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Abstract—Phase-based tuning increases optimization potential 

by configuring system parameters for application execution 

phases. Previous work proposed phase distance mapping 

(PDM), which relied on extensive a priori analysis of executing 

applications to dynamically estimate the best configuration 

using the correlation between phases. We propose DynaPDM, a 

new dynamic phase distance mapping methodology that 

eliminates a priori designer effort, dynamically analyzes phases, 

and determines the best configurations, yielding average energy 

delay product savings of 28%—an 8% improvement on PDM—

and configurations within 1% of the optimal. 

Keywords—Cache tuning, dynamic reconfiguration, phase-

based tuning, configurable hardware, energy delay product 

savings 

I. INTRODUCTION AND MOTIVATION 

Due to the proliferation of embedded systems with 

increasingly stringent design constraints (e.g., size, battery 

capacity, cost, real-time deadlines, market competition, etc.), 

extensive research has focused on system optimizations. 

However, numerous tunable parameters/hardware (e.g., cache 

size, associativity, and line size [21]; replacement policy [22], 

issue width [5]; core voltage and frequency [18], etc.) and 

tunable parameter values, combined with increasing numbers 

of cores, results in an exponentially increasing design space, 

making system optimization a daunting challenge. The 

dynamic nature of applications further compounds these 

challenges, requiring optimizations to dynamically configure 

tunable parameter values at runtime to the best configuration 

to most effectively meet design goals [12][20] and changing 

application behavior.   

Application execution can be partitioned into execution 

intervals and intervals with similar and stable characteristics 

(e.g., cache misses, instructions per cycle (IPC), branch 

mispredictions, etc.) can be grouped as phases. Same-phased 

intervals tend to have the same best configurations and phase-

based tuning specializes the system’s configurations to the 

application’s phases’ requirements. To facilitate phase-based 

tuning, phase classification [20] clusters intervals with similar 

characteristics using methods such as K-means clustering [16] 

or Markov predictors [20].  

A significant challenge for phase-based tuning is 

determining the best configurations without incurring 

significant tuning overhead (e.g., power, performance, 

energy). Exhaustive search methods [21] incur significant 

tuning overhead by physically executing all configurations 

and selecting the best configuration. Heuristic methods [10] 

execute a fraction of the design space, but still incur tuning 

overhead. Analytical methods [7] directly determine, 

calculate, or predict the best configuration based on the design 

constraints and the application’s characteristics, incurring no 

tuning overhead, however, most of these methods are either 

computationally complex or not dynamic. 

To make analytical methods more amenable to dynamic 

(runtime) phase-based tuning, phase distance mapping (PDM) 

[1] used a computationally simple, dynamic analytical model 

that leveraged phase distances to directly estimate the best 

configuration with no design space exploration and minimal 

tuning overhead. Even though results showed that PDM 

achieved significant energy delay product (EDP) savings, the 

designer was still required to statically pre-analyze the 

applications, applications’ phases, and configurations to 

provide information for runtime PDM decisions. These design 

time steps required considerable designer effort and a priori 

knowledge of the applications, which limits PDM’s 

applicability, precluding applications with many phases and 

general purpose systems with unknown applications (e.g., 

smartphones). 

In this work, we introduce a new methodology for PDM—

DynaPDM—which addresses PDM’s limitations by 

dynamically analyzing applications, applications’ phases, and 

configurations, thereby eliminating designer effort while 

maintaining the computational simplicity, low tuning 

overhead, and phase-based fundamentals of PDM. We directly 

compare DynaPDM and PDM with respect to cache tuning for 

configurable size, line size, and associativity, and use cache 

miss rates to classify application phases, however, 

DynaPDM’s fundamentals are applicable to any tunable 

hardware. Results reveal that DynaPDM determines 

configurations within 1% of the optimal (lowest EDP) 

configuration and achieves average system-wide EDP savings 

of 28%. DynaPDM improves EDP savings over PDM by 8%, 

and most importantly, eliminates the design time effort 

required by PDM where the EDP savings are directly 

dependent on the designer’s a priori phase analysis. 

II. RELATED WORK 

Since PDM was evaluated using cache tuning, we focus 

our related work discussions to that optimization domain, but 

note that there is extensive prior work in phase-based tuning 



for other system parameters (e.g., [13][18][19], etc.). Zhang et 

al. [21] proposed a configurable cache architecture that 

determined the Pareto optimal cache configurations trading off 

energy consumption and performance. Zou et al. [22] 

proposed a configuration management algorithm to search the 

design space for the best cache configurations. However, these 

methods incurred significant tuning overhead by physically 

exploring the design space. 

To reduce tuning overhead, several methods eliminated 

design space exploration. Gordon-Ross et al. [11] proposed a 

one-shot approach to cache configuration that non-intrusively 

predicted the best cache configuration using an oracle [14], 

however, the oracle hardware introduced significant power 

overhead when active. Ghosh et al. [7] proposed an analytical 

model to directly determine the best cache configuration based 

on performance constraints and application characteristics, 

however, the model’s computational complexity incurred 

energy and performance overheads. Even though these 

methods reduced the tuning overhead, these methods were not 

phase-based. 

Hajimir et al. [12] used a cache model for phase-based 

tuning that used changes in application characteristics to 

determine when to change the cache configuration and 

presented a dynamic programming-based algorithm to find the 

optimal cache configurations. Gordon-Ross et al. [8] 

investigated the benefits of phase-based tuning over 

application-based tuning (using a single configuration for the 

entire application execution) with respect to energy 

consumption and performance, and quantified the tuning 

overhead due to cache flushing and write backs, which was 

minimal. Phase-based tuning yielded improvements of up to 

37% in performance and 20% in energy over application-

based tuning. However, to maximize phase-based tuning 

savings, phase changes must be quickly detected and phases 

accurately characterized/classified [9]. 

Phase classification partitions application execution into 

intervals, measured by the number of instructions executed, 

and intervals showing similar characteristics are clustered into 

phases. Even though phase classification can be done offline, 

online phase classification more accurately characterizes 

dynamic application phase behavior [20]. Dhodapkar et al. [4] 

found a relationship between phases and the interval’s 

working set (i.e., address access locality), and concluded that 

phase changes could be detected using changes in the working 

set. Balasubramonian et al. [2] used cache miss rates, cycles 

per instruction (CPI), and branch frequency to detect phase 

changes for cache tuning.  

III. PHASE DISTANCE MAPPING (PDM) 

A. PDM Overview and Limitations 

Since our work leverages prior fundamentals established 

by PDM [1], we first give an overview of PDM and define the 

key terminology. The phase distance is the difference between 

the characteristics of a characterized phase—phase with a 

known best configuration—and an uncharacterized phase and 

is used to estimate the uncharacterized phase’s best 

configuration. PDM compared a single previously 

characterized phase—the base phase—with a new phase to 

determine the phase distance. PDM used the phase distance to 

calculate the configuration distance—the difference between 

the tunable parameter values of two configurations. Finally, 

distance windows define phase distance ranges and the 

corresponding tunable parameter values. The distance window 

that the phase distance falls within (i.e., maps to) defines the 

tunable parameter values (i.e., best configuration) for the 

uncharacterized phase.  

Even though PDM showed good average EDP savings, 

PDM had several limitations. First, the designer was required 

to statically define the distance windows based on the 

anticipated applications, which limits PDM’s applicability to 

dynamic systems where applications are not known a priori. 

PDM also required the designer to designate the base phase 

such that the base phase represented the system’s prominent 

application domain. Results showed that PDM’s EDP savings 

were strongly affected by how well the base phase represented 

the entire system. 

In the remainder of this section, we detail our major 

contributions with respect to PDM. We introduce DynaPDM, 

which alleviates all design time effort and maximizes EDP 

savings by defining distance windows during runtime and 

dynamically designating the base phase and calculating the 

associated configuration distances, thus specializing the 

distance windows to dynamic system and application 

behavior.  

B. Design Space and Phase-based Tuning Architecture 

Our memory hierarchy consists of configurable, private 

level one (L1) instruction and data caches. The caches have a 

base size of 8 Kbytes with four 2 Kbyte configurable banks, 

which can be shut down and/or concatenated to tune the cache 

size and associativity, and a base line size of 16 bytes, which 

can be increased by fetching multiple lines [21]. To quantify 

EDP savings as compared to a non-configurable cache, we 

compared to a base cache configuration of 8 Kbytes with 4-

way set associativity and a 64 byte line size, which represents 

an average configuration on a typical embedded 

microprocessor suitable for our experimental applications 

[21]. Given this base cache, the design space contains all 

combinations of cache sizes, associativities, and line sizes 

ranging from 2 to 8 Kbytes, direct-mapped to 4-way, and 16 to 

64 bytes, respectively. 

Fig. 1 depicts the phase-based tuning architecture for a 

sample dual-core system, which can be extended to any n-core 

system. Each core has private L1 instruction and data caches 

connected to the phase characterization hardware, which 

consists of a tuner to orchestrate the tuning process by 

gathering cache statistics and calculating the EDP, a phase 

classification module to classify the application phases, a 

phase history table to store the history of the characterized 

phases and associated best configurations, and a PDM module. 

The PDM module contains a distance window table to store 

the distance windows and serves as a lookup table for the 

configuration distances when phases are characterized. Prior 

research using similar table structures showed that these 

structures contribute negligible area, performance, and energy 

overheads [20]. 



C. Characterizing the Base Phase 

PDM achieved EDP savings using any base phase, 

however, carefully considering the application domain when 

designating the base phase maximizes EDP savings. To 

maximize EDP savings, the base phase should reflect the 

system’s prominent application domain (e.g., image 

processing, networking). For a small, application-domain-

specialized system with a small set of distinct phases—a small 

phase space—designating the base phase can easily be done 

manually at design time, however, this method is infeasible 

for large, general-purpose systems with large phase spaces. 

For large systems, designers can use cluster analysis (e.g., k-

means clustering [15]) to partition the phase space into 

different domains, and a phase that most closely represents the 

largest cluster (most prominent domain) can be designated as 

the base phase. 

In order to designate and characterize the base phase at 

design time, the designer requires a priori knowledge of the 

system’s intended application domain(s), and the design space 

must be small enough or the designer must have an efficient 

design exploration method to afford quick design-time tuning. 

After designating the base phase, the designer can then use 

any tuning method (e.g., [21]) to determine the base phase’s 

best configuration.  

For general-purpose systems, where the application 

domain(s) are not known a priori, to maximize EDP savings, 

the base phase should be dynamically designated at runtime. 

Using a dynamic base phase requires the phase classification 

module to cluster executing phases by application domain, 

monitor the domains’ numbers of phases, designate a base 

phase from the prominent domain, and re-designate new base 

phases when the prominent domain changes.  

D. PDM Using Distance Windows 

Distance windows are phase distance ranges that represent 

the configuration distance of an uncharacterized phase Pi from 

the base phase Pb when changing a parameter’s value to 

another value (e.g., increasing the associativity: Ab * 2, where 

Ab is the base phase’s associativity). Each distance window in 

the distance window table contains a minimum WinL and 

maximum WinU value and a phase distance D maps to the 

range WinL ≤ D < WinU. The distance windows relate directly 

to the characteristics used to evaluate D, and are applicable to 

all of the tunable parameters represented by D. For example, 

since we use cache miss rates to evaluate D, the distance 

windows relate directly to the cache miss rate values and are 

applicable to all of the cache’s tunable parameters (cache size, 

associativity, and line size). 

When a phase Pi is executed and Pi is in the phase history 

table, Pi has been previously executed, the best configuration 

ConfigPi has already been determined, and the hardware is 

configured to ConfigPi. If Pi is not in the phase history table, 

Pi is a new phase and the phase distance D between Pi’s 

characteristics and the base phase Pb’s characteristics is 

calculated, where D = d (Pb, Pi). D serves as input to a 

configuration estimation algorithm and PDM uses predefined 

distance windows. Each distance window has pre-assigned 

configuration distances for the different parameter values with 

respect to the base phase’s configuration ConfigPb. When D 

maps to a distance window, the configuration distances 

specified for each parameter value are applied to the base 

phase’s parameter values to calculate Pi’s best configuration. 

We refer the reader to [1] for details on PDM’s configuration 

estimation algorithm. 

E. DynaPDM Using Dynamic Distance Windows 

DynaPDM dynamically creates and stores distance 

windows in the distance window table as phases execute. Fig. 

2 overviews DynaPDM’s flow. When a new phase Pi is 

executed (i.e., Pi is not in the phase history table) and Pi’s 

phase distance D maps to an existing distance window, Pi’s 

new configuration ConfigPi is calculated, stored in the phase 

history table, and the system is configured to ConfigPi. If D 
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Fig. 2. Phase distance mapping using dynamic distance windows 
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Fig. 1. Phase-based tuning architecture for a sample dual-core system. 



does not map to any distance windows or the distance window 

table is empty (special case at system startup), a new distance 

window is created. 

Algorithm 1 dynamically creates a new distance window 

during runtime and takes as input: the distance window size 

Sd, D, and the maximum upper bound for the distance window 

WinUmax. The length of each distance window (i.e., the 

difference between WinU and WinL) is determined by a 

predefined distance window size Sd. If D < Sd, the algorithm 

sets WinL as 0 and sets WinU as Sd (lines 1 – 3). WinUmax is 

optional and represents the maximum number of new distance 

windows D, such that if D > WinUmax, D maps to WinUmax  < D 

< ∞ (lines 4 – 6). WinUmax defaults to infinity, which may 

improve the configurations’ efficacies using unlimited and 

smaller, thus more accurate, finer-grained distance windows, 

but could exhaust hardware resources. Defining WinUmax 

restricts the number of distance windows to WinUmax/Sd. We 

empirically determined Sd = 0.5 as a generally suitable value 

based on a variety of training applications representative of 

common embedded processor applications (detailed in Section 

IV). If Sd < D < WinUmax, the next value smaller than D and 

divisible by Sd is selected as WinL for that distance window 

and WinU is set as WinL + Sd (lines 7 – 9). 

Since there is no configuration distance information at 

system startup, the algorithm sets the initial configuration 

distances by tuning the first phase Pi of every distance 

window using the most recently used (MRU) configuration as 

the initial configuration and gradually increasing each cache 

parameter for n executions of each phase. If the cache 

parameters reach the maximum value within n executions, the 

algorithm reduces each cache parameter from the MRU 

configuration. n is designer-specified and provides DynaPDM 

with a limited number of phase executions to hone the 

configurations closer to the optimal, with larger n trading off 

improved configuration efficacy for increased tuning 

overheard. The ideal n depends on the system’s 

application/phase persistence. Since n only applies to new 

phases, persistent applications/phases quickly amortize the 

tuning overhead, even for large n, however, n should be small 

for systems with many new applications/phases in order to 

minimize accumulated tuning overhead (e.g., less than five, 

Section IV). To account for this tradeoff, n can easily be 

varied at runtime based on the average application/phase 

persistence. After DynaPDM determines the new 

configuration (after n executions), the algorithm assigns a 

configuration distance for the new distance window based on 

the determined configuration. 

Algorithm 2 initializes distance windows and updates the 

phase history and distance window tables. The algorithm takes 

as input: n and the MRU cache size, associativity, and line 

size CMRU, AMRU, and LMRU, respectively; and outputs Pi’s best 

configuration [ConfigPi]. Since the algorithm’s optimization 

goal is to determine a configuration for each phase with an 

EDP less than the base configuration [EDP]base, all new 

phases default to the base configuration as the best 

configuration, which is initially stored in the phase history and 

distance window tables as the prior lowest EDP configuration 

[EDP]best. The algorithm monitors the EDP (calculated by the 

tuner) after every execution of Pi while the number of 

executions j < n, and only updates the phase history and 

distance window tables when [EDP]j  < [EDP]best. 

The algorithm uses CMRU, AMRU, and LMRU for the initial 

configuration (line 1), and iteratively increases the cache sizes, 

associativities, and line sizes for the instruction and data 

caches, iCache and dCache, respectively, until the maximum 

sizes Cmax, Amax, and Lmax are reached while j < n (lines 4 – 15). 

The algorithm monitors the EDP after each iteration and 

updates the phase history table if a new configuration results 

in a lower EDP than [EDP]best (lines 18 – 23). After the 

maximum number of executions n, the algorithm sets Pi’s 

final configuration as the configuration that achieved the 

lowest EDP (lines 24 – 30). 

IV. EXPERIMENTAL RESULTS 

To evaluate DynaPDM’s efficacy, we evaluated a system 

executing with DynaPDM’s configurations for each phase as 

Input: Sd, D, WinUmax 

Output: WinL, WinU, CPi 

1 if D < Sd then 

2       WinL = 0 

3      WinU = Sd 

4 else if D > WinUmax then 

5      WinL = WinUmax 

6      WinU = ∞ 

7 else 

8      WinL = x | (x ≤ D, x mod Sd = 0, x + Sd > D) 

9      WinU = x + Sd 

10 end 

Algorithm 1: Dynamic distance window creation 

Input: n, CMRU, AMRU, LMRU 

Output: [ConfigPi] 

1 Ci ← CMRU; Ai ← AMRU; Li ← LMRU 

2 j ← 1 

3 while j ≤ n do 
4      while Ci ≤ Cmax do 

5           Ci ← Ci * 2 

6           checkEDP() 

7      end 
8      while Ai ≤ Amax do 

9           Ai ← Ai * 2 
10           checkEDP() 

11      end 
12      while Li ≤ Lmax do 
13           Li ← Li * 2 

14           checkEDP() 

15      end 

16  j ← j + 1 

17 end 

18 checkEDP: 

19      if [EDP]j < [EDP]best then 

20           [ConfigPi]best ← [ConfigPi]j 

21           break    
22     end 

23 end checkEDP 
24 if (j > n) then 
25      if [EDP]j > [EDP]best then 

26           [ConfigPi] ← [ConfigPi]best 

27      else 
28           [ConfigPi] ← [ConfigPi]j-1 

29      end 

30 end 
Algorithm 2: Initializing distance windows 



compared to the optimal system executing the optimal 

configuration for each phase (determined by exhaustive 

search), and a system fixed with the base cache configuration. 

We also implemented PDM in order to provide a direct 

comparison with prior work. 

A. Experimental Setup 

To provide a fair comparison with PDM, we modeled our 

experiments as closely with PDM as possible. We used the 

same combination of sixteen workloads from the EEMBC 

Multibench benchmark suite [6], which is an extensive suite 

of multicore benchmarks that primarily model a wide variety 

of realistic embedded systems. Each workload was a 

collection of compute kernels processing a specific dataset 

and included domains such as image processing, networking, 

md5 checksum calculation, Huffman decoding, etc., with 

image processing as the prominent domain. Since each 

workload was a collection of specific compute kernels, each 

of which performed a single task or a combination of similar 

tasks, the kernels essentially represented a single phase of 

execution. Therefore, without loss of generality, we assumed 

that each workload represented a different phase. 

We simulated the system using Perl scripts for each phase 

to completion for the optimal, base, PDM, and DynaPDM 

configurations for all executions of each phase. To collect 

cache miss rates, we used the same homogeneous dual-core 

system used for PDM with separate, private L1 instruction and 

data caches modeled with GEM5 [3] and used McPAT [17] to 

calculate the system’s total power consumption. We evaluated 

the energy efficiency using the EDP,in Joule seconds: 

 
EDP = system_power * phase_running_time2        

         = system_power * (total_phase_cycles/system_frequency)2 

 

where system_power includes the core and cache powers and 

total_phase_cycles is the total number of cycles to execute a 

phase to completion. 

B. Results 

Fig. 3 shows the EDP savings of the optimal, PDM, and 

DynaPDM configurations normalized to the base cache 

configurations for a single execution of each workload/phase. 

To compare DynaPDM with PDM, we designated the base 

phase as rotate-16x4Ms32w8, which is from the image 

processing application domain. On average over all phases, 

DynaPDM achieved average EDP savings of 28% with 

savings as high as 47% for 64M-rotatew2. DynaPDM 

determined the optimal configurations for 63% (ten) of the 

phases and on average over all phases, the EDP was within 

1% of the optimal. DynaPDM showed an 8% improvement 

over PDM, and we note that PDM’s savings are best-case 

savings acquired only after extensive design-time effort.  

We concluded, from our experiments, that n < 5 was 

sufficient to determine configurations within 1% of the 

optimal on average, while minimizing tuning overhead. 

Specifically, we used n = 3, since n = 4 and n = 5 did not 

reveal any additional EDP improvements. Fig. 4 (a) illustrates 

the effects of n = 3 on DynaPDM’s configurations during 

executions j = 1 to n for the phases where DynaPDM 

determined the optimal configuration. For example, even 

though DynaPDM’s configuration on md5-32M4worker’s 

third execution (j = 3) resulted in an EDP 9% greater than the 

optimal, DynaPDM’s configuration on md5-32M4worker’s 

first execution (j = 1) was the optimal configuration, which 

was used for all subsequent executions of md5-32M4worker 

since the phase’s configuration is only updated if a better EDP 

is achieved. DynaPDM determined the optimal configurations 

during ipppktcheck-8x4M-4Worker, ipres-6M4worker, and 

md5-32M4worker’s first executions (j = 1) and within three 

executions (j ≤ 3) for 64M-rotatew2, rotate-520k-270deg, 

rotate-color-4M-90degw1, 4M-check, 4M-reassembly, and 

empty-wld, after which the phases executed in the optimal 

configurations for all subsequent executions.  

The distance window size Sd determines the 

granularity/length of the distance windows, and thus, the 

number of phases that need to be tuned at runtime since one 

phase is tuned for every distance window. Sd also affects the 

distance window table’s size (memory requirements), 

however, this size is minimal since only a few distance 

windows are created during the lifetime of the system. Also, 

the distance window table’s size can be fixed depending on 

the memory constraints of the system, and a replacement 

policy, such as least recently used, can be used when the table 

is full.  

 

Fig. 3: EDP savings normalized to the base cache configuration 
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                (b)                      (c) 

Fig. 4:  (a) The effects of n = 3 on EDP normalized to the optimal cache 

configurations and the distance window size tradeoffs with respect to the 

(b) percentage of phases tuned at runtime and (c) the percentage EDP 
savings compared to the base configuration. 

 



The value of Sd trades off the number of phases tuned (i.e., 

tuning overhead) and the configuration distances’ accuracies 

(i.e., EDP savings). Larger Sd reduces the number of distance 

windows, tuned phases, and tuning overhead, but may cause 

phases to map to distance windows that do not accurately 

represent the phases’ characteristics, resulting in less accurate 

configuration distances. Smaller Sd increases the number of 

distance windows, tuned phases, and tuning overhead, but 

may not necessarily increase EDP savings. Fig. 4 (b) and (c) 

illustrate the tradeoffs of Sd with the percentage of the phase 

space tuned at runtime and the percentage EDP savings 

compared to the base configuration, respectively. We 

empirically determined that Sd = 0.5 provided a good tradeoff 

between the number of phases tuned and EDP savings, tuning 

44% (seven) of the phases, and achieved EDP savings within 

1% of the optimal. Sd = 0.25 tuned 56% (nine) of the phases 

with no increase in EDP savings. Sd = 1 tuned 31% (five) of 

the phase space, but the average EDP savings dropped to 26%, 

a 7% reduction from Sd = 0.5.  

To evaluate Sd’s scalability to systems with larger phase 

spaces, we also evaluated a system with 31 phases using 

additional workloads from the Multibench suite. For brevity 

we omit the details and summarize the results. Sd = 0.5 and Sd 

= 0.25 tuned 22% (seven) and 39% (twelve) of the phases, 

respectively. We also evaluated smaller systems by reducing 

the phase space to only include the image processing phases 

(six phases), and Sd = 0.25 tuned 67% (four) of the phases, 

while Sd = 0.5 and Sd = 1 both tuned 50% (three) of the 

phases. These results show that, in general, DynaPDM has a 

greater impact as the phase space increases, since DynaPDM 

tunes a smaller percentage of the phase space, thus achieving 

larger EDP savings with reduced tuning overhead. 

V. CONCLUSIONS 

In this paper, we presented dynamic phase distance 

mapping—DynaPDM—a runtime phase-based tuning method 

that dynamically correlates a known phase’s characteristics 

and best configuration with a new phase’s characteristics to 

determine the new phase’s best configuration, thereby 

reducing tuning overhead and eliminating designer effort. 

DynaPDM provides extensive contributions as compared to 

the most relevant prior work, phase distance mapping (PDM). 

PDM required a priori knowledge of the applications, 

applications’ phases, and system configurations and extensive 

design-time effort to achieve significant energy delay product 

(EDP) savings, thus, PDM is not suitable for large or general 

purpose systems. Comparatively, DynaPDM is entirely 

dynamic, adapts to runtime phase changes, and requires no 

designer effort. DynaPDM achieved average EDP savings of 

28% and determined configurations within 1% of the optimal.  

Future work includes evaluating DynaPDM’s scalability to 

many core systems, where the tuning hardware could impose 

performance bottlenecks and may require several tuning 

clusters. We also plan to explore more complex systems (e.g., 

heterogeneous systems) and incorporate additional tunable 

parameters. 
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