

Abstract— The aggregate power consumption of the
Internet is increasing at an alarming rate, due in part to
the rapid increase in the number of connected edge
devices such as desktop PCs. Despite being left idle 75%
of the time, 90% of PCs have their power management
features disabled. Consequently, much recent research
has focused on reducing power consumption of Internet
edge devices. One such method for reducing PC power
consumption is by augmenting the Network Interface
Card (NIC) with enhanced processing capabilities. These
capabilities pave the way for green computing by
allowing the PC to transition to a low-power sleep state
while the NIC responds to network traffic on behalf of
the PC – a technique known as power proxying.
However, such a Smart-NIC (SNIC) requires specialized
low-power, resource-constrained processing, and
architectural features in order to realize such
capabilities. In this paper, we present a NIC-based
packet content inspection system for power proxying and
network intrusion detection. We use a novel partitioned
TCAM technique that results in 87% energy savings and
a 62% lower energy-delay product than existing
non-partitioned router-based techniques, thus making
our technique highly suitable for SNIC-based
deployment.

I. INTRODUCTION
Network Interface Cards (NICs) constitute an increasingly
important element in modern computer design. Next
generation NICs, or smart NICs (SNICs), will be delegated
more network responsibility in order to reduce the
processing burden on a computer system’s CPU
[3][14][17][20]. This enables new opportunities for reduced
power consumption and increased network security.

One example of a power saving opportunity made
possible by increased SNIC network responsibility is power
proxying [8][19]. Research shows that 90% of network edge
devices (PCs) have their power management systems
disabled in order to maintain network connectivity [19],
even though these PCs are otherwise idle 75% of the time
[19]. Power proxying is a technique that maintains network
connectivity while the PC is in a low power sleep state by
delegating responsibility to the SNIC. The SNIC responds to
incoming network traffic in one of three ways: (1) responds
with an automated response (PC remains asleep); (2) ignores
packets that are not destined for the PC (PC remains asleep);
or (3) wakes up the PC if no automated response exists.
Research shows that power proxying can increase sleep time
by as much as 85% [19].

One method for increased security made possible by
increased network responsibility is a Distributed Network

Intrusion Detection System (DNIDS). In a DNIDS, the
SNIC’s network responsibility includes scanning both
inbound and outbound packets for malicious content. The
DNIDS delivers increased network security as it can
effectively isolate compromised nodes, even those internal
to the network, as opposed to router-based centralized NIDS.
DNIDS can also increase the overall effectiveness of
network security because DNIDS can identify malicious
packets based on operating system specifics.

 To enable both power proxying and DNIDS, SNICs
require packet processing capabilities in the form of content
inspection. During content inspection, the SNIC extracts
packet payloads and performs pattern matching in order to
identify packets and respond accordingly. For example, the
SNIC can identify a malicious packet if the payload contains
any predefined malicious signature patterns.

Modern routers include both software and/or
hardware-based content inspection functionalities. However,
since routers have much larger computing resources than
NICs, these techniques are not immediately suitable for
SNIC implementation. Whereas routers utilize processors in
the GHz range, NICs include 66 MHz to 400 MHz
processors [21], making software-based content inspection
infeasible as these processors fail to meet the throughput
requirements for 1 Gbps and future 10 Gbps link speeds
[21]. Thus hardware based techniques are required.

However, current hardware-based router content
inspection techniques are also unfavorable for SNIC
implementation. FPGAs [2] allow for fast reprogrammable
content inspection, but are too costly and consume more
energy than is suitable for wide-scale, low-power SNIC
deployment. TCAMs [10][25] provide extremely fast
content inspection, but are too power hungry and incur
additional resource overhead. Bloom filters [9] provide a
low-power alternative solution for content inspection, but
suffer from scalability due to the large number of parallel
structures required and the overhead of false-positive
resolution.

Thus, for feasible wide-scale low-cost SNIC-based
content inspection, an energy, power, and area efficient
technique is required. While the SNIC constitutes a small
percentage of total PC power consumption, even a small
reduction in power per PC will aggregate to tremendous total
power savings, as the number of PCs is expected to reach 1.3
billion worldwide by 2010 [24].

In this paper, we develop an energy efficient content
inspection system for SNICs. The proposed architecture uses
a partitioned TCAM-based methodology and achieves up to
87% energy savings and a 62% reduction in the energy delay
product compared to existing non-partitioned TCAM
techniques. The introduction of a small cache further
improves the average energy savings by 64% while reducing
the throughput by at most 5.5%.

Karthikeyan Sabhanatarajan and Ann Gordon-Ross
HCS Research Lab, ECE Department, University of Florida

sabhanatarajan@hcs.ufl.edu , ann@ece.ufl.edu*
* Also with the NSF Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida

A Resource Efficient Content Inspection System for Next
Generation Smart NICs

II. BACKGROUND AND RELATED WORK
In this section, we present related work on next generation
SNICs and NIC-based DNIDS, comparing the advantages of
NIC-based DNIDS to router-based NIDS. Additionally, we
review relevant work on content inspection and evaluate the
suitability of these techniques for SNICs.

A. Next Generation SNICs
Next generation SNICs will be delegated more network
responsibility in order to reduce CPU processing burdens.
Much research has focused on techniques such as offloading
TCP protocol processing (TOEs) [10], power-proxying
[8][19], and NIC-based data caching [14]. Such reduced
CPU processing burden will enable extended CPU sleep
opportunities, reduced operating system overhead, increased
network throughput and speed, and thus lower overall
system power consumption.

Additionally, next generation SNICs offer attractive
solutions for DNIDS, providing potentially greater network
security than router-based NIDS [7][17][20]. Router-based
NIDS are rendered ineffective when nodes inside their local
network are compromised, such as the case of internal
attacks. However, SNIC-based DNIDS can scan both
inbound and outbound packets, thereby effectively isolating
malicious nodes. Furthermore, SNIC-based DNIDS can
exploit node characteristics such as operating system
specifics, resulting in more effective, highly optimized
malicious packet detection rules.

Due to these large potential benefits, NIC-based DNIDS
have been the focus of recent research. Otey et al. [17]
analyzed the feasibility of NIC-based DNIDS and verified
that such a system would offer increased coverage,
reliability, and performance. However, the authors also
recognize that realization of such systems would be
challenging given limited NIC processing resources
[17][21]. Schuff et al. [20] proposed a NIC-based intrusion
detection architecture harnessing the processing resources
available in future multi-core RISC processors coupled with
specialized content inspection hardware [25]. However,
since this technique was based on router content inspection
techniques, this technique was too power and resource
hungry for SNICs.

B. Content Inspection
Content inspection is a pattern matching technique wherein a
packet’s payload is matched against a set of pre-defined
signatures (signature set) to identify malicious packets (for
NIDS) or packets of interest (for power proxying). Whereas
popular signature sets include the SNORT [23] and ClamAV
[6] virus databases for NIDS, to the best of our knowledge
there exists no power proxying signature set, and is thus an
ongoing research topic.

A content inspection system that can efficiently process
packets fast enough to keep up with high link speeds is
essential to enable intrusion detection and power proxying in
next generation SNICs. This is a well researched topic in the
context of routers [9][10][25]. Router-based content
inspection can be implemented using either software- or
hardware-based techniques. Software techniques employ
string matching algorithms such as Boyer-Moore, Aho
Corasick, Wu Manber [22], etc. However, due to inherent
software inefficiencies when processing large signature sets,
software techniques cannot support high link speeds [9].

To increase data processing throughput, specialized
hardware-based techniques exploit parallelism using FPGAs
[2], TCAMs [10][25], and specialized data structures such as
Bloom Filters [9]. Whereas these techniques are highly
suitable for high-end routers with sufficient processing
resources, they are not practical enough in terms of price,
power consumption, or area for wide-scale deployment in
SNICs [25]. However, key processing techniques may be
gleaned from router-based content inspection and adapted
for SNIC-based techniques.

TCAMs are one of the critical hardware structures that
enable fast content inspection, as recognized by Lakshman et
al. [25]. Due to the fully associative search ability, TCAMs
are populated with signature sets and are capable of
performing pattern matching on the order of constant time
O(1). For details on TCAM-based pattern matching, we refer
the reader to [25].

However, when using TCAMs for content inspection,
careful system design considerations must be made. Since
signatures are of variable length l (in bytes), the TCAM
width w (in bytes) must be equal to the largest signature
length L. Thus, all signatures

!

l < w must be padded with

!

w " l()*8 “don’t care” bits in order to fill the entire TCAM
entry. This method leads to extremely inefficient resource
utilization since signature lengths tend to be highly variable
[25].

To improve resource utilization, TCAM widths are
chosen such that

!

w << L , and all signatures

!

l > w are
partitioned across multiple TCAM entries (signature
partitioning). Choosing an appropriate TCAM width w is
very important, as it affects not only the resource utilization,
but the total number of TCAM entries (depth d) as well.
Short patterns are signatures of length

!

l " w bytes and these
patterns must be padded with

!

w " l()*8 “don’t care” bits.
Thus, the effective TCAM resource utilization is reduced for
short patterns. Long patterns are signatures of length

!

l > w
bytes and these patterns must be partitioned into

!

l w short
patterns. The first

!

l w() "1 patterns provide full resource
utilization, as only the final partition requires () 8* mod wlw !
“don’t care” bits.

Since every TCAM entry is unique, choosing a smaller
width TCAM provides area reduction opportunity in the
form of natural compression of repetitive patterns. Smaller
TCAMs provide more opportunity for pattern repetition in
that the probability of repeated patterns increases. However,
smaller TCAM widths increases complexity of pattern
matching, as additional data structures are required to
decode shared entries.

When partitioning long patterns, the first partition is
denoted as the prefix pattern and the remaining partitions are
denoted as suffix patterns. Fig 1 shows the prefix and suffix
patterns for a sample long pattern signature given a TCAM
width

!

w = 4 (each character represents an arbitrary byte).
The long and short patterns are stored in a single TCAM

and the TCAM entries are compared to incoming payloads.

Fig 1: Prefix and suffix patterns for a sample signature for a TCAM
width

!

w = 4 . (* = don’t care) Each character represents an arbitrary byte

Sample Signature:

A B C D E F G H A B C D J K L M E F G

A B C D

E F G H
A B C D
J K L M
E F G *

Prefix Pattern:

Suffix Patterns:

Payload examination occurs by streaming the payload
contents through a w-byte inspection window. Initially this
inspection window contains the first w bytes of the payload.
For each subsequent clock cycle, the payload contents are
left-shifted by one byte in order to inspect the next w-byte
inspection window. Thus a payload of X-bytes contains X
inspection windows, and the TCAM is searched for each of
these windows. Furthermore, since a signature is scattered
across

!

l
w" # TCAM locations, a TCAM match implies that

the payload only matches with a portion of a signature. A
final signature matching step is required to ensure that a
payload matches with a complete signature. To assist in final
signature matching, an auxiliary SRAM data structure
aggregates TCAM hit address information during payload
examination [25].

Whereas this router-based content inspection technique is
attractive in terms of high throughput and complete
independence from further payload inspection (bloom filter
based methods suffer from false positives [9]), this technique
suffers from several drawbacks for SNIC-based content
inspection. First, TCAMs have large resource requirements,
such as power (approximately 10x as compared to a similar
speed SRAM [18]) and cost (4x that of SRAM [18]).
Secondly, due to necessary signature partitioning, large
auxiliary SRAM data structures, on the order of O(N2),
where N is the number of TCAM entries, are necessary for
final signature matching. Whereas larger TCAM widths
reduce the auxiliary data structure storage requirements,
larger widths result in increased “don’t care” bit padding,
and thus reduced TCAM resource utilization and increased
TCAM area and power consumption.

Several techniques have been developed to optimize final
signature matching. In order to reduce auxiliary data
structure storage requirements without reducing TCAM
resource utilization, Gao et al. [10] proposed an alternative
architecture, which reduced the auxiliary data structure
space complexity to O(N log N). The auxiliary data structure
consisted of a secondary TCAM (in addition to the primary
TCAM storing the prefix and suffix signatures) populated
with valid signature address permutations. Valid signature
address permutations are the concatenation of the prefix and
suffix addresses for each signature in the primary TCAM.
Thus, as a payload is searched in the primary TCAM, the hit
addresses are concatenated together to form a candidate
signature address permutation. Final signature matching
extracts candidate signature address permutations from the
aggregated TCAM hit addresses and compares those with
the valid signature address permutations in the secondary
TCAM.

Even though this optimization reduces the area
requirement of the auxiliary data structure, the secondary
TCAM structure is still very power hungry. An alternative
technique [16] implemented a variable width TCAM to
improve resource utilization over a fixed width TCAM.
However, this approach suffered from reduced scalability
and could only be implemented using FPGAs, which may
not provide throughput to sustain high link rates or enough
storage capacity for large signature sets.

Dharmapurikar et al. [9] proposed a low power bloom
filter-based technique as an alternative to the TCAM-based
final signature matching. This method used a separate bloom
filter for each unique signature length. While being very
energy efficient, this method was able to achieve a
throughput of 2.4 Gbps. However, this technique suffered
from limited parallelism in the presence of fixed length

patterns. Furthermore, inherent false positives placed an
additional burden on the already limited processing
resources available on NICs.

In this paper, we architect a content inspection technique
that is more amenable to limited resource SNICs by
extending TCAM-based techniques [10][25], reducing both
energy consumption and the energy delay product. We
propose a method by which the single TCAM is partitioned
into a prefix TCAM and a suffix TCAM. This partitioned
technique reduces TCAM switching activity, without
increasing area, and thereby reduces system energy
consumption. Finally, we also introduce a caching technique
to further reduce energy consumption, motivated by a NIC
packet caching technique that exploits network traffic
locality [14]. Our technique assumes the NIC architecture
proposed in [20], which includes low resource mechanisms
for packet reassembly and check summing.

III. SNIC-BASED CONTENT INSPECTION SYSTEM
In this section, we present an energy efficient content
inspection architecture for SNIC-based systems to aid in
power-proxying and DNIDS.

A. Definitions
The distinguishing features of our proposed architecture
include: (1) the segregation of the prefix and suffix patterns
into two separate TCAMs, the Prefix TCAM (P_TCAM) and
the Suffix TCAM (S_TCAM), respectively; and (2) the
introduction of a suffix cache, which stores a subset of the
S_TCAM entries. Previous methods used one large TCAM
to store both prefix and suffix patterns. Storing all patterns in
a single TCAM has the disadvantage of triggering
unnecessary TCAM switching activity. For long patterns
(lw <), suffixes are of interest only after a prefix match.
Thus prefix and suffix segregation isolates prefix pattern
matching to a smaller P_TCAM, and the larger S_TCAM is
selectively enabled after an associated P_TCAM match.
Additionally, we define identical prefix and suffix patterns
as alias addresses.

Every signature is expressed as a valid signature address
permutation representing the addresses at which each
signature’s partitions are stored. This permutation may be
the concatenation of a P_TCAM address and several
S_TCAM addresses (in the case of a long pattern with no
alias addresses), an arbitrary number of P_TCAM and
S_TCAM addresses (in the case of a long pattern with alias
addresses, wherein the first address will always be a
P_TCAM address), or just a single P_TCAM address (in the
case of a short pattern).

Given a signature partitioned in ! "wl patterns, we define a
concluding pattern as the final partition ! "wl (which may be
a prefix pattern for a short pattern or an alias address or a
suffix pattern for a long pattern). This pattern marks the final
address of a valid signature address permutation.
Accordingly, we define all partitions ! "wlp <#1 as
intermediate patterns.

B. Architecture
Fig 2 depicts our proposed content inspection architecture,
consisting of three signature storage units: the P_TCAM,
suffix cache, and the S_TCAM. We assume the inspection
window size is 4 bytes and the signature storage units are
populated using the sample signature from Fig 1. The suffix
cache is a small TCAM that stores the most recently used

subset of the S_TCAM entries. Since valid signature address
permutations only contain P_TCAM and S_TCAM
addresses, each suffix cache entry also stores the
corresponding S_TCAM address. From Fig 1 we can see
that a match of EFG* implies a match of EFGH but the
converse does not hold true. This property is defined as
mutual inclusion [10] and must be considered during
caching. To avoid inconsistencies due to mutual inclusion,
we only cache S_TCAM entries that are exactly w bytes
(entries without any “don’t care” padding bits).

We assume that payload reconstruction (not shown in Fig
2) aggregates incoming network packets to reconstruct
complete payloads, and this complete payload is provided to
the content inspection architecture. On each clock cycle, the
payload is byte-wise left-shifted through a w-byte inspection
window. The current w-byte inspection window contents are
provided as input to the signature storage units. However,
whereas the P_TCAM is searched each cycle by default, the
suffix cache and the S_TCAM are selectively searched. The
suffix cache is enabled after an intermediate P_TCAM hit
and the S_TCAM is enabled after a suffix cache miss.

Since the payload is byte-shifted, but the addresses in the
valid signature address permutations represent w-byte
windows, the suffix cache and S_TCAM only need to be
activated w clock cycles after an intermediate pattern hit (in
any signature storage unit). The activator monitors all
signature storage units and upon an intermediate pattern hit,
sets the 0th bit of the enable buffer to ‘1’, otherwise ‘0’. The
enable buffer is a w-bit wide structure and is right-shifted
each clock cycle. The shifted out bit serves as input to the
enabler, thus signaling a suffix search w clock cycles after
an intermediate pattern hit.

When the enabler receives a ‘1’ bit input from the enable
buffer, the suffix cache is enabled. Upon a suffix cache hit,
the payload stream is left-shifted, and the next w-byte
inspection window is processed. However, on a suffix cache
miss, the S_TCAM must be searched on the next clock cycle
for the same w-byte window. In order to reprocess the
current inspection window, the enabler asserts a pause signal
which effectively halts payload window and enable buffer
shifting so that the same window can be reexamined. During
this time, the cache controller ($ Ctr) orchestrates the suffix
cache replacement policy. Since the least recently used
(LRU) replacement policy overhead can be prohibitive for
large associativities, we use a random replacement policy,
which is shown to have similar performance as LRU for
large associativities [11]. It should be noted that the
introduction of caching stalls the system by a cycle during
the cache miss and thus leads to reduced throughput. In
section V.E, we show that this overhead is minimal.

The retirement buffer stores candidate signature address
permutations, and serves as input to the final signature
matching step (we extend the technique proposed by [10] to
address partitioning specifics). Each of the entries record
information about TCAM hit status for each clock cycle, in
the form of a TCAM hit address and associated descriptor
bits. The descriptor bit designates if the entry is a P_TCAM
(“11”) address, an S_TCAM (“01”) address, or if there was
no hit (“00”).

On each clock cycle, the retirement buffer is left-shifted
and the contention resolution module pushes a new entry
onto the right side of the buffer. If there is no hit in any
TCAM, the new entries hit address is set to NULL (Ø) and
the descriptor bits to “00”. If there is a concluding P_TCAM
hit (and a suffix miss), the prefix represents a short pattern,

and thus this single hit indicates a complete signature match
and there is no final signature match checking required, thus
Ø is pushed onto the retirement buffer. In the case of an
intermediate prefix or suffix hit, the associated hit address is
pushed onto the retirement buffer, and the descriptor bits are
set to “11” or “01”, respectively. If there is both a prefix and
a suffix hit (in the case of alias addresses) and both hits are
intermediate patterns, the contention resolution module
ensures that the P_TCAM address is pushed on to the
retirement buffer, and the descriptor bits are set to “11”. This
alias address resolution technique is necessary since the
intermediate pattern may indicate the beginning of a
signature match.

Since the retirement buffer space is bounded, retirement
logic (not shown in Fig 2) monitors the left most retirement
buffer entry, the sentry position. When the sentry position’s
descriptor bits are ‘11’ (indicating the start of a potential
signature match), the retirement logic extracts all candidate
signature match permutations (all the entries that are
separated w bytes from each other), terminating on an Ø
position. The candidate signature match permutations are
dispatched to the final signature matching unit (not shown in
Fig 2). The final signature matching unit can use hashing
structures such as bloom filters [4] or software methods to
compare candidate and valid signature match permutations.
Elaborations of such techniques are beyond the scope of this
paper, and optimization of this step is the focus of our future
work.

IV. MATHEMATICAL MODEL
In this section, we analyze the resource requirements for our
proposed architecture and develop a model for energy
expenditure analysis.

 Fig 2: Partitioned TCAM system for SNIC-based content inspection.

A B C D E F G H A B C D J K L

PAYLOAD STREAM

Le
ft

sh
ift

P_TCAM
 SUFFIX
CACHE S_TCAM

Enabler

$
Ctl

Miss

(w-1)th 0th …

Enable Buffer

1

0

0

0

Hit

Activator
Hit

H
it

R
ig

ht
 sh

ift

En
ab

le

Enable

Pause

CONTENTION RESOLUTION

S_TCAM

Addr

M
atch Addr

Match
Addr

H
it

Le
ft

sh
ift

…
…

Retirement Buffer
 A1
01

A2

11

Ø
00

A3

11
Ø
00

Ø
00

To final signature matching

Inspection window

To describe the total TCAM (both prefix and suffix) and
retirement buffer resource requirements, we define w as the
width of the TCAMs in bytes, P as the depth of the
P_TCAM, S as the depth of the S_TCAM, and L as the
maximum signature length. Both P and S are highly
dependent on the natural compression present in a signature
set, but in the worst case (no natural compression):

!

P = T; S =
l
i

w

"

$

% %
i=1

T

&

where T is the signature set size. The total TCAM resource
requirements is

!

w *N bytes where

!

N = P + S . Additionally,
two bits are required to identify each TCAM entry as either a
concluding or intermediate pattern or both, requiring
additional

!

2*N bits.
The retirement buffer resource requirements are similar to

[10]:

!

1+ w "
L

w
#1

$

%
&

'

(
)

$

%
&

'

(
) " log2 Max(P,S)() + 2() bits

We assume the size of the cache C contributes very little

to the total resource requirements as

!

C << N . Since a random
replacement policy is used, there is no additional area
overhead.

All TCAM expenditures can be aggregated into the total
energy expended:

Total_Energy = Num_P_TCAM_Accesses * P_TCAM_EPA

+ Num_Intermediate_Accesses * Cache_EPA
+ Num_Cache_Misses * S_TCAM_EPA
+ Num_Cache_Misses * Cache_Write_EPA

 + Num_S_TCAM_Accesses * S_TCAM_EPA

Thus, average energy per access (EPA) is defined as the
energy expended for a single w-byte window search:

EPA = Total_Energy / Total_Accesses

!

Total_ Accesses = P
i

i=1

X

"

where X is the total number of packets processed and Pi is
the payload length of packet i.

It should also be noted that best case energy consumption
occurs when all lookups miss in the P_TCAM (no inspection
windows match any signatures) and the worst case energy
consumption occurs when there is a hit in the P_TCAM and
a subsequent cache miss.

V. ANALYSIS AND EXPERIMENTAL RESULTS
In this section, we provide experimental analysis of our
proposed intrusion detection system. We first analyze
signature length distribution of two popular signature sets.
We then analyze the impact of TCAM partitioning (without
suffix caching) with respect to area, energy consumption,
and the energy-delay product (EDP) [12]. Next, we simulate
popular NIDS trace benchmarks to determine average
energy savings and compare this to the unpartitioned TCAM
approach modeled using the same environment. Finally, we
introduce the suffix cache into our system and analyze its
effects.

A. Experimental Setup
For our experiments, we modeled our intrusion detection
system using a custom C-based simulator. For a given
TCAM width w, the SNORT [23] and ClamAV [6] signature
sets are populated in the TCAM structures accordingly. We
use popular NIDS benchmark traces from the MIT Lincoln
Laboratory (MIT-LL) [15] and the “capture-the-flag” contest
for the DEFCON festival [5].

During a trace pre-analysis step, incoming fragmented
packets are reassembled and the payload of the reassembled
packets are extracted and passed to our intrusion detection
simulator. The simulator behaviorally simulates our
proposed architecture, recording several statistics such as
total number of accesses to each TCAM and total number of
intermediate and concluding prefix and suffix hits for
postmortem analysis. To analyze the effects of the suffix
cache, the S_TCAM access trace is saved to a trace file for
future analysis by a cache simulator.

We obtain TCAM energy consumption using the TCAM
modeling tool developed by Agarwal et al. [1]. This tool
provides search time and energy per access verses width,
number of entries, and the fabrication technology, which is
assumed to be 130 nm. We combine this with the our
mathematical models (section IV) to obtain the resource
usage and energy consumption.

B. Signature Length Distribution Analysis
To assist in appropriate TCAM width w determination and
avoid reduced resource utilization due to excessive “don’t
care” bit padding, we first analyze signature length
distribution. Fig 3 shows the cumulative signature length
distribution for SNORT v2.4 and v2.8, and the ClamAV
signature sets. Primarily, SNORT signatures are short
patterns, with 70% of the signatures less than 4 bytes long,
and 99.8% of the signatures less than 100 bytes long.
ClamAV shows a different distribution, with 72% of the
signatures between 30 bytes and 100 bytes long. This
suggests that smaller TCAM widths are more suitable for
SNORT signature patterns compared to ClamAV patterns.
Our graphs conform to the findings in [25] showing that
future SNORT pattern lengths are becoming increasingly
smaller and are more complex as these smaller patterns are
distributed across the packet.

Since SNORT v2.4 and v2.8 show similar trends (and we
observed these same trends for all experimental results), we
only present experimental results for SNORT v2.8.

C. Effects of TCAM Partitioning on Size, Energy, and the
Energy Delay Product

Partitioning circumvents natural compression and results in
an increase in the cumulative TCAM space. For example,

Fig 3: Cumulative number of rules (distribution) for increasing signature
lengths for Snort and ClamAV signature sets.

Snort 2.4

Snort 2.8

ClamAV

given

!

w = 4, the signature “ABCDEFGHABCD” can be
represented in a single TCAM using only two entries:
ABCD and EFGH. However, partitioning the signature
across a P_TCAM and an S_TCAM requires three total
entries: ABCD in the P_TCAM and EFGH and ABCD in the
S_TCAM. Thus, we first analyze the impact on total area
due to TCAM partitioning.

Fig 4 depicts partitioning effects on TCAM size in
KBytes for the SNORT v2.8 (a) and ClamAV (b) signature
sets verses varying TCAM widths. These figures show
P_TCAM and S_TCAM sizes, as well as the total combined
size of these two TCAMs (combined TCAMs) compared to
the non-partitioned TCAM system. The results show
negligible natural compression loss, with the largest area
overhead increase due to partitioning being only 4% for the
smallest width.

Fig 5 depicts energy per access normalized to the
non-partitioned TCAM system for the P_TCAM and
S_TCAM individually and both TCAMs combined
(combined TCAMs) for the SNORT v2.8 (a) and ClamAV
(b) signature sets. For SNORT, Fig 5 (a) shows that that for
the best case scenario (all P_TCAM accesses miss), energy
consumption can be reduced by 74% to 40% compared to a
non-partitioned TCAM system for TCAM widths ranging
from 4 to 16 bytes, respectively. For ClamAV, Fig 5 (b)
shows that for the best case scenario, energy consumption
can be reduced by 93% to 78% compared to a
non-partitioned TCAM system for TCAM widths ranging
from 4 to 16 bytes, respectively. In the worst case scenario
(full activity in both the P_TCAM and S_TCAM), the
energy consumption per access is nearly identical to the
non-partitioned TCAM system, except for a TCAM width of
4 bytes, where energy is increased by 5% and 1% for
SNORT and ClamAV, respectively. However, our

simulations using popular benchmark traces in section V.D
shows that the worst case scenario rarely occurs.

Even though our partitioned TCAM system performs
similar to that of a non-partitioned TCAM system in terms
of total size and worst case energy per access, the largest
advantage of the partitioned system is the reduction in the
EDP. Fig 6 shows the percentage reduction in the EDP
verses TCAM width for the SNORT v2.8 and ClamAV
signature sets. The results reveal EDP reduction as high as
62% for both signature sets. This reinforces the fact that our
partitioned TCAM system is both energy and throughput
aware compared to a non-partitioned TCAM system, which
is predominantly throughput aware.

D. Energy Savings from Partitioning with Real-Time
Network Traces

Fig 7 depicts the energy reduction for a partitioned TCAM
system compared to a non-partitioned TCAM system for two
MIT-LL and DEFCON traces for both signature sets. Energy
savings range from 6% to 69% and 6% to 87% for SNORT

Fig 4: TCAM size variation verses TCAM width for the (a) SNORT v2.8 and (b) ClamAV signature sets for the P_TCAM and S_TCAM individually, the
P_TCAM and S_TCAM combined (Combined TCAMs), and the non-partitioned TCAM system.

Fig 5: Energy per access normalized to a non-partitioned TCAM system verses TCAM width for the (a) Snort v2.8 and (b) ClamAV signature sets for the
P_TCAM and S_TCAM individually as well as the P_TCAM and S_TCAM combined (Combined TCAMs).

Fig 6: Percentage reduction in the energy-delay product (EDP) for a

partitioned TCAM system compared to a non-partitioned TCAM system
verses TCAM width.

(a) (b)

(a) (b)

(a) (b)

(a) (b)

and ClamAV, respectively. Both signature sets reveal similar
energy reduction trends with smaller TCAM widths
revealing larger energy reductions compared to larger
TCAMs widths, as larger widths result in much more
expensive TCAM accesses and an increase in “don’t care”
bits. Furthermore, ClamAV patterns exhibit more energy
savings for a TCAM width 8 due to a drastic reduction in
S_TCAM accesses, suggesting that the traces contain
predominantly short patterns.

E. Network Trace Locality and Caching
First, we analyze network trace locality in order to motivate
caching benefits. Fig 8 is a plot of the matching SNORT
signature identification (ID) number verses ordered
incoming malicious packets for the MIT-LL traces. As the
figure shows, only a very few unique signatures match, and
those matched exhibit significant temporal locality.

Next, we analyze the distribution of TCAM accesses
between the P_TCAM and the S_TCAM to reveal further
caching potential. Fig 9 shows the percentage of S_TCAM
accesses for the partitioned TCAM system verses varying
TCAM widths for SNORT and ClamAV signature sets using
the MIT-LL and DEFCON traces. The figure shows that
smaller TCAM widths generate more suffix accesses and
hence provide better opportunity for caching. This is
promising given that Fig 7 shows the greatest energy
reduction for small TCAM widths. For all cases except
SNORT v2.8 with the DEFCON input trace, S_TCAM
access percentage drops below 2% for widths greater than 8
bytes. We point out that the percentage is largely dependent
on the nature of traces and the signature sets used.

We analyze caching impacts for a TCAM width of 4

bytes, as this width provides the greatest number of
S_TCAM accesses. Fig 10 depicts the variations in cache hit
rate verses cache size in number of entries. Hit rates range
from 28% to 88% with a cache size of only 40 to 60 entries,
with very little increased benefit for larger cache sizes. A
cache containing 40 to 60 entries represents only 0.002% to
0.004%, respectively, of the S_TCAM entries.

Fig 11 shows energy reduction for a partitioned TCAM
system with a suffix cache compared to a partitioned TCAM
system with no suffix cache. The inclusion of a small cache
revealed 13% to 64% additional energy savings compared to
a partitioned TCAM system with no suffix cache.

Fig 12 analyzes the throughput reduction due to cache
misses. Whereas in the worst case (all P_TCAM accesses hit
and all suffix cache accesses miss) throughput would be
reduced by 100%, Fig 12 shows that actual throughput
reduction is minimal and ranges from 0.001% to 5.5%.

VI. CONCLUSION
In this paper, we architected an energy efficient partitioned
TCAM-based content inspection system suitable for
deployment in next generation SNICs. The proposed system
is both energy and throughput aware, with energy delay
product improvements of up to 62% compared to previous
non-partitioned TCAM systems. Evaluation of our
partitioned TCAM system using popular NIDS benchmarks
revealed up to 87% energy savings on average compared to
a non-partitioned TCAM system. We further enhanced our
system by adding a small suffix cache to leverage the

Fig 7: Energy reduction for a partitioned system compared to a
non-partitioned system verses TCAM width for real-time traffic

traces.

Fig 8: Signature access locality (SNORT rule ID verses time represented by
the malicious packet ID) as observed by an edge node under attack

Fig 9: Percentage of S_TCAM accesses for various TCAM widths

populated by SNORT v2.8 and ClamAV signature sets

Fig 10: Cache hit rates for varying number of cache entries for a TCAM
width of 4 bytes.

Time

signature access locality present in network traces. A simple
cache with a random replacement policy provided hit rates
ranging from 28% to 88%, further reducing the energy
consumption of the partitioned TCAM system by 64%
compared to a partitioned TCAM system with no cache with
at most a 5.5% throughput reduction.

Future work includes studying improved caching
techniques with respect to energy consumption and
development of a pipelined architecture to circumvent the
impact of cache misses on throughput. We also plan to
address the attack robustness of our system by developing a
methodology to overcome maliciously engineered packets to
purposefully defeat energy savings by exploiting system
behavior. Finally, we will develop improved auxiliary data
structures and final signature matching techniques using
hashing, bloom filters and other software methods in order
to further enhance content inspection for wide scale SNIC
deployment.

VII. ACKNOWLEDGMENT
This work is supported by the National Science Foundation
under Grant No. 0520081. The authors would like to thank
Dr. Ken Christensen for his insightful review of the work.

VIII. REFERENCES
[1] B. Agrawal and T. Sherwood, “Modeling TCAM power for next

generation network devices,” IEEE International Symposium on
Performance Analysis of Systems and Software, 2006,pp. 120-129.

[2] Z. K.Baker and V. K. Prasanna, “Time and area efficient pattern
matching on FPGAs,” Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays FPGA '04, 2004.

[3] N. L. Binkert, L. R. Hsu, A. G. Saidi, R. G. Dreslinski, A. L. Schultz,
and S. K. Reinhardt. “Analyzing NIC Overheads in Network-Intensive
Workloads.,” Eigth Workshop on Computer Architecture Evaluation
using Commercial Workloads (CAECW), 2005

[4] B. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” ACM, May 1970, pp. 422–426.

[5] Capture the Capture the Flag Data set, http://cctf.shmoo.com/
[6] Clam AntiVirus, www.clamav.net
[7] C. Clark, W. Lee, D. Schimmel, D. Contis, M. Kone, and A. Thomas,

“A Hardware Platform for Network Intrusion Detection and
Prevention,” Proceedings of The 3rd Workshop on Network
Processors and Applications (NP3), February 2004

[8] K. Christensen, P. Gunaratne, B. Nordman, and A. George, “The next
frontier for communications networks: power management,”
Computer Communications, 2004,pp. 1758-1770.

[9] S. Dharmapurikar, P. Krishnamurthy, T.S. Sproull and J.W.
Lockwood, “Deep packet inspection using parallel bloom filters,”
Micro, IEEE, 2004, pp. 52-61.

[10] M. Gao, K. Zhang, J. Lu, “Efficient packet matching for gigabit
network intrusion detection using TCAMs,” in proceedings of
Advanced Information Networking and Applications, 2006. AINA

[11] H. Ghasemzadeh, S. Mazrouee, H. G. Moghaddam, H. Shojaei, and
M. R. Kakoee, “Hardware Implementation of Stack-Based
Replacement Algorithms,” Proceedings of world academy of
science,engineering and technology, 2006

[12] R. Gonzalez and M. Horowitz, "Energy Dissipation in General
Purpose Microprocessors," IEEE Journal on Solid-State Circuits,
September 1996.

[13] P. Gupta, A. Light, I. Hameroff, “Boosting Data Transfer with TCP
Offload Engine Technology ”, Dell Power Solutions, August 2006

[14] H. Kim, S. Rixner, and V. Pai, “Network Interface Data Caching,”
IEEE Transactions on Computers, 2005, pp. 1394-1408.

[15] MIT-DARPA Intrusion Detection Data Sets,
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data
/index.html.

[16] G. Nilsen, J. Torresen and O. Sorasen, ”A variable word-width
content addressable memory for fast string matching,” Proceedings of
Norchip Conference, 2004, pp. 214-217,

[17] M.Otey, R. Noronha, G.Li, S. Parthasarathy, and D. Panda,
“NIC-based Intrusion Detection: A feasibility study,” Proceedings of
the IEEE ICDM Workshop on Data Mining for Cyber Threat
Analysis, December 2002

[18] D. Pao, Y. K. Li and P. Zhou, “Efficient packet classification using
TCAMs,” International Journal of Computer and Telecommunications
Networking, 2006, pp. 3523-3535

[19] P. Purushothaman, M. Navada, R. Subramaniyan, C. Reardon, and A.
George, “ Power-Proxying on the NIC: A Case Study with the
Gnutella File-Sharing Protocol,” Proceedings of 31st IEEE
Conference on Local Computer Networks (LCN), 2006.

[20] D. Schuff, V. Pai, P. Willmann and S. Rixner, “Parallel Programmable
Ethernet Controllers: Performance and Security,” IEEE Network,
2007.

[21] K. Sabhanatarajan, A. Gordon-Ross, M. Oden, M. Navada, and A.
George, “ Smart-NICs: Power Proxying for Reduced Power
Consumption in Network Edge Devices,” Proceedings of IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), 2008

[22] G. A. Stephen, “String Searching Algorithms,” Lectures Notes Series
on Computing, 1994, Vol. 3

[23] SNORT intrusion detection system, www.snort.org
[24] S. Yates, “Sizing the Emerging-Nation PC Market”, Forrester

research.
[25] F. Yu, R. H. Katz and T. V. Lakshman, “Gigabit rate packet

pattern-matching using TCAM,” IEEE Int’l Conf on Network
Protocols, Oct. 2004, pp. 174-183.

Fig 11: Energy savings for a partitioned TCAM system (w=4) with a suffix

cache compared to a partitioned TCAM system with no suffix cache for
varying number of cache entries.

Fig 12: Percentage reduction in throughput verses number of cache

entries for SNORT and ClamAV signature sets.

0%

10%

20%

30%

40%

50%

60%

70%

10 20 30 40 50 60 70 80 90

Number of Cache Entries

E
n

er
g

y
 s

av
in

g
s

SNORT v2.8 - MIT_1 SNORTv2.8 - MIT_2
ClamAV - MIT_1 ClamAV - MIT_2
SNORTv2.8 - DEFCON ClamAV - DEFCON

