as 0.7 occurrences on average, as compared to an 
off-the-shelf, base configuration commonly found on CEDs. 
Compared to our results, prior work could reveal additional energy 
savings, however, prior required a priori knowledge of the 
applications to avoid a high QoS degradation of 7.7 on average. 

II. HARDWARE LAYOUT AND 
REQUIREMENTS 
Without loss of generality, we illustrate our methods using a 

quad core system with configurable cache size, line size, and 
associativity, and a runtime cache tuner, as depicted in Figure 1. To 
limit runtime intrusion, we use a global hardware cache tuner 
connected to all cores. For a quad core system, this tuner imposes 322 
cycles overhead [1], which negligible considering the number of 
cycles to execute 1 million instructions. Prior work shows that this 
tuning interval is long enough to warm up and stabilize the caches [2].  

The cache tuner monitors the cores’ states (busy, idle, etc.) and 
reads the application’s execution characteristics (e.g., cache miss rate, 
number of instructions, cycle count) at the end of each tuning interval. 
Tuning intervals are the length of time that the core executes in a 
particular configuration in order to determine that configuration’s 
execution characteristics. Tuning decisions guide how the design 
space is explored (i.e., the order and number of configurations 
evaluated), and the cache tuner makes a tuning decision at the end of 
each tuning interval using a dynamic tuning algorithm (Section III), 
the application’s execution characteristics, and the application’s 
performance threshold. We assume the performance threshold can be 
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Figure 1: Quad core system with configurable caches and a global 

cache tuner. 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for components of this work owned by others than the author(s) 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to 
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. 
Request permissions from Permissions@acm.org. 
GLSVLSI '16, May 18 - 20, 2016, Boston, MA, USA 
Copyright is held by the owner/author(s). Publication rights licensed to ACM. 
ACM 978-1-4503-4274-2/16/05…$15.00  
DOI: http://dx.doi.org/10.1145/2902961.2902987  

Core 4Core 3Core 2Core 1

Data Cache

Instruction 
Cache

Data Cache

Instruction 
Cache

Data Cache

Instruction 
Cache

Data Cache

Instruction 
Cache

Main Memory

Lookup 
table Aux. 

table
Aux. 
table

Lookup 
table Aux. 

table

Lookup 
tableAux. 

table

Lookup 
table

Cache Tuner

Level 1 CacheLevel 1 CacheLevel 1 CacheLevel 1 Cache



relayed to the tuner by the operating system using memory mapped 
I/O, special instructions, etc. depending on the implementation 
details [2].  

 Our tuner stores the tuning information for tuning decisions in 
lookup tables, with one entry per application, which includes: the 
energy consumption of the best configuration explored thus far and 
configuration characteristics, which contain per-configuration 
information. The per-configuration lookup table includes: explored, 
lowest energy, and QoS adherence, which flag whether or not that 
configuration has been previously explored, is the lowest energy 
configuration explored thus far, and adheres to the application’s QoS 
expectations, respectively. The per-application tuning information 
storage requirement m in bits is: 

  ݉	 = 	݁	 + 	ܾ ∗  (1)       ⌈(ܿ)ଶ݈݃⌉
where e and b are the number of bits required to store the energy 
consumption and configuration characteristic information, 
respectively, and c is the number of configurations in the design 
space. To evaluate the storage requirements as compared to prior 
work, we assume that e is 32 bits, similarly to [1], and b is 3 bits, one 
for each configuration’s characteristic flag.  

To limit area overhead, this complete tuning information is only 
stored for an application during tuning. After the best configuration is 
determined, only that configuration is retained in a smaller auxiliary 
lookup table. To enable scalability to an arbitrary number of 
applications we utilize a least recently used replacement policy to 
govern the auxiliary table’s information. Thus, given a applications, 
the total tuning information storage requirement M in bits is: ܯ =	 log2(ܽ) ∗ 	 ⌈(ܿ)ଶ݈݃⌉ ∗ 	݉          (2) 

III. DYNAMIC TUNING ALGORITHM  
A. Overview 

Algorithm 1 depicts our dynamic tuning algorithm’s finite state 
machine, which contains three states (Section III.B): information 
input, exploration, and evaluation. For each application, the algorithm 
explores the design space, one configuration per tuning interval, based 
on the tuning mode. Tuning is complete when the algorithm meets the 
tuning mode’s stop-tuning condition (e.g., the conservative mode 
evaluates one cache parameter only) (Section III.B.iii).  

B. Algorithm States 
(i) Information Input State: When an application is 

scheduled to a core, either at inception or resumption, the algorithm 
begins in the information input state. First, the algorithm checks the 
auxiliary table to determine if this application’s best configuration has 
already been determined. If the application is in the auxiliary table, 
the algorithm tunes the cache directly to the application’s best 
configuration. Otherwise, the algorithm checks if the application is 
tuned for another core, and if so copies the tuning information from 
the other core’s table to the current core’s table, before tuning 
resumption. Otherwise, the algorithm attempts to the application’s 
read the tuning information from the core’s lookup table, and 
begins/resumes design space exploration in the exploration state. 

 (ii) Exploration state: The application’s lookup table 
information provides the algorithm with information about all of the 
previously explored configurations. Using this information, the 
algorithm determines the next configuration to explore, and the 
application executes in that configuration for one tuning interval, after 
which the algorithm transitions to the evaluation state. 

If there is no tuning information, design space exploration begins 
in the base configuration, which is a configuration that is guaranteed 
to meet QoS expectations. Even though the base configuration could 
be any of the CED’s configurations, we select the configuration with 
the largest cache size, line size, and associativity as the base 
configuration since this configuration has the best potential for being 
the highest performance configuration. Considering the cache 
behavior and requirements for our test applications, and to compare 

our work to prior work [10], our base configuration is an 8KB, 4-way 
associativity cache with a 32B line size.  

If there is tuning information, the algorithm resumes design 
space exploration using this information. Since the lookup table 
contains per-configuration information for only configurations that 
have already been explored, denoted with a set explored flag, the 
algorithm can determine the next parameter and value to explore by 
traversing the exploration ordering and locating the first configuration 
that does not have explored set. This configuration becomes the 
current configuration to evaluate. 

Exploration ordering determines the order in which the 
configurable parameters and parameter values are explored. To 
minimize tuning-time QoS degradation, the algorithm traverses the 
design space in the reverse order of the parameters’ impacts on 
performance [11] (i.e., lower impact to higher impact). This reverse 
parameter-performance-impact ordering reduces QoS degradation 
incurred during design space exploration. Since the base configuration 
is set to the largest parameter values, the algorithm explores 
configurations similar to the base configuration first.  

In order to attain better energy savings, the algorithm will 
explore configurations with higher energy savings potential, but these 
configurations also have a higher risk of larger QoS degradation 
during tuning—extremist configurations that have energy 
consumptions extremely higher than the base configuration [3]. The 
algorithm regulates energy savings to QoS degradation using two 
tuning modes: moderate and conservative modes. Additionally, since 
larger parameter values have higher performance capabilities as 
compared to smaller parameter values [11], the algorithm traverses 
the parameters’ values from largest to smallest. 

The exploration state begins design space exploration with all 
parameters set to the parameters’ largest values. Starting with the 
associativity, the algorithm evaluates the associativity values from 
largest to smallest. After the algorithm explores all of the associativity 
values, the algorithm reduces the line size value, and re-explores all of 
the associativity values (largest to smallest) for that line size, and 
repeats this process until all line size values have been explored. 
Similarly, once all of the line size values have been explored, the 
algorithm reduces the cache size, and re-explores all of the line size 
values (largest to smallest), and repeats this process until all cache 
size values have been explored. After each explored configuration, the 
algorithm sets the application’s configuration’s explored flag and 
proceeds to the evaluation state.  

(iii) Evaluation state: In the evaluation state, the algorithm 
evaluates the current configuration’s energy consumption and 
adherence to QoS expectations. Based on this evaluation’s outcome, 
the tuning mode, and any prior tuning information, the algorithm 
makes tuning decisions.  

If this is the first tuning interval, the algorithm does not have any 
tuning information in the lookup table. The algorithm adds a new 
entry to the lookup table for this application, the current 
configuration’s energy consumption is stored in the energy 
consumption (i.e., this is the lowest energy configuration thus far), 
and the current configuration’s lowest energy flag is set.  

If this is not the first tuning interval, the algorithm compares the 
current configuration’s energy consumption to the lowest energy 
configuration explored thus far. If the current configuration’s energy 
is lower, the algorithm sets the current configuration’s lowest energy 
flag, and proceeds to evaluate the configuration’s QoS adherence 
before invalidating the prior lowest energy configuration’s lowest 
energy flag or updating the energy consumption field (i.e., the 
configuration must both reduce energy as compared to the prior 
lowest energy configuration and adhere to QoS).  

The algorithm evaluates QoS adherence by comparing the 
current configuration’s execution characteristics to the application’s 
performance threshold. If the current configuration meets the 



application’s performance threshold, then the current configuration 
adheres to QoS expectations, and the algorithm sets the current 
configuration’s QoS adherence flag, invalidates the prior lowest 
energy configuration’s lowest energy flag, and updates the energy 
consumption field to the current configuration’s energy consumption.  

After this comparison, the algorithm makes tuning decisions, 
which uses the explored configurations’ flags’ values and the mode’s 
stop-tuning stopping condition. The moderate mode limits tuning-
time QoS degradation by only exploring one configuration that 
degrades QoS. Thus, moderate mode stops tuning as soon as the 
algorithm explores one configuration with the adherence to QoS flag 
unset (i.e., that configuration did not adhere to QoS requirements). To 
further limit tuning-time QoS degradation, not only does the 
conservative mode stop tuning as soon as a configuration with an 
unset adherence to QoS flag is explored, but also as soon as the 
algorithm explores all parameters with low performance impacts—
associativity or line size, whichever comes first. Since high-
performance-impact parameters have a higher possibility of degrading 
QoS, this additional stopping condition reduces the probability of 
exploring QoS-degrading configurations. 

If the algorithm stops tuning, the best configuration has been 
determined, which is the configuration with the lowest energy and 
adherence to QoS flags set. The algorithm removes the application 
from the lookup table and stores the application’s best configuration 

in the auxiliary table (Section II).  

IV. EXPERIMENTAL RESULTS 
A. Experimental Setup 

To quantify our tuning algorithm’s efficacy, we selected ten 
applications, from MiBench [7] suite, that represent consumer 
applications typically execute on CED systems. Our applications 
included audio (adpcm code/decode), image (jpeg code/decode), 
networking (dijkstra, patricia), security (sha), office (string search), 
and telecomm (gsm code/decode) applications.    

We test our algorithm’s ability to save energy while maintaining 
QoS expectations by designating a minimum performance threshold 
for our applications. Since these applications do not have/require 
defined QoS expectations, we determined reasonable performance 
thresholds based on the execution times for the configurations in the 
design space (Section II). To ensure that a reasonable number of 
configurations are able to meet QoS expectations (i.e., our algorithm 
would not be rigorously tested if all configurations could meet QoS 
expectations), for each application, we calculated the average 
performance across all of the configurations, and used that average as 
the application’s performance threshold. Given m = 10 and c = 18 
and Equations (1) and (2), our tuner and auxiliary table required 940 
bits. For comparison, a prior work’s hardware cache tuner with more 
storage requirements as compared to our design (e.g., per-
configuration energy consumption was also stored) imposed only a 
4.7% area overhead in a very small MIPS M4K processor [1], thus 
our tuner’s area overhead will be less than 4.7%. Our tuner and 

auxiliary table imposed less than 0.5% power overhead for our 
experimental system (Figure 1), which we based on our extrapolations 
from [1] and the tuner size.  

Since our system has private, dedicated L1 data and instruction 
caches that connect directly to main memory, we can assume that 
there are no tuning dependencies between the data and instruction 
caches, and the caches can be tuned simultaneously and evaluated 
independently. Our algorithm could also explore design spaces with 
multiple levels of caches in a similar manner, however, since the L1 
cache interdependencies introduced through a shared level-two cache 
vastly increases the design space, multi-cache, multi-pass evaluation 
heuristics can be used for efficient exploration [6]. We executed our 
applications using cycle-accurate simulator, gem5 [5] to obtain 
performance values, and McPAT [8] to calculate the energy values for 
contemporary 40nm technology.  

B. Evaluation Methodology 
We evaluate our algorithm’s energy savings for each tuning 

mode by normalizing our algorithm’s determined configurations’ 
energy consumptions to a base, non-configurable quad-core system’s 
energy consumption (largest parameter values). We quantify the 
tuning energy overhead by normalizing the application’s energy 
consumption during tuning to the application’s energy consumption 
while executing with the base configuration for the same execution 
time as tuning required.  

We evaluated the adaptability of each tuning mode to meet 
disparate QoS expectations during tuning by counting the number of 
times the algorithm explored a QoS-degrading configuration. Since 
QoS-degrading configurations have disparate execution times, QoS 
degradation varied in severity based on the configuration’s 
performance. Since the severity of QoS degradation varies between 
configurations and we plan to quantify this severity in future work.  

To compare our algorithm to prior work [11], we modified our 
algorithm analogously to [11]. We incorporated an exhaustive mode 
to search the complete design space, regardless of QoS degradations. 
Additionally, the exhaustive mode reveals the energy savings that 
would be obtained using prior work [9]. However, that prior work 
required a priori knowledge of the applications to alleviate tuning 
overhead. Since the exhaustive mode does not require a priori 
application knowledge, and imposes tuning overhead, our results for 
the exhaustive mode provides insights on the tradeoffs between 
energy savings and a priori application knowledge requirements.  

C. Results and Analysis 
 (i) Energy Savings: Figure 2 depicts the percentage of 

average energy savings achieved by the algorithm’s best 

 
Algorithm 1: Dyanamic tuning algorithm’s finite state machine 

 
Figure 2. Average best configurations’ energy consumptions 

normalized to the base configuration for all applications and tuning 
mode for the (a) data and (b) instruction caches 
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configurations for our ten applications, with respect to the base 
configuration’s energy consumption for each tuning mode for the (a) 
data and (b) instruction caches.   

The tuning modes exhibit similar trends for both the data and 
instruction caches. As expected, the aggressive mode (as in prior 
work [9][11]) achieved the highest average energy savings of 39.76% 
and 34.98% for the data and instruction caches, respectively. Even 
though the moderate and conservative modes explored fewer 
configurations, these modes still achieved average energy savings of 
20.68% and 25.14%, and 19.00% and 23.49%, respectively.  

Our energy overhead analysis revealed that all tuning modes 
imposed tuning overhead while exploring inferior, non-best 
configurations. However these overheads are amortized while the 
algorithm explored configurations that resulted in energy savings, as 
compared to the base configurations. Furthermore, the aggressive 
mode imposed more energy overhead, as compared to the moderate 
and conservative mode. However, the aggressive mode also explored 
more energy saving configurations, as compared to the moderate and 
aggressive mode. Since the moderate and conservative modes 
explored fewer configurations, these modes had a lower probability of 
exploring extreme configurations, while also exploring energy-saving 
configurations without exhaustively exploring the design space. 

Since our algorithm explores configurations with large parameter 
values first, the moderate and conservative modes have a lower 
probability of exploring configurations with small parameter values, 
which can lead to QoS degradation. The energy and overhead results 
and our algorithm’s parameter and value exploration ordering reveal 
that high-energy-saving configurations tend to have smaller parameter 
values. However, extreme configurations also tend to have small 
parameter values, thus leading to high-risk/high-reward design space 
exploration methods. Our different tuning modes enable 
users/designers to moderate this decision.  

Since an application’s execution time and execution frequency in 
CED’s is subjective to costumer usage, the three tuning modes’ 
beneficence is contingent on consumer usage patterns. Applications 
that execute frequently, or for extended periods of continuous 
operation, benefit more from high energy savings over these periods, 
and thus can tolerate high tuning overhead (i.e., the moderate mode). 
Alternatively, applications that are expected to execute for a short 
period of time benefit more from tuning modes that incur lower 
tuning overhead (i.e., the conservative mode). These short-executing 
applications do not benefit from the aggressive mode since these 
applications will not execute for a period of time long enough to 
amortize the high tuning overhead. 

 (ii) Adherence to QoS: Since prior work explored the entire 
design space, prior work had the highest number of QoS degradation 
occurrences, with an average of 7.7 tuning-time QoS degradations. 
Alternatively, since the moderate mode stopped tuning as soon as the 
algorithm explored one QoS-degrading configuration, the moderate 
mode had one QoS degradation occurrence regardless of the cache 
hierarchy. Since the conservative mode stopped tuning as soon as the 
algorithm finished exploring all of the low-performance-impact 
parameters, the conservative mode had the lowest number of QoS 
degradation occurrences, with an average of 0.7. These averages are 
low because the conservative mode only explored configurations with 
large cache sizes, which typically have higher performance 
capabilities, and thus lower QoS degradation potential.  

Even though the conservative mode limits tuning-time QoS 
degradation, the conservative mode did not guarantee that the best 
configuration found adheres to QoS expectations. This suggests that 
not only configuration design space size, but also the number of 
configurations with low/high performance-impact parameters impact 
both tuning-time QoS degradation and post-tuning QoS adherence. A 
design space that has a low percentage of configurations with large 
parameter values leads to a high number of tuning-time QoS 

degradation occurrences for the aggressive mode. Alternatively, since 
high-energy-saving configurations tend to be small parameter value 
configurations, a design space that has a high percentage of 
configurations with large parameter values leads to less energy 
savings.  

The difference between the numbers of tuning-time QoS 
degradation occurrences for the different tuning modes provides the 
algorithm with the flexibility to adhere to disparate user QoS 
expectations, which is a necessity for CEDs. Since user expectations 
vary based on the user’s mood, experience level, location (e.g., work, 
commute, home, etc.), usage (e.g., naval, space, entertainment, etc.), 
gender, age, environment, time of day, etc. [4], our algorithm is 
capable of adhering to disparate QoS expectations for different user-
defined experiences.  

V. CONCLUSIONS AND FUTURE WORK 
In this work, we proposed a tuning algorithm, which determined 

the best cache configuration while considering tuning-time QoS 
degradation and energy consumption. Our algorithm requires no a 
priori application information, profiling information, or design time 
effort, and tunes the cache during runtime while avoiding tuning-time 
QoS degradation using two tuning mode options that trade off these 
competing constraints. Our results revealed average energy savings as 
high as 20.68% and 25.14%, for the data and instruction caches, 
respectively, and average tuning-time QoS degradation as low as 0.7. 
Future work will extend our algorithm to multi-level cache 
optimization for CEDs, additional tuning heuristics, and disparate 
QoS and energy savings tradeoffs.  
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