
2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

Received March 10, 2015, accepted March 30, 2015, date of publication April 14, 2015, date of current version April 25, 2015.

Digital Object Identifier 10.1109/ACCESS.2015.2422783

Application-Specific Customization of Dynamic
Profiling Mechanisms for Sensor Networks
LU DING1,2, (Member, IEEE), ADRIAN LIZARRAGA3, (Member, IEEE), ASHISH SHENOY1,4,
ANN GORDON-ROSS5, (Member, IEEE), SUSAN LYSECKY3,6, (Member, IEEE), AND
ROMAN LYSECKY3, (Senior Member, IEEE)
1University of Arizona, Tucson, AZ 85721, USA
2Western Digital Technolc Inc., Irvine, CA 92612, USA
3Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721, USA
4Riverbed Technology Inc., San Francisco, CA 94107, USA
5Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
6Zyante Inc., Los Gatos, CA 95033, USA

Corresponding author: A. Lizarraga (adrianlm@email.arizona.edu)

This work was supported by the National Science Foundation under Award CNS-0834080 and Award CNS-0834102.

ABSTRACT To reduce the complexity associated with application-specific tuning of wireless sensor
networks (WSNs), dynamic profiling enables an accurate view of an application’s runtime behavior, such
that the network can be reoptimized at runtime in response to changing application behavior or environmental
conditions. However, the dynamic profiling must be able to accurately capture application behavior without
incurring significant runtime overheads. Since application- and sensor-specific constraints dictate the
profiling requirements and tolerated overheads, designers require design assistance to quickly evaluate
and select appropriate profiling methodologies. To increase designer productivity, we formulate profiling
methodology design guidelines based on extensive evaluation and analysis of a variety of profiling method-
ologies suitable for dynamically monitoringWSNs with respect to network traffic overhead, power, and code
impacts associated with each method. While energy consumption increases are reasonable, ranging from
0.5% to 2.6%, network traffic, code size, and computation time overheads can be as high as 66.2%, 75.9%,
and 136.6%, respectively. Our results show that these overhead variations are highly application specific,
and a single profiling method is not suitable for all types of application behavior, thus necessitating,
application-specific profiling methodology customization. To facilitate rapid development of these profiling
methodologies, we present a profiler-customization methodology consisting of a code generator module,
overhead estimation module, and profile data management module. Using our profiling-customization
methodology, designers can rapidly evaluate the overhead of different profiling methodologies, and
automatically integrate the most appropriate methodology into the application at design time.

INDEX TERMS Adaptive algorithm, dynamic profiling and optimization (DPOP), dynamic profiling,
embedded software, wireless sensor networks (WSN).

I. INTRODUCTION
The rapid proliferation of increasingly capable wireless
sensor networks (WSNs) with massive numbers of con-
stituent nodes/platforms has enabled a wide range of new
application possibilities. With each different application,
designers have a unique set of application requirements
and constraints, such as lifetime, responsiveness, reliability,
throughput, etc., that must be adhered to. For example, a
disaster response application requires high responsiveness
and reliability to survey damage or detect survivors, but may
only require a lifetime of days or weeks. Conversely, an
automated vineyard irrigation system would have a longer

lifetime requirement since this system would operate on the
order of years.

To achieve various application requirements, designers
can tune/specialize configurable node-/platform-level param-
eters, such as voltage level, operating frequency, sensing fre-
quency, processor mode, communication baud rates [26], etc.
Designers can also consider numerous protocol-level design
choices, such as power cycling to sensing units [43], data
aggregation and filtering [24], etc. While the effects that var-
ious parameter configurations have on high-level application
requirements/constraints (i.e., design metrics) have been well
documented, balancing numerous competing design metrics

VOLUME 3, 2015
2169-3536 
 2015 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

303



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

remains challenging (e.g., increasing the sensing frequency
(responsiveness) typically reduces lifetime).

To further complicate WSN design, design metrics are
highly application specific and accurately predicting
application behavior at design time is extremely challenging.
Tuning the underlying platform to inaccurate application
behavior estimations can yield either suboptimal results or
negatively impact design metrics.

To alleviate some of the complexity associated with
application-specific tuning and design of WSNs, we have
begun to develop a fundamental dynamic profiling and
optimization (DPOP) framework [7], [8], [50]. DPOP not
only reduces designer effort but also increases accessibility
to application experts (i.e., platform users) by abstracting
much of the underlying platform-specific knowledge. While
platform designers are typically engineers with the requisite
understanding of the hardware and software required to
develop the WSN platform, application experts that use these
platforms, as defined in [31], are often not engineers, but
rather scientists, biologists, or teachers that simply provide an
initial software implementation of a WSN application. Thus,
to maximize the applicability and usability of design frame-
works, these frameworks must be cognizant of wildly varying
usage scenarios, and provide design tools and interfaces for
any end users (e.g., platform designers, application
experts, etc.

To address these challenges, DPOP employs a
flexible and reconfigurable profiling methodology for
application-specific tuning and design of WSNs. The
profiling methodology is composed of five configurable
modules, where each module has multiple options. Users
can easily create a customized profiling methodology based
on application-specific behavior to collect sensor status and
application behavior data during runtime. This profile data
can then be used by platform designers to optimize the sensor
network architecture or by application experts to analyze
and adjust application behavior and/or functionality. DPOP
also estimates incurred profiling overheads, which can enable
users to evaluate the profiling’s impact on design metrics.
DPOP’s features eliminate the need for application experts
to possess any technical expertise while enabling an accurate
view of the deployed application’s behavior, precluding the
challenging and lengthy effort to create an accurate sim-
ulation environment. Additionally, this dynamic profiling
enables monitoring how the application responds to changes
in environmental conditions or changes in the underlying
WSN (e.g., failed nodes, newly introduced nodes, changes
to the network topology, etc.), which provides opportunities
for dynamically re-optimizing and updating the underlying
platform accordingly.

In prior work, we investigated dynamic profiling of
sensor-based systems [8] with initial efforts focused on
evaluating several profiling methods for dynamically moni-
toring sensor-based platforms and analyzing the associated
network traffic, energy consumption, and code impacts of
these profiling methodologies. Network traffic overheads

ranged from 7.9% to 32.2%, while energy and code size
overheads remained reasonable with a maximum overhead
of only 0.06 milliamp-hours and 1.4 kilobytes (or 3.5%),
respectively. In other works, we have begun to consider
various optimization methodologies [3], [7], [49] to quickly
and efficiently determine an appropriate system configura-
tion, with dynamic optimization of sensor nodes using the
DPOP framework, resulting in up to an 83% improvement in
overall design costs compared to a statically optimized node
configuration.

Whereas these prior works provided sound foundations
towards a complete DPOP framework, many challenges
remain to be addressed. As compared to these prior works,
in this paper we present novel contributions and signifi-
cant enhancements to the existing DPOP framework with
respect to the methods and tools targeted towards dynamic
profiling. Specifically, the contributions include integrated
tools to enable an application expert to explore various
profiling methodologies, estimate the corresponding
overheads incurred by these methodologies, and automati-
cally generate the instrumented application code to include
the desired profiling methodology’s functionality.
Section II and Section III provide necessary background in
related works and a short overview of the existing DPOP
framework, while the remainder of the sections elaborate on
this paper’s major contributions. Section IV enumerates the
various profiling metrics observed and strategies employed
within the DPOP framework and how these configurations
impact application profiling. Section V details the compo-
nents within the profiler module, and Section VI presents
experiments across a variety of profiling methodologies and
benchmark applications to evaluate the resulting overheads in
terms of network traffic, battery, code size, and computational
overhead. Finally, Section VII summarizes our conclusions
and future work.

II. RELATED WORKS
Previous work on WSN design and optimization presents
various approaches for estimating WSN behavior
and/or performance. These approaches can be broadly clas-
sified as offline (static, design time) or online (dynamic,
runtime). Offline approaches, such as Beretta et al. [23],
leverage analytical models of network or node behavior to
estimate various design metrics at design time. In an
alternative approach, Bai et al. [32] augments WSN appli-
cations with statistical models that are generated offline
to enable estimation of various performance metrics, such
as lifetime, at runtime. However, since these performance
models are generated offline, these models are typically only
valid for a fixed set of network configurations. Runtime opti-
mization of WSNs requires online profiling approaches that
can accurately collect application behavior while considering
dynamic application execution characteristics.

Dynamic optimization relies on accurate profiling results
collected at runtime. To the best of our knowledge, there
exists no holistic, accurate, robust method to capture

304 VOLUME 3, 2015



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

external application-specific stimuli. While many dynamic
profiling techniques exist, these techniques are highly
system-specific, low level, not generally portable, and cannot
provide real time status of nodes within a network.
For example, working set analysis [1] monitors the current
set of executing instructions to determine changes in system
execution behavior. Changes in cache requirements can be
determined using counters embedded within the cache
structure [47], and simple methods can observe idle
periods [17]. Whereas idle period observation is a general-
ized, high-level mechanism to profile a system when applied
to WSNs, little information on overall system behavior can
be inferred.

EnviroLog [35], which is used to achieve repeatability
of asynchronous events in WSNs, logs all issued function
calls and the call’s parameters to record module events.
Marionette [30] and L-SNMS [19] are tools that allow a PC
to access the functions and variables of a statically-compiled
program executing on a sensor node at runtime. However,
such low level information about function calls and variables
cannot be easily used to analyze status of the nodes and
network. SNMS [21] uses a querying and logging system
to collect user-selected attributes/behavior and unexpected
events. This method requires users to manually retrieve this
information, since each node maintains a local log, and thus
this method is not suitable for dynamic optimization.
PAD [56] uses a lightweight packet marking scheme, infer-
encemodel, and inference engine to generate a fault report for
the entire WSN, which does not provide specific data about
node status and application behavior.

The distributed nature of WSNs complicates adoption of
existing profiling methods. One of the major challenges
of dynamically profiling sensor-based platforms is
accurately capturing application behavior without incur-
ring significant overhead or significantly altering system
behavior. In many simulation frameworks, application
experts must specify application-behavior via an input
file [28], a mathematical model [18], or through synthetic
data generation [57]. WSN emulators can enable control of
particular sensor nodes providing controllability and repeata-
bility for testing, evaluating, and comparing networks [13].
However, an emulation and profiling framework is better
suited to developing and benchmarking WSNs, since this
framework would incur significant overhead in deployed
systems. Application layer tools can also be used to assist
users in developing complex applications on heterogeneous
WSNs. An important inclusion in these tools is support for
runtime monitoring of the deployed WSN, and providing
data collection and visualization capabilities. While these
runtime monitoring techniques are applicable to monitoring
a deployed system, as the authors themselves point out, the
overhead of these techniques can be significant [34].

Since battery life is a dominant constraint in many WSNs,
many simulation frameworks integrate power estimation.
Discrete-event simulators typically estimate energy
consumption by tracking transitions in components

(e.g., CPU, transceiver, etc.), operating modes, and using
known current and voltage values associated with each
mode to incrementally determine the component’s dissi-
pated power. The SENSE [20] and PAWiS [15] simulators,
for example, incorporate this component power dissipation
model with a simple battery model in order to simulate
each sensor node’s power profile. In another power profiling
technique, current draw is pre-measured for a variety of CPU
modes as well as the sensor board and EEPROM [55]. These
values are integrated into to an event-driven simulator for
TinyOS applications [44] to determine how much time each
component spends in a particular operation mode, thereby
calculating energy consumption of individual nodes.
Quanto [45] similarly tracks power by integrating current
consumption information into the core OS and driver files
of TinyOS. By recording the transfer of hardware power
states and high-level activities of all nodes in the network,
Quanto can provide a detailed breakdown of energy
consumption over time for individual nodes or the entire
network. Similarly, network-level energy consumption can
be estimated through a combination of COOJA and
MSPSim [25]. In addition to node-level power estimation,
which similarly combines time spent in different operating
modes with pre-measured consumption of these components,
a network simulator is integrated into the framework to
account for communication between nodes based on external
emulation of the radio chip, sensor boards, and flash memory.

Simulation frameworks can also provide information
pertaining to low-level hardware and network parame-
ters. TOSSIM [44] tracks statistics, such as packet loss,
CRC failure rates, as well as the length of send queues.
Avrora [11] monitors hardware interrupts, I/O registers, and
memory usage. The ATEMU framework [28] additionally
provides platform designers with insight into the number of
backoffs performed after transmission collisions.

These simulators can be broadly categorized by the
granularity of simulation available, scalability to larger net-
works, as well as the underlying models utilized within the
framework. While Avrora and ATEMU are cycle accurate,
instruction level simulators, TOSSIM is an interrupt level
discrete event simulator. Furthermore, the addition of energy
models to these simulators, like AEON [42] to Avrora and
PowerTOSSIM to TOSSIM, enables estimation of energy
consumption.

While it is clear that simulation frameworks are an essential
part of a designer’s tool kit to evaluate and test prototype
designs, designers must still make assumptions or predictions
about the deployment environment, which can lead to inaccu-
rate application behavior. Furthermore, Handziski et al. [54]
recognized that the lack of a wide range of protocol models
also adds uncertainty to simulation results. To avoid many of
these challenges and error-prone methods, our work performs
profiling during runtime after the WSN has been deployed
into the WSN’s intended environment.

Each of the presented related works explores a subset of the
functionality required for runtime profiling of WSNs in the

VOLUME 3, 2015 305



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

FIGURE 1. Dynamic profiling and optimization (DPOP) framework highlighting various tasks including
specifying design metric evaluation equations and assigning design metric weights to indicate the
relative importance between each design metric.

DPOP framework. The various models and techniques used
within these works can be leveraged to design an accurate
profiling mechanism with low overhead. However, given that
the analysis of profiling techniques in these works is not
always a primary focus, but rather just a small part in the
larger development process, it remains difficult to determine
which profiling method is most suitable, or how to customize
existing methods, for a specificWSN application. The task of
properly comparing and evaluating the performance of
profiling approaches is additionally hindered by the large
diversity in implementations. That is, the metrics for eval-
uating the various approaches are largely dependent on the
underlying application and the type of parameters that are
profiled.

III. DPOP FRAMEWORK
The DPOP framework [7], [8], [50] supports the profiling
and optimization ofWSNs given application expert-specified
design metrics. Note that while we provide an overview of the
entire DPOP framework in this section, this paper focuses on
the profiling methodologies supported by the Profiler
module, which we discuss later in this section. Fig. 1 illustrate
the proposed DPOP framework, which is composed of three
main components: the Sensor-Based Application, the
Application Expert Design Metric Specification, and the
DPOP module.
The Sensor-Based Application is the physical deployment

of the application within the intended environment and con-
sists of sensor nodes, intermediate processing and routing
nodes, and actuator nodes, working together to achieve the
desired application functionality.

In addition to how the underlying platform implements
the application, an application expert may also be interested
in the performance of the platform in terms of high-level
design metrics such as the expected lifetime of a node or
sensor network, the time required to process a single packet,
or the time required to process and respond to a sensor event.

The Application Expert Design Metric Specification allows
an application expert to define which design metrics are of
importance to a particular application, and of those design
metrics, what are the acceptable or unacceptable values of
each, thereby providing a method to interpret the resulting
system achievement within the context of a given application.
First, for each design metric, an application expert creates a
fuzzy-logic inspired classification function that relates a raw
metric value (i.e., lifetime of 2 months) to a fuzzy classifica-
tion term. Although the selection of which fuzzy terms are
utilized for a given system could be arbitrarily defined by
the application expert, the current DPOP framework utilizes
the following three classifications for specifying the fitness
of individual design metrics: Fair, Good, and Superior, as
shown in Fig. 1. Using this classification mechanism, an
application expert simply needs to specify the range of values
that correspond to a Fair, Good, and Superior design for that
given metric. As application experts are unlikely to be experts
in optimization methods, this fuzzy classification scheme
provides a relatable method for mapping design metric values
to relative rankings using common terminology. To determine
the relative importance of each design metric and how the
metrics relate to the overall design quality, the application
expert specifies a set of fuzzy design fitness rules. These
fuzzy design fitness rules are specified using English
sentences that map the fuzzy classifications of the design
metrics to a fuzzy classification of the overall design.

TheDPOPModule is a separate component—implemented
within the base station node or as a separate sensor
node—dedicated to the profiling and optimization of the
underlying sensor-based platform, as the platform interacts
within the intended environment.

The Optimizer Module is provided with a set of
configurable parameters for a given platform. In our case,
we considered the Crossbow IRIS platform [39] and defined
the processor frequency, processor voltage, RF output power,
RF frequency, and data rate as configurable parameters.

306 VOLUME 3, 2015



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

FIGURE 2. Profiling metric overview, including what, whom, when, and how to profile, and the profiling
granularity, which can be used for different profiling methodologies, and the metrics’ configuration options.

The Optimizer Module is responsible for evaluating
possible node configurations (particular settings for each
configurable parameter) within the design space to determine
which configuration best meets the application requirements
as specified during Application Expert Design Metric
Specification. Given the design metric evaluation specifica-
tion and dynamic profile data, the Optimizer Module uses
an equation-based estimation methodology that estimates
each design metric using both the node configuration and
profile data. The Optimizer Module then explores the design
space by evaluating various node configurations to determine
which node configuration is best suited for a given application
(i.e., the configuration yielding the lowest overall design
cost). Details of the implementation of theOptimizer Module,
design metric specification, and evaluation of the underlying
optimization algorithms can be found in [3], [5], and [6].
As the application expert revises design metric goals, or as
the application stimuli changes, the Optimizer Module will
re-optimize the platform by selecting a configuration to adapt
to these changes.

The Profiler Module, which is the focus of this work,
is responsible for dynamically monitoring the application
behavior while the sensor-based system is deployed, tracking
statistics of interest to the application expert, and providing
these observations to the Optimizer Module to determine
how to configure the underlying platform to best meet user-
defined goals. The following sections detail the types of
metrics observed by the profiler, the mechanisms utilized to
dynamically collect the corresponding profile data at runtime,
and the underlying implementation of the profiler module.

IV. DYNAMIC PROFILING METRICS AND
CONFIGURABLE MODULE OPTIONS
Within the DPOP framework, dynamically profiling a
sensor-based application requires profiling methods to be
incorporated within each node to monitor the execution
behavior for individual sensor nodes. Additionally, in order
to optimize a sensor-based system, a global view of the entire
system is needed. As such, the resulting node-level profile
data must eventually be transmitted and analyzed by the
system-level Profiler Module. Numerous profiling strategies
can be employed to collect the pertinent application-level
information. Fig. 2 highlights the profiling metrics that the

profiling methodologies can consider: 1) what application-
level parameters need to be profiled; 2) whom (which nodes)
to profile within the network; 3) when to perform profiling;
4) how to transmit the profile data; and 5) what granularity
of profile data needs to be maintained. Each profiling metric
has several configuration options, which enable profiling
specialization.

A. WHAT TO PROFILE
WSN literature provides numerous design metrics and
tunable parameters considered by platform designers and
application experts in their optimization efforts, with
lifetime being one of the most prominent design
metrics [2], [9], [12], [14], [37], [38], [53]. In addition to life-
time, designers also seek to balance competing metrics such
as latency (e.g., the time to transmit a packet over one hop),
packet delivery rate [38], throughput (e.g., the number
of bytes transmitted per node per second) [53], transceiver
sleep/active states to mitigate the time necessary to transition
between power states and respond to an event [9], [14],
coverage area (e.g., the physical area monitored by
sensors) [22], [33], etc. While numerous design metrics can
be considered and could easily be incorporated, currently
DPOP supports lifetime, reliability, and throughput goals.

Based on these design metrics, the Profiler Module
collects low-level execution statistics (e.g., sensor sampling
rate, packet transmissions, battery charge, etc.) such that the
Optimizer Module can evaluate howwell the current platform
configuration meets user-defined goals. Determining what
low-level metrics to profile within a sensor-based platform is
thus related to both the high-level design metrics of interest
and the estimation method utilized to evaluate those design
metrics. Within the current DPOP framework, lifetime,
reliability, and throughput are defined as functions of the
configurable parameters and application profiling
parameters. Depending on which high-level design metric
is being evaluated, the Profiler Module observes a subset of
parameters from the following application profile parame-
ters: sensor sampling rate, time between successive packets,
current battery voltage, number of packets transmitted by an
individual nodes, and the number of packets dropped by
an individual node. While some application parameters can
be measured statically, such as the energy consumption to

VOLUME 3, 2015 307



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

process a sensor event or transmit a predefined number of
bits, the Profiler Module focuses on dynamic events that are
difficult to measure at design time. For example, while the
sensor sampling rate may be set within the application code,
there may be different rates for different modes within the
application. Determining when these modes are triggered or
the duration of these modes may not be known at design time
and are instead observed after the application is deployed.

We note that these what to profile configurable options are
by nomeans an exhaustive list of low-level execution statistic,
rather as the set of design metrics grows or as the underlying
estimation mechanisms changes, these parameters will also
change.

B. WHOM TO PROFILE
Profiling all individual sensor nodes is not always necessary
since, for instance, closely neighboring nodesmay experience
nearly identical input stimuli and environmental conditions.
Therefore, the profiling methodology must consider who
(which nodes) is profiled within the network. Options include
profiling an individual node, a cluster of nodes, or profiling
the network as a whole. The selection of whom to profile is
affected by both application and network topology. For
example, the profiler may want to profile only the nodes
tasked with forwarding packets since these nodes may have
higher energy consumption for which optimizing lifetime
would be of critical importance. Alternatively, the profiler
may profile a single sensor node that is within a known
high activity area (e.g., wildlife monitoring) to determine the
minimum sampling rate required by the application.

It is also possible that every node in the entire networkmust
be profiled. In this situation, profiling overhead must be care-
fully considered since per-node profile data must traverse the
communication network. To limit communication overhead,
nodes may aggregate or average the collected profiling data
as the data is forwarded to the Profiler Module. However,
profiling at different levels of granularity provides the ability
to tradeoff profiling detail with profiling overhead. We note
that each node is still responsible for obtaining and transmit-
ting the corresponding profile data. By changing whom to
profile, the profiling for some nodes may be deactivated.

C. WHEN TO PROFILE
Given the desired profile data to be collected, the frequency
at which profiling is performed directly impacts both the
accuracy of the profiling data as well as the intrusiveness
of the profiling methodology. Profiling can be performed
periodically at each node or cluster of nodes using an internal
timer to indicate when the profile data should be forwarded.
Although the performance and energy consumption overhead
of periodic profiling is easily predicted, dynamic activity
patterns of individual nodes or across the WSN may be
unpredictable and periodically collected profile data may not
accurately capture the current execution behavior.

Alternatively, nodes can directly detect any event that is
related to the required profile data and directly transmit upon

detection of flagged events to the Profiler Module as these
events occur. This method provides the advantage of highly
accurate profile data, but at the expense of potential increases
in code size due to the need to detect flagged events and
packet transmission overhead.

An alternative method to control when to profile is by
requiring the Profiler Module to explicitly send a profile
request packet to the nodes. While a packet transmission
overhead is incurred to transmit the profile request packet,
the Profiler Module can dynamically control how often these
requests are sent based on the currently collected profile data
or observed behavior patterns.

D. HOW TO PROFILE
The method of transmitting the collected profile data back
to the Profiler Module impacts the WSN’s network
traffic load as well as nodes’ energy consumptions, since
the radio subsystem must remain active for longer durations
to transmit/forward the profile data packets. Currently, our
profiler implementation provides support for either transmit-
ting profile data as separate profile packets or appending
(i.e., piggybacking) the profile data to existing packets
already transmitted by the application. Requesting nodes to
send separate profiling packets may increase overall network
traffic, since each dedicated profiling packet must also
include the packet header. Instead, by piggybacking the pro-
file data onto existing data packets, the profiling data can
be transmitted without requiring an additional packet header.
However, piggybacking profile data onto existing data pack-
ets may require an individual sensor node to store the profile
data until the sensor node transmits a data packet. Currently,
profile data is piggybacked on existing data packets if the
application data requires fewer bytes than available in the
payload. Thus, if a large amount of data is being transmitted
within the network, the profile data may experience delays
before arriving at the Profiler Module.

E. PROFILING GRANULARITY
Finally, the profiling granularity denotes the level of
aggregation of the profiling data within the network. In the
case of no aggregation, all profile data collected at the node
level is forwarded to theProfilerModule. By forwarding all of
the profile data, the Profiler Module can maintain a detailed
record of each node, enabling a detailed view of the entire
network. However, the tradeoff is an increase in the network
traffic and energy consumption, particularly for intermediate
nodes, since these nodes must transmit additional packets.
An alternative strategy is to aggregate at the cluster head,
averaging the profile data collected for each node within
a cluster before forwarding a single profile packet to
the Profiler Module. This aggregation methodology limits
the number of packets transmitted, but increases the
computational complexity of the nodes tasked with
consolidating the node-level statistics. Furthermore, by
aggregating the profiling data, the accuracy of detected events
may be diminished. Thus, aggregation would be appropriate

308 VOLUME 3, 2015



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

FIGURE 3. The Profiler Module is composed of an estimation module, code generation module, and a data processing
module.

for applications that do not require such a detailed view
of node or WSN behavior. In the extreme situation, the
profile data may be aggregated for all nodes. Thus, instead
of tracking activity based on nodes or cluster, all profile data
arriving at the Profiler Module is aggregated into
a single value.

F. INCORPORATING PROFILING
CONFIGURATION OPTIONS
The profiling metrics and the metrics’ configuration options
available within the Profiler Module (Fig. 2), enable a variety
of permutations to customize how the dynamic profile data
is collected. Incorporating the profiling methodologies into
the target application does not directly impact the function-
ality of the application. Rather, the profile code is inserted
within the underlying software infrastructure for packet trans-
mission/reception and sensor interfaces and non-intrusively
monitors the deployed application. The following sections
highlight the underlying implementation of this module.

V. PROFILER MODULE IMPLEMENTATION
Although these dynamic profiling methodologies provide
powerful methods to monitor and optimize
WSN deployments, implementation and evaluation of these
methodologies must be accessible to application experts.
Fig. 3 depicts the Profiler Module, which comprises
three components—a code generator, an estimation module,
and a profile data management module—that aid application
experts in the customization and evaluation of profiling
methodologies. At design time, the code generator is used
to simplify the task of incorporating the desired profiling
methodology within the existing application code. With the
newly augmented application, the estimation module
determines the resulting profiling overheads to help an appli-
cation expert analyze the expense of profiling the WSN.
If the incurred overheads are acceptable, the application is
deployed. If the incurred overheads are not acceptable, the
application expert can either revise the application

requirements and/or functionality, or revise the profiling
configuration options (Section IV). At runtime, the profile
data management module receives profile data packets gen-
erated from the sensor nodes, cluster heads, and base station,
and parses each profile packet, aggregating the profile data
into an intermediate format required by the Optimizer
Module. Details of each component are discussed in the
following subsections.

A. CODE GENERATOR MODULE AND PROFILING LIBRARY
Based on the configurable options available within the
Profiler Module (Fig. 2), a variety of permutations can be
selected to customize how the profile data is collected.
Integration of profiling methodologies within the application
code involves modifying the original application code by
adding in profiling-specific variables, data structures, and
functions. To ensure integration of the profiling mecha-
nisms into the target application does not directly impact the
functionality of the application, the profile code is inserted
within the underlying software infrastructure for packet trans-
mission/reception and sensor interfaces. A code generator
and profiling library has been integrated within the
DPOP framework to not only provide a clear separation
between the initial application development and integration
of the profilingmechanisms, but to reduce development effort
and expertise needed by application experts.

Fig. 4 depicts a sample of the code generation process.
To automate the integration of the profiling methodologies,
the code generator needs to identify basic regions within
the application code, such as variable declaration, function
calls, macro definitions, along with NesC-specific regions,
such as the signature blocks, implementation of signal events,
and wiring in the configuration. Compiler directives—profile
markers—are provided in the form of #pragma DPOP,
which are inserted by the application expert in the corre-
sponding locations. The code generator then parses the orig-
inal application code and inserts the appropriate profile code
in these regions. For example, an application expert may have

VOLUME 3, 2015 309



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

FIGURE 4. User application code containing the appropriate profiling markers in addition to the existing
application code.

TABLE 1. DPOP profile markers inserted into the original application code by the application expert are translated by the code generation module to
integrate profiler-specific code.

code that is executed each time a data packet is transmitted
within a send_data_packet function (Fig. 4). In order to
profile an execution statistic, such as the time between
packets, profile code needs to be executed on every
occurrence of this event within the send_data_packet
function. Rather than directly modify the initial function,
the code generator moves the original code located between
the #pragma DPOP send start and #pragma DPOP
send stop markers to a new user_send_data_
packet function. The send_data_packet function
then becomes a wrapper that integrates the necessary profil-
ing structures and code for a given profiling methodology and
calls the original user code.

Table 1 depicts similar profile marker abstractions pro-
vided in the DPOP framework for profiling the required

events within the profiling methodologies. We note that an
application expert does not need to be aware of the specific
profiling methodology in use to annotate the code. Rather,
generalized profile markers are provided to annotate regions
of code, such as variable or function declarations, as well as
code for packet transmission, reception, and sensor reading.
The code generator is responsible for analyzing the
customized profiling methodology selected by the applica-
tion expert to determine the profile code that must be inserted
into the application code.

A generic profiling library is provided to support the large
number of profiling methodologies as well as the code
generation process. The profiling library defines all
required data structures and functions needed to support
all possible profiling configuration options (Fig. 2).

310 VOLUME 3, 2015



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

Each function has function-specific properties, including
the function prototype, function input, function outputs,
global and local variables utilized by the function, as well as
the interfaces, macros, and header files. In the profile code
generation process, the code generator gathers the proper-
ties of these functions based on the profiling methodology,
and generates five files containing: profiler headers, profiler
variables, profiler macros, profiler interfaces, and profiler
function implementations. The first four of these files specify
the customized set of header file includes, variables
declarations, macro defines, and function interfaces that
will be inserted into the original application code. The last
file provides the customized implementation of the selected
profiling methodology. Note that these files can also provide
users with a method to estimate the extra program code
required for the selected profiling methodology. Although the
current profiling library and integration framework has been
initially developed for TinyOS, the generic profile markers
and profiling library can be readily adapted to other operating
systems and platforms.

The code generator module combines various functions
within the profiling library to construct customized profiling
methodologies. Integration of profiling within the application
will require the use of additional resources to support these
profile functions. As sensor nodes are resource constrained,
integration of these functions should not only guarantee that
the functionality of the new application remains unchanged,
but must ensure the performance of the sensor nodes with
the instrumented application code will not experience unac-
ceptable degradation. Thus, the overhead estimation module
component is designed to help the application expert evaluate
the overhead incurred by the customized profiling
methodology selected.

B. OVERHEAD ESTIMATION MODULE
The overhead estimation module determines the corre-
sponding overheads for a given profiling methodology.
The estimated overheads vary depending on the application
and profiling methodology selected. Currently, we consider
five types of overhead: network overhead, energy consump-
tion overhead, code size overhead, and computation time
overhead.

Since theDPOP framework’s current configuration options
(Fig. 2) offer over 6,000 different profiling methodologies,
measuring the corresponding overheads for each profiling
methodology at runtime is not practical or feasible. Instead,
the estimation module estimates overheads by character-
izing how each configuration option within the profiling
methodology (selection of what, whom, when, how,
and granularity) contributes to each of the overhead
metrics:

OverheadPMX = f (OwhatOwhomOwhenOhowOgranularity). (1)

where Overhead PMx is the combined overheads of the
configurable options.

1) NETWORK TRAFFIC OVERHEAD
The network overhead is the percentage of extra packets
transmitted in the network, measured by computing the
number of bytes transmitted within a profiled network
compared to the total number of bytes transmitted within the
original application code. Lower network traffic overheads
are desired, since this implies that the integration of the
profiling does not significantly increase the burden of the
underlying network by increasing the number of collisions,
increasing radio usage, or significantly altering the energy
consumption. If the original application already has heavy
network traffic, the addition of profile data has a smaller
impact than an application with sparse network traffic. Thus,
the methodology utilized must be carefully selected.

The what and how profiling metrics dictate the number of
bytes needed to capture the profile data. The what profiling
metric indicates which low-level execution statistics need to
be monitored, and each design metric monitored requires
2 bytes. The how profiling metric impacts how profile data
is transmitted to the Profiler Module. Using piggybacking,
the number of packets within the network does not increase
since the profile data is appended to existing data packets, but
the packet size increases due to the additional profile data.
This packet size increase is accounted for in the overhead
evaluation.When using separate profile packets, the overhead
must also account for the packet header attached to the profile
data. The network overhead incurred (L) in terms of the
number of extra bytes for a given profiling methodology can
be estimated as:

L = Nmetric × 2+ lheader (bytes) (2)

where N represents the number of metrics profiled, lheader is
the length of the packet header, and α specifies if a separate
profiling packet is sent (1 = separate packet, 0 = piggy-
backing). In the case of TinyOS, lheader is equal to 13 bytes.
In addition, the number of packets transmitted in a given time
must also be considered. The whom, when, and granularity
profiling metric impact the number of transmissions (N ):

N = nnodes +
∑
i

βi × ccluster i + (m−
∑
i

βi) (3)

where nnodes is the number of nodes actively profiling (which
send one profile data packet to the cluster head every profile
period), cclusteri is number of sensor nodes within a particular
cluster (i = 1, . . . ,m, where m is number of clusters), and
βi indicates whether the ith cluster head is responsible for
aggregating the profile data (no aggregation versus
aggregation). Thus,6i βi ∗ cclusteri represents the profile data
packet directly forwarded by cluster, and (m − 6i βi) repre-
sents the aggregated profile packets sent by the cluster head.
Thus, the network overhead for a particular profiling
methodology is L ∗ N.

2) ENERGY CONSUMPTION OVERHEAD
Since most sensor nodes have stringent power constraints,
the energy consumption of the application will significantly

VOLUME 3, 2015 311



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

FIGURE 5. Current consumption for the microcontroller.

FIGURE 6. Current consumption of (a) the original application and (b) application with profiling. (a) Original Sensor
activity with no profiling. (b) Active state extended by logging profile data.

affect WSN’s performance. The energy consumption
overhead provides the application expert with a preview of the
energy requirements of the instrumented application as
compared to the energy requirements of the original
application. The energy consumption overhead incurred by
adding profiling to the application can be primarily attributed
to receiving and sending profiling packets, and collecting the
profile data. While applications have varying application-
specific requirements, the length of a profiling packet,
methodology configuration packet, and code needed to
collect the profile data are application independent. Thus, we
can measure the energy consumption of each event at design
time, and estimate the runtime energy consumption based on
the selected profiling methodology.

In an application written in NesC, power is managed
by TinyOS. Thus to analyze an application’s energy
consumption and the profilingmethodologies, an understand-
ing of the TinyOS power management strategy for platform’s
components is necessary. For each node, the microcontroller
remains in an idle state if no events need processing; the
radio remains in receivemode tomonitor the physical channel
and only switches to transmit mode when the application
requests to send data; and the sensor board draws a constant
current when accessed by microcontroller. Additional
considerations are required for applications using profiling.
Profiling requires the microcontroller to access the sensor

board (if needed) more frequently than the original
application to acquire and process the desired profile data
and the radio also switches to transmit mode more often
due to sending profile data (as in the case of separate
data packets).

The energy consumption measurements are based on the
Crossbow IRIS platform [39]. To detect the profiling over-
heads, current variations within the sensor node must be
tracked. The current can be recorded by placing a resistor
between the sensor node and power supply. We measured
the voltage across the resistor using a National Instruments
USB-6361X data acquisition module [40] to observe current
consumption trends, from which the power consumption was
determined. Since profiling only affects the microcontroller’s
active state and the radio’s transmit mode, all sensor node idle
states can be disregarded.

Through analysis of the current consumption of the sensor
node in the active state (Fig. 5) and transmit mode (Fig. 7),
and the overall application (Fig. 6), we identified three main
deviations between the original application and instrumented
application. First, an application with profiling requires the
microcontroller to wakeup every 10 ms (Fig. 5), since the
application expert may want to profile the time interval
between two events or take periodic samples. A timer is used
to provide a 10 ms resolution wakeup period, and a counter
is incremented each time the microcontroller transitions to

312 VOLUME 3, 2015



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

FIGURE 7. Current consumption for transmitting one profile data packet.

the active state. If the monitored event occurs faster
than 10 ms, the base timer can be augmented, however the
resulting energy consumption overhead incurred by the pro-
filing will increase. Similarly, the time resolution can be
increased to minimize the frequency at which the micro-
controller transitions to the active state. However, if a timer
is used within the application code, and the event to be
monitored occurs at a frequency greater than the existing
timer, the energy consumption overhead incurred by the timer
can be eliminated since the profiling methodology can use
the application’s timer instead of introducing a dedicated
profiling timer.

The second contributor to increased energy consumption
occurs at the end of the profile period, illustrated in Fig. 7.
At this time the microcontroller transitions to the active
state to process the profile data, pack the profile data
into a profile data packet, and transmit the profile packet.
Sending the profile packet requires the radio to switch
to transmit mode once more as compared to the original
application.

Finally, the duration of the microcontroller’s active state
is increased (Fig. 6). In the original application code, the
microcontroller enters the active state to access data from the
sensor board or transmit sensor data. In an application with
profiling, the microcontroller needs to additionally execute
the profile code to log pertinent profile data in addition to the
existing application behavior. Thus, the profiling extends the
duration of the active state.

Based on these observations, each time the timer triggers
the microcontroller to wake up, the microcontroller leaves
the idle state for approximately 400 us. For the aforemen-
tioned hardware, this will consume an extra 4µJ compared to
remaining in the idle state. Fig. 7 shows the extra active state
and transmission operation at the end of each profile period,
resulting in an additional 15.6 µJ of energy consumption.
Fig. 6 is a comparison between the active state in the original
application compared and the active state in the application
with profiling. As shown in the plots, profiling prolongs
the active state from 400 µs to 650 µs due to logging the

profile data. Thus, the final energy consumption overhead
during one profile period can be estimated as:

E = Ei

(
P
T

)
+ Es + EcNe, (4)

where Et is the energy consumption incurred each time the
timer triggers profiling, P is the profile period, and T is
time required to profile. Thus, P/T indicates the number of
additional active states incurred in one profile period. Es is
the energy consumption of processing the profile data and
sending the profile data packet at the end of profile period,
Ec is the extra energy used to log profile data, and Ne is the
number of times a user-defined event occurs in one profile
period.

3) CODE SIZE OVERHEAD
An additional consideration when evaluating various
profiling methodologies is the code size overhead, defined as
the size of the additional code required to perform profiling
as compared to the size of the original application code.
Code size overhead is related not only to the actual profiling
methodology, but is also a function of the code size of the
original application. For example, integrating a profiling
methodology that is responsible for monitoring the battery
voltage may need to integrate a driver to sample the battery
voltage. However, if the battery voltage interface has already
been used in the original application code, the code size
overhead will be smaller compared to an application in which
the driver was not initially used. Therefore, code size
overhead is not only determined by the specific profiling
methodology, but is impacted by the original application’s
basic functionality. Therefore, the code size is profiling-
specific and application-specific, and overhead estimates
from one application cannot be applied to any other
application. Thus, we only need to use a subset of the
profiling methodologies to measure the profiling overhead
for an application. This information is then abstracted to
estimate the code size overhead for the remaining profiling
methodologies.

VOLUME 3, 2015 313



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

TABLE 2. Overview of the seven profiling methodologies considered.

To determine a base estimation of the code size overhead,
we used seven of the profiling methodologies (Table 2),
which evaluate each of the configurable options available
within the current profiling library. The corresponding code
size overhead is determined by comparing the ROM usage
for the original application to the ROM usage for the instru-
mented application, using theAVR compiler [10]. To estimate
the code size overhead of a different profiling methodology,
the overhead estimation module determines which of the
seven base cases most closely matches the new configuration,
denoted as CSO.
Next, the overhead estimation module determines the

differences between the most similar base case (CSO) and
the new profiling methodology (CS). In the new configura-
tion, for every parameter (i) that has a different value than
a base case, the overhead estimation module determines an
additional base case (CSi) that is most similar with respect to
parameter i and computes the difference (di) in the measured
code size overhead between the CSO and CSi base cases. The
summation of these differences is added to the most similar
base code size overhead to estimate the code size overhead
for the new profiling methodology:

CS = CS0 +
∑
i

di. (5)

4) COMPUTATION TIME OVERHEAD
Integration of profiling methodologies within the application
code will result in additional computation for all nodes in the
WSN, ranging from sensor nodes that use timers to deter-
mine when to collect profiling data, to intermediate nodes
that may aggregate profile data, to base stations that may
need to transmit profile request packets. Thus, the impact of
computation time overhead must also be considered when
evaluating different profiling methodologies. The computa-
tion time overhead is defined as the percentage of extra CPU
cycles spent executing the profile code. The computation

time overhead has a direct impact on the microcontroller’s
energy, since more computationally-intensive tasks require
the microcontroller to remain in an active state for a longer
duration.

Since the DPOP framework’s profiling methodologies are
implemented using functions in the profiling library, evaluat-
ing the computation time of a profiling methodology can be
determined by measuring the computation time of individual
functions in the profiling library that are also used by the
profiling methodology. The computation time overhead (CT)
can be estimated as:

CT =
n∑
i=1

ti × (1/mi), (6)

where n is number of functions used by the profiling method-
ology, ti represents the computation time of an individual
profiling function, and mi represents the execution period of
a function.

To determine the computation time of functions in the
profiling library, we embedded each function in a specialized
testing application that is instrumented to obtain time stamps
with a microsecond precision before and after executing each
profile function. The differences in the timer readings provide
the time contributed by these profile functions, which are
translated to the number of CPU cycles. We ensure that
each application is executed long enough such that
nondeterministic activities, such as interrupts, become
negligible. The computation times for the profile functions
are stored in the profiling library to aid with estimating
computation time overhead. Table 3 provides the computation
times for a subset of the most common profile functions.

C. PROFILE DATA MANAGEMENT MODULE
The code generator module and overhead estimation module
help application experts to determine a suitable customized
profiling methodology at design time. At runtime,

314 VOLUME 3, 2015



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

TABLE 3. Computation time of profile functions.

FIGURE 8. Profile data packet format.

profile data collected by the profile code is inserted into
profile packets using a pre-determined format defined by the
ProfilerModule. The profile data management module parses
the various fields within the profile packets and stores the
accumulated profile data to be viewed by the application
expert or to be fed into the Optimizer Module.
Fig. 8 depicts the profile packet’s format. The 802.15.4

Header, AM type, and 802.15.4 CRC are fields added by
radio drivers and are transparent to the application expert.
The profile data management module uses the AM header
that is added by TinyOS to identify the source and destination
address of the profile packet. The PM field, which is added
by the Profiler Module, indicates whether this is a profile
packet and the profiling methodology used. When the profile
data management module receives a profile packet, the
profile data management module first parses the PM field
to determine which profiling methodology is used by the
application. Then, the binary data contained within the profile
data field is converted to intermediate—human readable—
format used by theOptimizer Module. Meanwhile, the source
address in the AMheader field is used to separate the received
profile data and create profiles for each node/cluster consid-
ered within the WSN. The profile data, profiling methodol-
ogy, and time stamps are appended to the recorded profile
data. The application expert and/or theOptimizer Module can
then easily use these profiles to retrieve pertinent information
from any profiled node(s).

VI. EVALUATION
Depending on which profiling methodology is used in
conjunction with the application’s execution characteristics
and requirements, the resulting overheads incurred will vary
greatly. To provide a generalized and holistic evaluation of
our DPOP framework that is applicable to a wide range
of application characteristics and WSN deployment scenar-
ios, we began our evaluations using a variety of profiling
methodologies selected from the configurable options to
better understand how each profiling methodology impacts
the resulting overhead. This experimental data was also used
to validate the estimated overhead metrics. To evaluate the
feasibility of the proposed profiling methodologies and func-
tionality of the Profiler Module, we developed five general
benchmark applications that are representative of the commu-
nication and computation requirements of a wide variety of
deployed WSN applications. Each of the benchmark applica-
tions and profiling methodologies were implemented on the
Crossbow IRIS platform [39] using a network of 14 sensor
nodes, each equipped with various sensors (e.g., temperature,
light, humidity, etc.) a 16 MHz processor, and a 2.4 GHz RF
transceiver.

A. BENCHMARK APPLICATIONS
The High Sample-Transmission Rate (HSTR) benchmark
application implements a sensing-dominant application that
requires high sampling and packet transmission rates.

VOLUME 3, 2015 315



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

The forest fire detection system deployed by Zhang et al. [29]
is one example of a sensing-dominant application due to the
high sensor sampling rates required to actively track a fire as it
spreads. The HSTR benchmark application samples a single
sensor input every two seconds and transmits data packets
every four seconds.

The Multi-Sensor (MSEN) benchmark application is
similar to the HSTR benchmark application, but reads multi-
ple sensor inputs with a slightly reduced transmission rate of
five seconds. The WSN deployed on Great Duck Island [4],
which consists of nodes capable of sensing temperature,
pressure, and humidity, is a deployed example of an MSEN
application.

The Dual-Mode Power Saving (DMPS) benchmark
application dynamically switches between a low-power
sleep mode and high-power, high-speed monitoring mode.
The energy-efficient surveillance system developed by
He et al. [52] is an example of a DMPS application that
must dynamically switch to a low-power, low communica-
tion mode in order to track vehicles in a stealthy manner.
In the DMPS benchmark’s low-power sleep mode, sensor
nodes turn off their radio and sensors for prolonged duration
(e.g., one minute) to reduce energy consumption. During the
monitoring mode, the base station receives data packets sent
by all nodes at a rate of one sample per second.

The Communication Intensive (COMM) benchmark
application implements a sensor application with heavy
network traffic, such as the WSN employed by
Biagioni and Bridges [16], which collects data on endangered
species by transmitting high-resolution images across the
network. The COMM benchmark application samples and
transmits sensor readings every five seconds and transmits a
20∗20 pixel grayscale image once every minute.

The Computation Intensive (COMP) benchmark
application implements an application with high com-
putational requirements. For example, Chu et al. [36]
used computationally-intensive image processing techniques
to track objects with the deployed WSN’s environment.
The COMP benchmark collects sensor data every
500 milliseconds and filters the sensed data using a
32-point FFT.

B. PROFILING METHODOLOGIES
Using these benchmark applications, we defined,
implemented, and evaluated the various profiling
methodologies in Table 2. These methodologies were
selected to ensure that the corner cases were considered, as
well as ensure that each of the different configuration options
appeared in at least one of the profiling methodologies
explored.

In the first five profiling methodologies
(PM1 through PM5) all configuration options for the what
profiling metric (Fig. 2) are monitored, including the sensor
activity, time between packets, battery voltage, number of
packets transmitted, and the number of packets dropped.
Additionally, all nodes in the network are monitored without

any aggregation. PM2 and PM3 expose how piggybacking
and separate packets affect the entire network. PM1, PM3,
and PM4 compare the difference between three configurable
options of when to profile. PM6 and PM7 investigate the
resulting overheads for different scenarios, where only a
subset of the profiling metrics are profiled and address how
aggregation may decrease the resulting overhead.

We anticipated that PM5 and PM7 would exhibit overhead
extremes. PM5 should show the highest overhead because
of the number of additional bytes required to transmit both
profile request messages and separate profiling packets.
Alternatively, PM7 should incur the smallest overhead since
only a few nodes are being profiled, thereby contributing to
fewer profiling bytes being inserted into the network.

C. EVALUATION OF DYNAMIC PROFILING
METHODOLOGIES
In this section, we evaluate the performance for the
different profiling methodology (seven) and benchmark
application (five) combination scenarios (35 total scenarios)
in terms of network traffic overhead, energy consumption
overhead, code size overhead, and computation time
overhead (Section V.B). We evaluate these overheads
incurred by the profiled application as compared to the
original application. Each overhead is reported as a percent-
age such that the performance variation across the different
profiling methodologies, profiling metrics, and benchmark
applications can be easily quantified.

1) NETWORK TRAFFIC OVERHEAD
To determine the network overhead, we logged all transmitted
packets within a 5 hour execution interval using a packet
sniffer thatmonitored all radio transmissions and recorded the
contents of all packet transmissions on a host computer. The
profile data packet length varied from 14 bytes to 138 bytes
depending on which profiling methodology was used, and
which application was profiled. TheDMPS benchmark appli-
cation was set to periodically switch between high-power
monitoring mode and low-power off mode.

Fig. 9 shows the resulting network traffic overhead for each
profiling methodology and benchmark application scenario.
As expected, PM2 incurred the highest network overhead for
all benchmark applications ranging from a 66.2% overhead
forDMPS to a 0.44% overhead forCOMM. PM7 incurred the
lowest overhead across all benchmark applications because
PM7 only profiles a subset of the profiling metrics and only
when flagged events are triggered, which are sparse for most
nodes. However, for COMM, PM7 and PM4 incurred higher
overheads compared to the other profiling methodologies
due to the heavy network traffic caused by transmitting
images. One of the flagged events supported by our profiling
methodologies is detecting if the time between two successive
data packets is longer than the user-defined threshold. For
example, this flagged event could be used to detect the delay
in transmission of periodic temperature samples due to the
extended transmission of the image data for this application.

316 VOLUME 3, 2015



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

FIGURE 9. Network traffic overhead, in terms of additional bytes transmitted within the
network to perform profiling, for all profiling methodology and benchmark application
scenarios.

FIGURE 10. Energy consumption overhead, in terms of additional CPU cycles, for all
profiling methodology and benchmark application scenarios.

We also observed similar network traffic overheads between
PM1 and PM3, as well as between PM2 and PM5. This
similarity is due to the formats of the profile data packets
defined and the profiling frequency mandated by the
ProfilerModule’s configuration. In each instance, profile data
is transmitted every 60 seconds regardless of the frequency of
the external stimuli. Thus, the profiling methodologies using
thewhat and how profiling metrics will incur almost the same
network traffic overhead.

In the original DMPS benchmark application, network
traffic consists of 6 bytes for synchronization. Thus, profile
packets sent by nodes contribute to a large portion of the
network overhead in the profiled application. Conversely, the
profiling methodologies examined only generate <1% of
the network traffic in COMM due to heavy network traffic in
the original application. Thus, the overheads incurred by the
various profilingmethodologies cannot be evaluated indepen-
dently, and are highly application-specific.

2) ENERGY CONSUMPTION OVERHEAD
Integrating a profiling methodology into an application
inevitably increases the energy consumption of that
application due to the collection of profile data and
transmission of profiling packets to the Profiler Module.

Thus, to evaluate a profiling methodology’s power overhead,
we measured the current consumed by the node using a
high-resolution data acquisition device (Section 4.2.2). Each
application was configured to execute a fixed number of iter-
ations and the current readings were then averaged over this
time period. Fig. 10 shows the resulting energy consumption
overhead for all of the profiling methodology and benchmark
application scenarios based on the physical measurements
of the original application code and the corresponding
profile-instrumented application code.

The energy consumption overheads across all profiling
methodology and application benchmark scenarios remained
modest, ranging from 0.5% to 2.59%. Three main profile
activities contribute to the energy consumption overhead.
Compared with the power consumed by the timer, the power
consumed by logging profile data, and sending profile pack-
ets is negligible. The timer triggers 6,000 times per minute
and consumes 0.138 J per minute when profiling HSTR.
However, the logging and transmission of profile data
consumes less than 0.002 J. Thus, the various profiling
methodologies considered incurred about the same energy
consumption overhead due to the timer in isolation.
Generally, profiled applications consumed an additional
1.7 J as compared to the original application within

VOLUME 3, 2015 317



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

FIGURE 11. Computation time overhead, in terms of additional CPU cycles, for all
profiling methodology and benchmark application scenarios.

a one hour timeframe. The slight differences among the pro-
filing methodologies can be attributed to voltage fluctuations
and noise in the experimental setup. In the case of DMPS, we
observed a slightly higher energy consumption overhead that
is attributed to the low energy of the original application.

3) COMPUTATION TIME OVERHEAD
Collecting profile data, receiving and parsing profile request
packets, sending profile data packets, and detecting flagged
events are the main contributors to computation time
overhead. The computation time overhead is important
since the computation time has a direct impact on the
energy consumed by the microcontroller (i.e., a more
computationally-intensive task will require the microcon-
troller to remain in a higher power state for a longer duration).

Fig. 11 shows the resulting computation time overhead for
all of the profiling methodology and benchmark application
scenarios. Across all scenarios, PM4 resulted in the highest
computation time overhead, ranging from 20.32% for COMP
to 136.59% forMSEN.While few profile data packets are sent
by sensor nodes, the computational complexity stems from
the need to periodically detect flagged events. Alternatively,
PM6 had the smallest computation time overhead across
all benchmark application scenarios, ranging from 5.19%
for COMP to 23.06% for DMPS because fewer metrics are
being collected as part of the profiling, and the computation
overhead is reduced. In addition, a reduction in the number
of profiling statistics tracked reduces the size of the packets
being transmitted back to the Profiler Module, which yields
a reduction in computational complexity by limiting the
amount of data processed. Finally, PM3 resulted in a higher
overhead than PM1 for all benchmark application scenarios
because of the need to parse the profile request packet from
Profiler Module.
The percentage of computation time overhead enables

a comparison of the computation time between different
profiling methodologies and the original application code.
However, if the original application does not have
computationally intensive tasks, a higher computation
time overhead does not necessarily indicate that profiling

operations and events are computationally intensive.
For example, on average, the CPU is active for approximately
25µs during each 1s period in the original HSTR application.
Although profiling methodologies that use flagged event
detection incur the highest percentage of computation time
overhead, the active time for the CPU only increased to 36µs
within a 1s period. For all methodologies measured, increases
in the CPU active time varied from 2µs forMSEN with PM3
to 13µs for COMPwith PM6. Thus, application experts need
to be able to evaluate the resulting overheads using differ-
ent profiling methodologies, profiling metrics, and profiling
metric configuration options to determine which customized
profiling methodology is best suited for a given application.

4) CODE SIZE OVERHEAD
The code size overhead provides an additional metric to
evaluate how well each profiling methodology performs in
terms of the size of the additional code required to perform
profiling as compared to the original application. The code
size overhead is an important consideration since the profiling
methodologies require additional memory, which may be a
constrained resource depending on the application
requirements. In the case of the IRIS platform, code size
is currently limited at 128 kB [39], and our benchmark
application sizes range from 10 - 24 kB. Fig. 12 illustrates the
resulting code size overhead for all profiling methodologies
and benchmark application scenarios obtained from the ROM
usage reported by the AVR compiler. For PM6 and PM7,
the overheads of profiled nodes were isolated and reported,
since other nodeswithin the network do not contain additional
profile code overheads.

D. ESTIMATION MODULE EVALUATION
To validate the accuracy of the overhead estimation mod-
ule, we additionally performed estimations for each of the
profiling methodology and benchmark application scenarios.
Table 4 presents an overview of the maximum, minimum, and
average estimation errors for all scenarios compared to the
corresponding measured overheads.

318 VOLUME 3, 2015



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

FIGURE 12. Code size overhead, in term s of additional bytes storage required, for all
profiling methodology and benchmark application scenarios.

TABLE 4. Estimation error of the network traffic, computation time, energy consumption, and code size overheads for the high sample-transmission
rate (HSTR), multi-sensor (MSEN), dual-mode power saving (DMPS), communication intensive (COMM), and computation intensive (COMP) applications.

TABLE 5. Network overhead in terms of number of profile data packet sent by nodes.

The estimation of network traffic overhead is constrained
by the profiling methodologies that include flagged event
detection. For network overhead, the estimationmodule accu-
rately predicted overheads with error rates under 0.001%. The
profiling methodologies configure nodes or base stations to
periodically profile their status. The frequency of sending
profile data and the length of the profile packets are controlled
by Profiler Module and can be easily predicted. The error
arises from missing profile request packets from the
base station.

Table 5 presents the number of profile packets sent by
nodes, comparing the periodically profile by nodes and the
base station requests profile options. If individual nodes
manage profiling, these nodes will not miss any profiling
operations and events and therefore will transmit the
anticipated number of packets. Alternatively, nodes using
PM4 or PM7 may fail to start profiling due to the loss

of profile request packets from base station. Additionally,
benchmark applications that do not have computationally-
intensive tasks and heavy network traffic have a low prob-
ability of losing and retransmitting packets. For profiling
methodologies that profile tasks and user-defined flagged
events, the estimation module would not be able to predict the
resulting network overhead since these specific events always
relate to the functionality of application.

The computation time overhead estimation error varies
from 9.34% to 1.6% across all profiling methodology and
benchmark application scenarios. Inaccuracy is caused by
a difference in the functionally of the benchmark applica-
tions and the testing applications used (Section V.B.4) to
1) measure the computation time of individual profile func-
tions and 2) estimate the computation time of collecting
profile data. A negative error is obtained for some
profiling methodologies for COMM, indicating the overhead

VOLUME 3, 2015 319



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

was underestimated leading to a larger increase in
computation time than estimated. This underestimate of com-
putation time overhead can potentially be attributed to how
the compiler optimizes the code. Given the large memory
usage required for storing images, less memory is available
for the program memory, and the compiler will need to opti-
mize the code for memory size. This type of optimization can
often lead to longer executions times. The lack of resources
leads to longer execution times for the profile code. Thus,
the characteristics of COMM resulted in higher computation
time overheads for all profiling methodologies in comparison
to the other benchmark applications. Thus, the computation
times in the profiling library are not enough to estimate the
computation time for a particular application, and feedback
from nodes is required to improve computation time overhead
accuracy.

Due to using the energy consumption measurements of
specific profiling events, the estimated energy consumption
overhead is approximately equal to the measured values,
yielding an average error of 0.63%. Although the energy
consumption of the benchmark applications may vary, energy
usage of profiling events remains consistent across these
benchmark applications. Thus, the premeasured data can be
used to accurately estimate energy consumption overheads
under diverse benchmark application scenarios.

The code size overhead estimates use the profilingmethod-
ologies (PM1-PM7) as the base profiling methodologies.
Four additional profilingmethodologies are then used to eval-
uate the accuracy of code size overhead estimation accuracy.
To avoid similarity between base profilingmethodologies and
the additional profiling methodologies used for evaluation,
at least two configuration options in the additional profiling
methodologies are different from the seven base profiling
methodologies. Because we use the actual ROM usage of the
profiled application to estimate code size overhead, the esti-
mation error is lower than 1%. However, the drawback of this
method is that we must collect code size overheads for more
profiling methodologies (different configuration options) to
provide more information in the profiling library.

VII. CONCLUSIONS AND FUTURE WORK
Dynamic profiling of wireless sensor networks (WSNs)
enables an accurate view of an application’s execution
behavior, but incurs increased network traffic, energy
consumption, code size, and computation overheads. The
collected profile data can be used by platform design-
ers and application experts to quickly evaluate, select,
and optimize appropriate profiling methodologies using the
dynamic profiling and optimization (DPOP) framework.
Since application-specific and sensor-specific constraints
dictate the profiling requirements and tolerated overheads,
this design assistance is required.

In this work, we significantly enhance the DPOP
framework. We developed various methods for configuring
the Profiler Module to implement a variety of dynamic
profiling methodologies and analyzed the corresponding

overheads. While energy consumption increases are low,
ranging from 0.5% to 3%, network traffic, code size
and computation time overheads can be as high
as 66%, 76% and 137%, respectively, thus it is critical to
evaluate and consider these overheads in the context of
application requirements, goals, and constraints. At design
time, the code generator module, overhead estimation mod-
ule, and profile data management module work together to
assist an application expert in choosing a suitable profil-
ing methodology, evaluating that methodology with respect
to the application, and rapidly integrating these profiling
methodologies within the application to extract profile data at
runtime. During runtime, application experts can use a recon-
figurable profiling methodology to adapt the profile approach
as needed to adjust to changing application execution and
environmental stimuli.

Currently, the overhead of a profile function recorded
within the profiling library is derived from measurements
based on applications executing in an ideal experimental
environment. Given our existing mechanism to accurately
estimate profiling overhead, future work includes developing
an automated methodology to assist application experts in
determining which profiling methodology best suits a spe-
cific application and the application expert’s design goals.
This automated—or assisted—customization of the profiling
methodology must be capable of evaluating the profiling
overhead, the accuracy of the profile data, and the impact
of the profiling method on the optimization of the underly-
ing application, which is guided by the application expert’s
design goals and is a parallel research thrust. To support this
tradeoff analysis, the presented profiling methods must be
integrated with prior work in runtime optimization of sensor
networks, and new methods will need to be developed to
estimate the profiling accuracy, evaluate the adequacy of a
profiling methodology with respect to the requirements of the
optimization tools, and provide application experts with an
intuitive method for understanding these tradeoffs.

REFERENCES
[1] A. S. Dhodapkar and J. E. Smith, ‘‘Managing multi-configuration hard-

ware via dynamic working set analysis,’’ inProc. Annu. Int. Symp. Comput.
Archit. (ISCA), May 2002, pp. 233–244.

[2] A. Kurtkoti and B. Patel, ‘‘Evaluation metrics of MAC layer in wire-
less sensor network,’’ in Proc. 1st Int. Conf. Emerg. Trends Eng.
Technol. (ICETET), Jul. 2008, pp. 250–254.

[3] A. Lizarraga, R. Lysecky, S. Lysecky, andA. Gordon-Ross, ‘‘Dynamic pro-
filing and fuzzy-logic-based optimization of sensor network platforms,’’
ACM Trans. Embedded Comput. Syst., vol. 13, no. 3, pp. 1–29, Dec. 2013,
Art. ID 51.

[4] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson,
‘‘Wireless sensor networks for habitat monitoring,’’ in Proc. ACM Int.
Workshop Wireless Sensor Netw. Appl. (WSNA), Atlanta, GA, USA, 2002,
pp. 88–97.

[5] A. Munir, A. Gordon-Ross, S. Lysecky, and R. Lysecky, ‘‘A lightweight
dynamic optimizationmethodology for wireless sensor networks,’’ inProc.
IEEE 6th Int. Conf. Wireless Mobile Comput., Netw. Commun. (WiMob),
Oct. 2010, pp. 129–136.

[6] A. Munir, A. Gordon-Ross, S. Lysecky, and R. Lysecky, ‘‘A one-shot
dynamic optimization methodology for wireless sensor networks,’’ in
Proc. Int. Conf. Mobile Ubiquitous Comput., Syst., Services (UBICOMM),
Oct. 2010, pp. 287–293.

320 VOLUME 3, 2015



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

[7] A. Munir and A. Gordon-Ross, ‘‘An MDP-based application oriented
optimal policy for wireless sensor networks,’’ in Proc. Conf. Hardw./Softw.
Codesign Syst. Synth. (CODES+ISSS), 2009, pp. 183–192.

[8] A. Shenoy, J. Hiner, S. Lysecky, R. Lysecky, and A. Gordon-Ross,
‘‘Evaluation of dynamic profiling methodologies for optimization of sen-
sor networks,’’ IEEE Embedded Syst. Lett., vol. 2, no. 1, pp. 10–13,
Mar. 2010.

[9] A. Sinha and A. Chandrakasan, ‘‘Dynamic power management in wireless
sensor networks,’’ IEEE Des. Test. Comput., vol. 18, no. 2, pp. 62–74,
Mar./Apr. 2001.

[10] AVRFreaks. WinAVR. [Online]. Available: http://winavr.sourceforge.net/
index.html, accessed May 2015.

[11] B. L. Titzer, D. K. Lee, and J. Palsberg, ‘‘Avrora: Scalable sensor network
simulation with precise timing,’’ in Proc. 4th Int. Conf. Inf. Process. Sensor
Netw. (IPSN), Apr. 2005, pp. 477–482.

[12] C. Alippi and G. Vanini, ‘‘Application-based routing optimization in
static/semi-static wireless sensor networks,’’ in Proc. 4th Annu. IEEE Int.
Conf. Pervasive Comput. Commun. (PerCom), Mar. 2006, pp. 46–51.

[13] C. Park and P. H. Chou, ‘‘EmPro: An environment/energy emulation and
profiling platform for wireless sensor networks,’’ in Proc. 3rd Annu. IEEE
Commun. Soc. Conf. Sensor Ad Hoc Commun. Netw. (SECON), Sep. 2006,
pp. 158–167.

[14] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, ‘‘Optimizing
sensor networks in the energy-latency-density design space,’’ IEEE Trans.
Mobile Comput., vol. 1, no. 1, pp. 70–80, Mar. 2002.

[15] D. Weber, J. Glaser, and S. Mahlknecht, ‘‘Discrete event simulation frame-
work for power aware wireless sensor networks,’’ in Proc. 5th Int. Conf.
Ind. Informat. (INDIN), vol. 1. Jun. 2007, pp. 335–340.

[16] E. S. Biagioni and K. W. Bridges, ‘‘The application of remote sensor
technology to assist the recovery of rare and endangered species,’’ Int. J.
High Perform. Comput. Appl., vol. 16, no. 3, pp. 315–324, Aug. 2002.

[17] F. Douglis, P. Krishnan, and B. N. Bershad, ‘‘Adaptive disk spin-down
policies for mobile computers,’’ inProc. Symp.Mobile Location-Independ.
Comput., 1995, pp. 121–137.

[18] L. F. Perrone and D. M. Nicol, ‘‘A scalable simulator for TinyOS applica-
tions,’’ in Proc. Winter Simulation Conf., Dec. 2002, pp. 679–687.

[19] F. Yuan et al., ‘‘A lightweight sensor networkmanagement system design,’’
in Proc. 6th Annu. IEEE Int. Conf. Pervasive Comput. Commun. (PerCom),
Mar. 2008, pp. 288–293.

[20] G. Chen, J. Branch, M. Pflug, L. Zhu, and B. Szymanski, ‘‘SENSE:
A wireless sensor network simulator,’’ in Advances in Pervasive
Computing and Networking. Berlin, Germany: Springer-Verlag, 2005,
pp. 249–267.

[21] G. Tolle and D. Culler, ‘‘Design of an application-cooperative management
system for wireless sensor networks,’’ in Proc. 2nd Eur. WorkshopWireless
Sensor Netw. (EWSN), Jan./Feb. 2005, pp. 121–132.

[22] H. Zhang and J. C. Hou, ‘‘Maintaining sensing coverage and connectivity
in large sensor networks,’’ Ad Hoc Sensor Wireless Netw., vol. 1, no. 1–2,
pp. 89–124, 2005.

[23] I. Beretta, F. Rincon, N. Khaled, P. R. Grassi, V. Rana, and D. Atienza,
‘‘Design exploration of energy-performance trade-offs for wireless sensor
networks,’’ in Proc. 49th ACM/EDAC/IEEE Design Autom. Conf. (DAC),
Jun. 2012, pp. 1043–1048.

[24] I. Kadayif and M. Kandemir, ‘‘Tuning in-sensor data filtering to reduce
energy consumption in wireless sensor networks,’’ in Proc. Design,
Autom., Test Eur. Conf. Exhibit. (DATE), Feb. 2004, pp. 852–857.

[25] J. Eriksson, F. Österlind, N. Finne, A. Dunkels, N. Tsiftes, and T. Voigt,
‘‘Accurate network-scale power profiling for sensor network simulators,’’
in Proc. 6th Eur. Conf. Wireless Sensor Netw., 2009, pp. 312–326.

[26] J. L. Hill and D. E. Culler, ‘‘MICA: A wireless platform for deeply embed-
ded networks,’’ IEEE Micro, vol. 22, no. 6, pp. 12–24, Nov./Dec. 2002.

[27] J. Polastre, R. Szewczyk, C. Sharp, and D. Culler, ‘‘The mote
revolution: Low power wireless sensor network devices,’’ in
Proc. Hot Chips Symp., pp. 1–20, 2004. [Online]. Available:
http://webs.cs.berkeley.edu/papers/hotchips-2004-motes.ppt

[28] D. Blazakis, J. McGee, D. Rusk, and J. S. Baras, ‘‘ATEMU: A fine-grained
sensor network simulator,’’ in Proc. IEEE Commun. Soc. Conf. Sensor
Ad Hoc Commun. Netw. (SECON), Oct. 2004, pp. 145–152.

[29] J. Zhang, W. Li, Z. Yin, S. Liu, and X. Guo, ‘‘Forest fire detection system
based on wireless sensor network,’’ in Proc. 4th IEEE Conf. Ind. Electron.
Appl. (ICIEA), May 2009, pp. 520–523.

[30] K.Whitehouse et al., ‘‘Marionette: Using RPC for interactive development
and debugging of wireless embedded networks,’’ in Proc. 5th Inf. Process.
Sensor Netw. (IPSN), 2006, pp. 416–423.

[31] L. S. Bai, R. P. Dick, and P. A. Dinda, ‘‘Archetype-based design:
Sensor network programming for application experts, not just program-
ming experts,’’ in Proc. Int. Conf. Inf. Process. Sensor Netw. (IPSN),
Apr. 2009, pp. 85–96.

[32] L. S. Bai, R. P. Dick, P. H. Chou, and P. A. Dinda, ‘‘Automated construction
of fast and accurate system-level models for wireless sensor networks,’’
in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), Mar. 2011,
pp. 1–6.

[33] C. Liu and G. Cao, ‘‘Spatial-temporal coverage optimization in wire-
less sensor networks,’’ IEEE Trans. Mobile Comput., vol. 10, no. 4,
pp. 465–478, Apr. 2011.

[34] L. Girod, N. Ramanathan, J. Elson, T. Stathopoulos, M. Lukac, and
D. Estrin, ‘‘EmStar: A software environment for developing and deploy-
ing heterogeneous sensor-actuator networks,’’ ACM Trans. Sensor Netw.,
vol. 3, no. 3, Aug. 2007, Art. ID 13.

[35] L. Luo, T. He, G. Zhou, L. Gu, T. F. Abdelzaher, and J. A. Stankovic,
‘‘Achieving repeatability of asynchronous events in wireless sensor
networks with EnviroLog,’’ in Proc. 25th IEEE Int. Conf. Comput.
Commun. (INFOCOM), Apr. 2006, pp. 1–14.

[36] M. Chu, J. E. Reich, and F. Zhao, ‘‘Distributed attention in large scale video
sensor networks,’’ in Proc. Intell. Distrib. Surveill. Syst., London, U.K.,
Feb. 2004, pp. 61–65.

[37] M. Holland, ‘‘Optimizing physical layer parameters for wireless sensor
networks,’’ M.S. thesis, Dept. Elect. Comput. Eng., Univ. Rochester,
Rochester, NY, USA, 2007.

[38] M. Zimmerling, ‘‘Automatic parameter optimization of sensor network
MAC protocols,’’ M.S. thesis, Dept. Comput. Sci., Dresden Univ. Technol.,
Dresden, Germany, 2009.

[39] Memsic Corporation. (2010). IRIS Wireless Measurement System.
[Online]. Available: http://www.memsic.com/products/wireless-sensor
-networks/wireless-modules.html

[40] National Instruments. NI USB-6361 X Series DAQ. [Online]. Available:
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209073, accessed
Jan. 2015.

[41] N. Kothari, R. Gummadi, T. Millstein, and R. Govindan, ‘‘Reliable and
efficient programming abstractions for wireless sensor networks,’’ ACM
SIGPLAN Notices, vol. 42, no. 6, pp. 200–210, Jun. 2007.

[42] O. Landsiedel, K. Wehrle, and S. Götz, ‘‘Accurate prediction of power
consumption in sensor networks,’’ in Proc. IEEE Workshop Embedded
Netw. Sensors, May 2005, pp. 37–44.

[43] P. K. Dutta and D. E. Culler, ‘‘System software techniques for low-power
operation in wireless sensor networks,’’ in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), Nov. 2005, pp. 925–932.

[44] P. Levis, N. Lee, M. Welsh, and D. Culler, ‘‘TOSSIM: Accurate and scal-
able simulation of entire TinyOS applications,’’ in Proc. Conf. Embedded
Netw. Sensor Syst. (SenSys), 2003, pp. 126–137.

[45] R. Fonseca, P. Dutta, P. Levis, and I. Stoica, ‘‘Quanto: Tracking energy in
networked embedded systems,’’ in Proc. 8th USENIX Symp. Oper. Syst.
Design Implement. (OSDI), 2008, pp. 323–338.

[46] R. Sugihara and R. K. Gupta, ‘‘Programming models for sensor networks:
A survey,’’ ACM Trans. Sensor Netw., vol. 4, no. 2, pp. 1–8, Mar. 2008.

[47] S. Kaxiras, Z. Hu, and M. Martonosi, ‘‘Cache decay: Exploiting genera-
tional behavior to reduce cache leakage power,’’ in Proc. 28th Annu. Int.
Symp. Comput. Archit. (ISCA), Jun. 2001, pp. 240–251.

[48] S. Kim et al., ‘‘Health monitoring of civil infrastructures using wire-
less sensor networks,’’ in Proc. 6th Int. Symp. Inf. Process. Sensor
Netw. (IPSN), Apr. 2007, pp. 254–263.

[49] S. Lysecky and F. Vahid, ‘‘Automated application-specific tuning of param-
eterized sensor-based embedded system building blocks,’’ in Proc. Int.
Conf. Ubiquitous Comput. (UbiComp), 2006, pp. 507–524.

[50] S. Sridharan and S. Lysecky, ‘‘A first step towards dynamic profiling of
sensor-based systems,’’ in Proc. 5th Annu. IEEE Commun. Soc. Conf.
Sensor, Mesh Ad Hoc Commun. Netw. (SECON), Jun. 2008, pp. 600–602.

[51] T. Arampatzis, J. Lygeros, and S. Manesis, ‘‘A survey of applications of
wireless sensors and wireless sensor networks,’’ in Proc. 13th Medit. Conf.
Control Autom., Jun. 2005, pp. 719–724.

[52] T. He et al., ‘‘Energy-efficient surveillance system using wireless sensor
networks,’’ in Proc. MobiSys, Boston, MA, USA, 2004, pp. 270–283.

[53] T. van Dam and K. Langendoen, ‘‘An adaptive energy-efficient MAC
protocol for wireless sensor networks,’’ in Proc. 1st Int. Conf. Embedded
Netw. Sensor Syst. (SenSys), 2003, pp. 171–180.

[54] V. Handziski, A. Kopke, H. Karl, and A. Wolisz, ‘‘A common wire-
less sensor network architecture,’’ Tech. Univ. Berlin, Berlin, Germany,
Tech. Rep. TKN-03-012, 2003.

VOLUME 3, 2015 321



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires
IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/ACCESS.2015.2422783, IEEE Access

L. Ding et al.: Application-Specific Customization of Dynamic Profiling Mechanisms

[55] V. Shnayder, M. Hempstead, B.-R. Chen, G. W. Allen, and M. Welsh,
‘‘Simulating the power consumption of large-scale sensor network appli-
cations,’’ in Proc. 2nd Int. Conf. Embedded Netw. Sensor Syst. (SenSys),
2004, pp. 188–200.

[56] Y. Liu, K. Liu, and M. Li, ‘‘Passive diagnosis for wireless sensor
networks,’’ IEEE/ACM Trans. Netw., vol. 18, no. 4, pp. 1132–1144,
Aug. 2010.

[57] Y. Yu, D. Ganesan, L. Girod, D. Estrin, and R. Govindan, ‘‘Synthetic data
generation to support irregular sampling in sensor networks,’’ GeoSensor
Netw., vol. 1, no. 4, pp. 211–234, 2004.

LU DING received the M.S. degree in electrical
and computer engineering from the University of
Arizona, in 2012. He is currently with Western
Digital.

ADRIAN LIZARRAGA received the B.S. degree in
electrical engineering from the University of Ari-
zona, in 2010. He is currently pursuing the Ph.D.
degree with the Electrical and Computer Engi-
neering Department, University of Arizona. His
research interests include runtime optimization of
embedded systems and data-adaptable embedded
systems. He is a recipient of the NSF Bridge to
Doctorate Grant.

ASHISH SHENOY received the M.S. degree in
electrical and computer engineering from the Uni-
versity of Arizona, in 2012. He is currently with
Riverbed Technology.

ANN GORDON-ROSS (M’00) received the B.S.
and Ph.D. degrees in computer science and engi-
neering from the University of California, River-
side, USA, in 2000 and 2007, respectively. She
is currently an Associate Professor of Electrical
and Computer Engineering with the University of
Florida, USA, and a member of the NSF Center
for High Performance Reconfigurable Computing
with the University of Florida. She is also a Faculty
Advisor of the Women in Electrical and Com-

puter Engineering and the Phi Sigma Rho National Society for Women
in Engineering and Engineering Technology, and an active member of the
Women in Engineering Proactive Network. Her research interests include
embedded systems, computer architecture, low-power design, reconfigurable
computing, dynamic optimizations, hardware design, real-time systems, and
multicore platforms. She was a recipient of the CAREER Award from the
National Science Foundation in 2010, best paper awards at the Great Lakes
Symposium on VLSI in 2010 and the IARIA International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies in 2010,
and the Best Ph.D. Poster at IEEE Computer Society Annual Symposium on
VLSI in 2014. She is very active in promoting diversity in STEM fields, and
has been a Guest Speaker at several international workshops/conferences on
this topic, organizes workshops, and participates in local outreach programs
at local K-12 schools.

SUSAN LYSECKY received the Ph.D. degree in
computer science from the University of Cali-
fornia, Riverside, in 2006. She was an Assistant
Professor of Electrical and Computer Engineering
with the University of Arizona. She is currently
a Senior Content Engineer with Zyante, Inc. Her
research interests include Web-native interactive
learning, embedded system design, and human–
computer interaction.

ROMAN LYSECKY received the B.S., M.S., and
Ph.D. degrees in computer science from the Uni-
versity of California, Riverside, in 1999, 2000, and
2005, respectively. He is currently an Associate
Professor of Electrical and Computer Engineering
with theUniversity of Arizona. He has co-authored
five textbooks in VHDL, Verilog, C, C++, and
Java Programming. His research interests focus
on embedded systems, with an emphasis on run-
time optimization, nonintrusive system observa-

tionmethods for in-situ analysis of complex hardware and software behavior,
data-adaptable system, and embedded system security. He was a recipient of
the Outstanding Ph.D. Dissertation Award from the European Design and
Automation Association for new directions in embedded systems in 2006,
the CAREER Award from the National Science Foundation in 2009, and
four best paper awards from the ACM/IEEE International Conference on
Hardware–Software Codesign and System Synthesis, the ACM/IEEEDesign
Automation and Test in Europe Conference, the IEEE International Con-
ference on Engineering of Computer-Based Systems, and the International
Conference on Mobile Ubiquitous Computing, Systems, Services.

322 VOLUME 3, 2015


