
T-SPaCS—A Two-Level Single-Pass
Cache Simulation Methodology

Wei Zang, Student Member, IEEE, and Ann Gordon-Ross, Member, IEEE

Abstract—The cache hierarchy’s large contribution to total microprocessor system power makes caches a good optimization

candidate. To facilitate a fast design-time cache optimization process, we propose a single-pass trace-driven cache simulation

methodology—T-SPaCS—for a two-level exclusive cache hierarchy. Direct adaptation of conventional trace-driven cache simulation to

two-level caches requires significant storage and simulation time as numerous stacks record cache access patterns for each level one

and level two cache combination and each stack is repeatedly processed. T-SPaCS significantly reduces storage space and simulation

time using a set of stacks that only record the complete cache access pattern. Thereby, T-SPaCS simulates all cache configurations

for both the level one and level two caches simultaneously in a single pass. Experimental results show that T-SPaCS is 21.02X faster

on average than sequential simulation for instruction caches and 33.34X faster for data caches. A simplified, but minimally lossy

version of T-SPaCS (simplified-T-SPaCS) increases the average simulation speedup to 30.15X for instruction caches and 41.31X for

data caches. We leverage T-SPaCS and simplified-T-SPaCS for determining the lowest energy cache configuration to quantify the

effects of lossiness and observe that T-SPaCS and simplified-T-SPaCS still find the lowest energy cache configuration as compared to

exact simulation.

Index Terms—Cache memories, low-power design, real-time systems and embedded systems, simulation

Ç

1 INTRODUCTION

SINCE the cache hierarchy can consume as much as
50 percent or more of total system power [26], caches

are a good candidate for optimization in low-power
embedded systems. Research shows that applications have
varying cache requirements for optimal energy consump-
tion [36]. Specializing cache parameters, such as total cache
size, block size, and associativity to an application’s
temporal and spatial locality characteristics can reduce
energy consumption by as much as 40 percent on average
[4], [17]. Cache tuning, a prevailing optimization technique,
determines the best cache configuration (specific cache
parameter values) in the design space (all possible cache
configurations) for the entire application [14], [36] or each
application phase [16], [27].

Cache tuning can be performed at design time—offline

static cache tuning—or during runtime—online dynamic

cache tuning. Offline static cache tuning is suitable for

stable systems with predictable inputs and execution

behavior. Since an embedded system usually executes a

fixed application or set of similar applications, cache tuning

can be specifically applied to optimize the cache for these

predictable embedded applications. System designers de-

termine cache parameter values during design time and set

these values in synthesizable soft-core processors that
provide numerous cache parameters for customization [1],
[2], [31]. For systems using hard-core processors [4], [15]
that contain configurable caches, the optimal energy cache
configurations could still be determined a priori, and the
hard-core processors would be configured to the designer-
specified parameter values at system startup. Since static
cache tuning determines cache parameter values prior to
system runtime, static cache tuning introduces no runtime
overhead with respect to design space exploration.

Alternatively, online dynamic cache tuning determines
the best cache configuration by exploring the design space
during runtime [17] and requires no system designer effort.
This in-system exploration capability enables dynamic
cache tuning to adaptively react to the system’s environ-
ment and input changes [5], [14], [16], [36]. Dynamic
adaptation enables potentially more accurate cache config-
urations (and thus lower energy consumption) for unpre-
dictable or dynamic applications as compared to static
cache tuning. However, online design space exploration
may interfere with system behavior and impose system
overheads such as performance, area, and power/energy
while exploring the design space. Additionally, determin-
ing when to apply dynamic cache tuning is challenging, as
cache tuning must quickly react to changes in an applica-
tion’s behavior. Inappropriate cache tuning times may
result in significantly higher energy consumption than
running the system in a fixed base configuration without
any cache tuning [14]. Due to these dynamic tuning
challenges, in this paper, we focus on static cache tuning.

Most existing offline static methods determine the cache
configuration using an analytical model or simulation.
Analytical modeling quickly predicts cache performance
by analyzing program locality or data reuse patterns using

390 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 2, FEBRUARY 2013

. W. Zang is with the Department of Electrical and Computer Engineering,
University of Florida, 2841 SW 13th St. Apt. J238, Gainesville, Fl 32608.
E-mail: weizang@ufl.edu.

. A. Gordon-Ross is with the Department of Electrical and Computer
Engineering, University of Florida, PO Box 116200, Gainesville, FL
32611. E-mail: ann@ece.ufl.edu.

Manuscript received 29 Oct. 2010; revised 7 July 2011; accepted 7 Sept. 2011;
published online 30 Sept. 2011.
Recommended for acceptance by L. John.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2010-10-0597.
Digital Object Identifier no. 10.1109/TC.2011.194.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

mathematical models [6], [12]. These models are usually
built based on program characteristics that are independent
of the processor type and operating system. Even though
analytical modeling quickly determines the cache config-
uration, analytical modeling is generally inaccurate and
produces suboptimal results. Simulation methods improve
cache tuning accuracy by simulating each cache configura-
tion to determine the lowest energy configuration. However,
the simulation time required to iteratively explore a large
design space is lengthy even though heuristics can be used
to prune the design space [17], [36]. Even though relatively
faster simulation methods can be used, such as functional
simulation as compared to cycle accurate simulation, these
methods still require long simulation time [17], [36].

Trace-driven cache simulation significantly reduces de-

sign exploration time by functionally simulating an applica-

tion once to produce a memory reference trace (access trace),

and then processing the access trace for each cache

configuration with a fast cache simulator. The reason for

time reduction is that lengthy functional simulation is only

employed once and trace simulation is faster than functional

simulation. Although access trace files are typically very

large with a large storage space requirement and conse-

quently slow processing time, approaches such as SimPoint

[28], trace sampling [9], and trace compression [21] reduce

these overheads.
Most tuning methods iteratively evaluate the design

space, processing only one configuration on each simulation

pass [10], resulting in lengthy design space exploration time.

Instead of iteratively exploring the design space, single-pass

trace-driven simulation evaluates multiple configurations

simultaneously in a single simulation pass [19], [24], [29],

[32], achieving simulation speedups on the order of tens

[20], [33] as compared to iterative simulation. However, all

previous single-pass trace-driven methods, to the best of our

knowledge, only simulate single-level caches.
However, inherent multilevel cache execution character-

istics make direct application of single-level cache single-
pass simulation techniques challenging. For example, in a
two-level cache hierarchy, the level one cache (L1) filters
the access trace (all L1 accesses) and produces one filtered
access trace for each level two cache (L2) (i.e., each unique
L1 configuration’s misses form a unique filtered access
trace for L2). Since the L2 access trace is determined by
each L1 configuration, each filtered access trace must be
stored and processed separately. In addition, the design
space increases approximately exponentially as the num-
ber of cache parameters increases because essentially each
L2 configuration can be coupled with each L1 configura-
tion, which increases the storage space and processing
time requirements.

In this paper, we present for the first time (to the best of

our knowledge) a Two-level Single-Pass trace-driven

Cache Simulation methodology—T-SPaCS for exclusive

instruction and data caches for offline static cache tuning.

The designers can employ T-SPaCS a priori at design time

to evaluate all cache configurations for a particular

embedded application, and then determine the optimal

(lowest energy) cache configuration to be used during

execution time. We leverage an exclusive cache hierarchy to

limit area and processing overheads and enable the L1 and

L2 to be logically analyzed as one single cache followed by a

supplementary processing step to extract the exclusive

L2 contents. Our proposed methodology determines the

optimal cache configuration with high simulation speedup

and low storage requirements compared to iterative

simulation. For reference, Table 1 defines notations used

throughout this paper.

2 RELATED WORK

There exists much previous work in single-pass trace-
driven cache simulation, with each variation focusing on
expanding the design space and reducing the processing
time via new data structures and processing techniques.

Mattson et al. [24] first proposed the stack-based
algorithm, wherein a stack data structure stored the access
trace (Section 4 presents stack processing details). For each
access, a stack search determined the minimum cache size
necessary for that access to be a hit in a fully associative
cache. Hill and Smith [19] extended the stack-based
algorithm to simulate direct-mapped and set-associative
caches. Thompson and Smith [32] introduced dirty-level
analysis and included write-back counts.

To improve the slow processing time required for the
stack search (the upper bound on the stack size is the number
of unique addresses in the access trace), Sugumar and
Abraham [29] proposed a tree data structure-based algo-
rithm to efficiently store and traverse memory references.

ZANG AND GORDON-ROSS: T-SPACS—A TWO-LEVEL SINGLE-PASS CACHE SIMULATION METHODOLOGY 391

TABLE 1
Notational Reference

The tree-based algorithm provided a maximum 5X improve-
ment in simulation speed. Janapsatya et al. [20] decreased
simulation time using a forest data structure, which used
linked lists to maintain address tags for set-associative cache
analysis. However, the tradeoff for increased processing
speed using these tree-based algorithms had a larger storage
requirement to store the tree. Furthermore, these complex
data structures and corresponding complicated processing
operations made tree-based algorithms not amenable to
hardware implementation for runtime cache tuning. Due to
these drawbacks, the stack algorithm is still widely em-
ployed in trace-driven cache simulation methods. Viana et al.
[33] proposed SPCE—a stack-based algorithm that evaluated
cache size, block size, and associativity simultaneously using
simple bit-wise operations. SPCE’s attained speedup was as
high as 14X compared to previous works. Gordon-Ross et al.
[15] designed SPCE’s hardware prototype for runtime cache
tuning. Whereas these single-pass cache simulation meth-
odologies (stack- and tree-based) are highly efficient, these
methods are limited to single-level cache simulation.

Another technique to speed up access trace processing is
parallel-distributed simulation, a straightforward technique
that simulates different cache configurations using a parallel
processor system. Heidelberger and Stone [18] proposed a
method that partitioned the memory trace into small parts
and simulated each part in parallel. Sugumar [30] proposed
a parallel stack search method. Wan et al. [34] developed a
GPU-based simulator supporting multilevel cache simula-
tion. Although parallel-distributed simulation is capable of
simulating configurable caches in a multilevel hierarchy
with any design space size, several factors make parallel
simulation difficult in practice, such as large hardware
resources, a complex task management scheme, and data
transmission between parallel processors.

In this paper, we enhance previous works to include two-
level cache simulation. We combine a stack-based algorithm
[33] to record the memory access trace with a tree-based
data structure to support the stack search for processing
time acceleration. We propose for the first time, to the best of
our knowledge (besides trivial parallel simulation techni-
ques), a single-pass trace-driven cache simulation metho-
dology for two-level caches.

3 TWO-LEVEL CACHE CHARACTERISTICS

Two of the major challenges in two-level single-pass cache
simulation are the storage and simulation time required to
process each filtered access trace. In this section, we motivate
our selection of an exclusive cache hierarchy, as opposed to
an inclusive cache hierarchy, to address these challenges.

In an inclusive hierarchy with the least recently used
(LRU) replacement policy for both L1 and L2, each cache
level contains a subset of the contents of the lower level
caches (closer to the processor). On an L1 miss and an
L2 hit, the cache block is copied from L2 to L1. If both L1 and
L2 miss, the cache block is copied to both L1 and L2. The
evicted LRU blocks are discarded if the blocks are not dirty
(assuming the data cache uses write-allocate and write-back
policies). Otherwise, the evicted blocks are written back to
main memory. In an exclusive hierarchy [35] with LRU for
L1 and first-in-first-out (FIFO)-like for L2 (the exclusive
hierarchy complicates L2 evictions, making the process

similar to FIFO), each cache level’s contents are disjoint
from the contents of all other cache levels. On an L1 miss
and an L2 hit, the cache block is moved from L2 to L1, the
evicted LRU L1 block is moved to L2, and the evicted oldest
block from L2 is discarded if the block is not dirty. When L1
and L2 both miss, the missed block is only fetched into L1
from main memory. This lack of replication across L1 and
L2 provides an opportunity to logically view L1 and L2 as
one combined cache, whose analysis can be processed based
solely on the complete access trace. Deriving the L2 miss
rate using this combined analysis eliminates the need to
store and process each filtered L2 access trace and alters the
basic stack-based algorithm processing.

To exemplify the reduced storage requirements afforded
by the exclusive hierarchy, Fig. 1 depicts the stack-based
algorithm’s cache layout view (dotted boxes) and storage
requirements for a two-level cache with inclusive (Fig. 1a)
and exclusive (Fig. 1b) hierarchies (Section 4 presents stack
processing details). More specifically, for the inclusive
hierarchy, each cache is processed separately. The complete
access trace is recorded in the L1 stack and for each L1
configuration, the filtered access trace is recorded in an L2
stack (one distinct L2 stack is required for each L1
configuration). Each L2 stack is processed separately using
the same process as for single-level cache simulation [33]. In
the exclusive hierarchy, only one stack is required since L1
and L2 are treated as one combined cache (denoted using
the dotted boxes) and are evaluated simultaneously.

This difference in stack processing has a large impact on
the storage and time complexity. The inclusive cache
hierarchy requires one L1 stack and M L2 stacks, where
M is the number of L1 configurations. The L1 stack has a
storage complexity of OðnÞ, where n is the number of
unique addresses in the access trace. Each of the M L2
stacks has the same storage complexity of OðnÞ by assuming
the worst case where all L1 accesses are misses. The
exclusive cache hierarchy requires only one L1 stack to
generate both L1 and L2 results. Therefore, the storage and
time complexities for two-level inclusive and exclusive
caches are OððM þ 1ÞnÞ and OðnÞ, respectively.

The lightweight storage and time complexities of the
exclusive cache are important for T-SPaCS since future work
will adapt T-SPaCS for dynamic, runtime cache evaluation.
The single-pass simulation feature makes T-SPaCS amenable
to hardware implementation in dynamic cache tuning
without runtime system intrusion [15].

392 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 2, FEBRUARY 2013

Fig. 1. Storage requirements for the stack-based algorithm for a two-
level cache with (a) an inclusive hierarchy where L1 and L2 are
processed separately and (b) an exclusive hierarchy where L1 and L2
are treated as one combined cache denoted using the dotted box.

The tradeoff for the exclusive cache’s reduced storage
and time complexities is a design space reduction since an
exclusive hierarchy requires L1 and L2 block sizes to be
equal. However, previous work [16] showed that for a large
design space, several cache configurations offer nearly
equal energy and performance, thus this restriction will
have a nominal effect on the cache tuning.

4 TWO-LEVEL SINGLE-PASS CACHE SIMULATION

METHODOLOGY—T-SPACS

T-SPaCS is suitable for a highly configurable two-level
exclusive cache hierarchy by simultaneously evaluating
cache configurations with varying size, block size, and
associativity. T-SPaCS’s output is the miss rates for all cache
configurations. When combining the miss rates with a
performance and energy model [17], a system designer can
determine an appropriate cache configuration based on the
application requirements.

T-SPaCS evaluates (determines a cache hit or miss) a
trace address for a particular cache configuration by
locating the previously accessed block addresses that map
to the same cache set as the evaluated trace address. We
refer to these block addresses as conflicts. If the number of
conflicts is large enough to evict the previously fetched
block that the evaluated trace address maps to, the
evaluated trace address access results in a cache miss.
Thus, T-SPaCS’s goal is to simultaneously determine the
conflicts with each trace address in L1 and L2 for all cache
configurations in the design space.

Fig. 2 illustrates T-SPaCS’s functional overview. The
application is executed once to produce the time-ordered
sequence of accessed addresses, which is denoted by the
vector ~T , andT ½t�, t 2 Zþ(t is a positive integer) is one element
in vector ~T and represents the tth accessed address. The
corresponding block address A½t� is calculated by
T ½t�=B ¼ T ½t� � b, where “� ” is a bitwise right shift
operator andB ¼ 2b is the cache block size. During T-SPaCS’s
simulation, the time-ordered sequence of unique block
addresses that map to the same set with index i for the

minimum number of sets S1
min (without loss of generality, we

assume S1
min < S2

min) is recorded into one stack structure for
every cache block sizeB. Thus, the number of required stack
structures for a particularB is equal toS1

min (determined byB,
the minimum cache size Z1

min, and the maximum associativ-
ityW 1

max). In the set of a particularB’s stacks, we denote each
stack’s contents as the vector Ki;t

��!
, after inserting A½t� into the

stack. Ki;t½m� , m 2 Zþ, is one element in vector Ki;t
��!

,
representing the mth uniquely accessed block address
(counting starts from the stack’s top, thus Ki;t½1� is the stack
top and represents the address of the most recently accessed
cache block that maps to the set with index i for B and S1

min).
During T-SPaCS’s processing for a particular T ½t�, the cache
configurations with different B are simulated sequentially
using the corresponding set of stacks for each evaluated B.
Since T-SPaCS’s processing of eachT ½t� for eachB is the same,
we limit our discussion in the remainder of this paper to
T-SPaCS’s processing of one arbitrary trace address T ½t� for
one arbitrary cache block size B (8B 2 ½Bmin; Bmax�, where
Bmin and Bmax represent the minimum and maximum block
size values, respectively).

T-SPaCS processes each trace address for the set of stack

structures for each B using four steps: stack processing,

L1 analysis, L2 analysis, and stack update, as shown in Fig. 2.

For a trace address T ½t� (whose block address is A½t�), the set

index i is determined through B and S1
min (i ¼ A½t�mod S1

min)

and i locates the stack structure that stores T ½t�’s conflicts for

all possible number of sets Sð8S 2 ½S1
min; S

1
max� [½S2

min; S
2
max�,

where S1
min, S1

max, S2
min, and S2

max represent the minimum and

maximum number of cache sets in L1 and L2, respectively).

Stack processing scans the stack structure Ki;t�1
���!

to determine

whether the block A½t� was recorded (a cache line with that

block address has already been fetched). If there exists h

satisfying Ki;t�1½h� ¼ A½t�, the block that T ½t� maps to was

accessed previously and the most recent access was

recorded in the stack as Ki;t�1½h�. For all S, stack processing

scans the stack from Ki;t�1½1� to Ki;t�1½h� to evaluate the

conflicts with T ½t�. We refer to this process as conflict

evaluation. The conflicts with T ½t� for a particular S are

denoted by �ðSÞ, whose collection is represented by f�ðSÞg.
We note that conflict evaluation is trivial for S1

min, since all

the stack addresses in Ki;t�1
���!

conflict with T ½t� for S1
min and

thus the conflict evaluation for S1
min simply records the stack

addresses in Ki;t�1
���!

into f�ðS1
minÞg. After identifying these

conflicts, L1 analysis directly determines T ½t� to be an L1 hit/

miss based on the number of conflicts for the L1 configura-

tions with S1. If there is an L1 miss, L2 analysis is required.

When the particular S1 and any S2 (8S2 2 ½S2
min; S

2
max�) are

combined to form one two-level cache configuration,

L2 analysis categorizes the evaluated conflicts of the

combined cache as either L1 or L2 conflicts. Similarly, the

number of conflicts in L2 dictates an L2 hit/miss. After stack

processing, L1 analysis, and L2 analysis (if necessary) for all

cache configurations, the stack update removes Ki;t�1½h� from

Ki;t�1
���!

if h exists, and then pushes A½t� on the top of Ki;t�1
���!

to

update to Ki;t
��!

. If there is no Ki;t�1½h� in Ki;t�1
���!

, the stack

update directly pushes A½t� on the top of Ki;t�1
���!

. After the

entire ~T is processed, T-SPaCS accumulates the number of

L1 and L2 misses for all two-level cache configurations.

ZANG AND GORDON-ROSS: T-SPACS—A TWO-LEVEL SINGLE-PASS CACHE SIMULATION METHODOLOGY 393

Fig. 2. T-SPaCS’s functional overview: Executing the application
generates the time-ordered access trace, which is sequentially fed into
a different set of stacks based on the trace address’s set index for S1

min
under different B. T-SPaCS’s processing for each trace address
consists of four steps (encompassed by the dotted box). After
processing the entire access trace, T-SPaCS produces the accumulated
number of L1 and L2 misses for all cache configurations. (Refer to
Table 1 for notations.)

To simulate a data cache that uses the write-back policy,
the cache block’s dirty status must be considered. We track
the number of write-backs using a write-avoid counter [32].
In a write-back cache, not all the cache writes result in
write-backs to main memory. For example, if a cache block
is written to X times, X-1 write-backs to main memory are
avoided since all writes to the cache block are coalesced and
are only written back to memory once when the cache block
is evicted. Therefore, during T-SPaCS’s data cache proces-
sing, if writing T ½t� results in an L1/L2 hit, and the stack
searched address Ki;t�1½h� is dirty, this write is avoided, and
the write-avoid counter is incremented. The number of
write-backs is equal to the total number of writes minus the
number of write-avoids. We use a bit-array attached with
each stack address, in which each bit indicates whether the
address is dirty for each cache configuration. The bit-array’s
size is equal to the number of cache configurations with the
same B in the design space. The dirty status of the stack
address is maintained in the stack update step, which is
detailed as follows: writing T ½t� sets the newly inserted A½t�
as dirty; if reading T ½t� results in an L2 miss, A½t� is set as
clean, since an L2 miss implies fetching A½t� from main
memory, which is always clean; if reading T ½t� results in an
L1/L2 hit, the dirty status of A½t� is dictated by the dirty
status of the removed Ki;t�1½h�.

We note that although T-SPaCS uses several stack
structures to record block-size-specific cache access patterns
to simplify conflict determination, the storage, and time
complexities are similar to those defined in Section 3. Since
one cache block encapsulates multiple addresses, the
combined storage space, and thus processing time for all
stacks will be similar to the storage space and processing
time required by one stack.

The remainder of this section presents T-SPaCS’s
detailed operations. Since there is no L2 analysis on an
L1 hit, we describe the stack-based algorithm for single-
level cache simulation in Section 4.1 and extend the
methodology to L2 analysis in Section 4.2. Section 4.3
discusses acceleration strategies to assist stack processing.

4.1 Stack-Based Single-Level Cache Analysis

The single-level cache analysis algorithm serves as the basis
for two-level cache analysis. In a single-level cache, the
presence of an accessed address T ½t� in the cache set that
T ½t� maps to depends on the cache configuration and the
number of conflicts in the stack before Ki;t�1½h�. A stack
address Ki;t�1½m�, m 2 ½1; hÞ is recorded as a conflict in
T ½t�0s conflict collection f�ðSÞg for the cache configuration
with block size B and number of sets S if and only if:

ðKi;t�1½m�Þmod S ¼ ðT ½t� � bÞmod S;m 2 ½1; hÞ: ð1Þ

Fig. 3 illustrates the algorithm for L1 analysis for
processing an arbitrary T ½t� in the access trace. For each
B’s corresponding stack Ki;t�1

���!
(state 1) with every S1

(state 2), stack processing determines the conflicts f�ðS1Þg in
the stack addresses before Ki;t�1½h� (state 3). If Ki;t�1½h� is
not present in the stack, T ½t� is a compulsory miss (state 5)
and L2 analysis for T ½t� is not necessary. In this case, the
stack update occurs (state 6) and the processing proceeds to
the next address T ½tþ 1�. If Ki;t�1½h� is present in the stack,

the number of conflicts j�ðS1Þj dictates the minimum set
associativity that yields a hit, thus a hit or miss for each set
associativity W 1 (state 4) can be determined (e.g., W 1 >
j�ðS1Þj is a hit). L1 hits do not require any L2 analysis, and
L1 misses require additional L2 analysis for all possible
L2 configurations (Section 4.2). After T ½t�’s evaluation for all
S1 and W 1 combinations (and additional L2 analysis if
necessary), stack update (state 6) completes T ½t�’s proces-
sing and the processing proceeds to the next address
T ½tþ 1�.

4.2 Stack-Based Two-Level Cache Analysis

When using an exclusive hierarchy, L1 and L2 can be
treated as one combined cache. The conflict evaluation for
the combined cache is processed using the L2 configura-
tions in order to extract the L2 conflicts. We represent the
conflicts for the combined cache as f�ðS2Þg (for cache
configurations of S2). Similar to the process for identifying
f�ðS1Þg, f�ðS2Þg can also be identified using conflict
evaluation from Ki;t�1½1� to Ki;t�1½h� in stack processing.
f�ðS2Þg consists of the conflicts in both L1 and L2. Since
f�ðS2Þg contains inclusive L2 conflicts, exclusion requires
the removal of the L1 conflicts from f�ðS2Þg to isolate the
exclusive L2 conflicts, whose collection is denoted by f�g.
The number of L2 conflicts j�j determines the minimum
L2 associativity necessary for T ½t� to be an L2 hit. Due to the
LRU replacement policy for L1 and FIFO for L2, stack
processing orders the conflicts in the conflict collections
f�ðS1Þg and f�ðS2Þg in MRU (most recently used) time order
to facilitate L1 and L2 analysis.

As shown in Fig. 3, when T ½t� results in an L1 conflict
miss for a particular L1 configuration with B, S1, and W 1,
the first W 1 conflicts f�ðS1ÞgW 1 in f�ðS1Þg are the blocks
present in L1. The subsequent L2 analysis will evaluate all
possible L2 configurations (with the same B as L1). For each
S2 (8S2 2 ½S2

min; S
2
max�), the L2 analysis consists of three

steps: 1) stack processing to determine f�ðS2Þg (as described
in Section 4.1); 2) removing f�ðS1ÞgW1 (effectively removing
the L1 blocks) from f�ðS2Þg to deduce f�g, which we refer to
as the compare-exclude operation; and 3) evaluate T ½t� as an
L2 hit/miss for each set associativity W 2 based on j�j.

The compare-exclude operation is divided into three
scenarios based on three different inclusion relationships
between f�ðS1Þg and f�ðS2Þg. Fig. 4 depicts the cache
addressing formats of L1 and L2, in which k and l represent
the number of L1 and L2 index bits, respectively. The three

394 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 2, FEBRUARY 2013

Fig. 3. Algorithm for L1 analysis for T ½t�.

compare-exclude scenarios are: 1) the number of L1 and
L2 sets are equal (S1 ¼ S2 and f�ðS1ÞgW 1 is the first W 1

conflicts in f�ðS2Þg); 2) the number of L1 sets is less than the
number of L2 sets (S1 < S2 and f�ðS1ÞgW1 contains several
conflicts in f�ðS2Þg); 3) the number of L2 sets is less than the
number of L1 sets (S1 > S2 and f�ðS1ÞgW1 is a subset of
f�ðS2Þg).

4.2.1 Compare-Exclude Scenario: S1 ¼ S2

For L1 and L2 configurations with the same B and S values
(Fig. 4a), f�ðS2Þg is the same as f�ðS1Þg. Thus, stack
processing for f�ðS2Þg is not necessary and f�ðS1Þg can be
directly applied to deduce f�g. In this scenario, the conflicts
in f�ðS1Þg are divided into two categories: the first W 1

conflicts are present in L1 and the remaining conflicts form
f�g. The condition that W 2 > j�j indicates that Ki;t�1½h� has
not been evicted from L2 by the following accessed blocks
and T ½t� results in an L2 hit. For example, if j�ðS1Þj ¼ 5 and
W 1 ¼ 2, the first two conflicts in f�ðS1Þg are present in L1
and the remaining conflicts compose f�g. Therefore, j�j¼ 3
and the L2 configurations with associativities greater than 3
result in an L2 hit.

4.2.2 Compare-Exclude Scenario: S1 < S2

As depicted in Fig. 4b, the number of L1 index bits k is less
than the number of L2 index bits l in the S1 < S2 scenario.
The evicted cache blocks from one L1 set map to multiple
(multiple of two) L2 sets. We refer to these multiple L2 sets
as the affinity group associated with one L1 set, and the
number of L2 sets in the affinity group is equal to S2=S1.
The cache indexes for addressing one L1 set and the
multiple L2 sets in the affinity group retain the following
relationship: the least significant k index bits in L1 and L2
are equal and the L2 index’s most significant (l� k) bits are
all values from all “0”s incremented to all “1.”s

Since the stack processing for f�ðS2Þg begins from the
stack’s top, f�ðS2Þg determined by the L2 index of T ½t�
contains some conflicts that are still present in L1. The
collection of these conflicts is the subset of f�ðS1ÞgW 1 with
the same L2 index as T ½t�, and thereby can be determined by
the intersection of f�ðS1ÞgW1 and f�ðS2Þg. After removing
these intersecting conflicts, the remaining conflicts in
f�ðS2Þg are the L2 conflicts f�g:

f�g ¼ f�ðS2Þg � f�ðS1ÞgW 1 \ f�ðS2Þg: ð2Þ

However, Fig. 5 illustrates a special case that must be
considered in this scenario. Fig. 5a shows a time-ordered
access trace segment from T ½ti� to T ½ti þ 8�, ti 2 Zþ. We
assume the following: T ½ti� ¼ T ½ti þ 8�; T ½ti þ 3� ¼ T ½ti þ 7�;
and the other addresses map to different unique cache
blocks. In these blocks, T ½ti� maps to the same cache set as
T ½ti þ 1�, T ½ti þ 2�, T ½ti þ 3�, and T ½ti þ 4� under both S1 and
S2, while T ½ti� maps to the same cache set as T ½ti þ 5� and
T ½ti þ 6� under S1 but not S2. For simplification, we
represent T ½ti� to T ½ti þ 8� with block addresses: z, x4, x3,
x2, x1, y1, y2, x2, and z, respectively, as shown in Fig. 5a. For
W 1 ¼ 2 and W 2 ¼ 4, Fig. 5b shows the L1 and L2 set
contents at the time points ti þ 5, ti þ 6, and ti þ 7. Fig. 5c
shows the stack contents before ti þ 8. According to the
cache set contents, accessing T ½ti þ 8� with z results in L1
and L2 misses. Stack processing for T ½ti þ 8� produces the
conflicts f�ðS1Þg2 ¼ fx2; y2g and f�ðS2Þg ¼ fx2; x1; x3; x4g.
The compare-exclude operation produces the conflicts
f�g ¼ fx1; x3; x4g. Since j�j ¼ 3 and W 2 ¼ 4, T ½ti þ 8� is
incorrectly classified as a hit.

To explain this incorrect classification, we note that
accessing T ½ti þ 7� moves x2 from L2 to L1, leaving an
empty way in L2—an occupied blank (BLK), as shown in
Fig. 5b. The occupied blank occurs because at ti þ 7, y1 was
evicted from L1 to accommodate x2, but y1 maps to a
different L2 set than the set that x2 maps to. The occupied
blank means that x2 was in L2 and involved in evicting z
from L2 (at ti þ 6), thus x2 should be counted as a conflict
for T ½ti þ 8� in f�g.

In order to account for the occupied blank, occupied blank
labeling is a supplemental process that labels occupied
blanks using a bit-array associated with each stack address.
The bit-array size is equal to the number of cache
configurations with the same B in the design space. A
“set” bit indicates that an occupied blank follows the
labeled block in the corresponding cache configuration. The
compare-exclude operation is augmented to include blank
label examination. If the label associated with the last
conflict in f�g is set, there is an occupied blank behind the
last conflict, which means the last conflict is the LRU block
present in the L2 set and the block that T ½t� maps to has
already been evicted. As a result, T ½t� is classified as an
L2 miss even though j�j < W 2 in this case.

The occupied blank is introduced when there is an L2 hit,
such as the example described in Fig. 5b (i.e., the L2 hit for
T ½ti þ 7� results in a BLK by fetching x2 into L1). Therefore,
occupied blank labeling must proceed whenever the

ZANG AND GORDON-ROSS: T-SPACS—A TWO-LEVEL SINGLE-PASS CACHE SIMULATION METHODOLOGY 395

Fig. 4. Cache addressing formats for the compare-exclude operation
scenarios: (a) S1 ¼ S2, (b) S1 < S2, and (c) S1 > S2, in which k and l
represent the number of L1 and L2 index bits, respectively.

Fig. 5. Special case when S1 < S2 where fetching x2 from L2 results in
an occupied blank (BLK).

processed address T ½t� results in an L2 hit. We refer to the
previously fetched block that T ½t� maps to as Ki;t�1½h�
following our previous notation. There are two cases for
occupied blank labeling: 1) when Ki;t�1½h� is the W 2-th
(MRU order) block in the L2 set (i.e., j�j ¼W 2 � 1), the last
conflict in f�g is labeled as an occupied blank since Ki;t�1½h�
will be fetched into L1 after accessing T ½t�; and 2) when
Ki;t�1½h� is not the W 2-th block in the L2 set (i.e.,
j�j < W 2 � 1), stack processing must continue after
Ki;t�1½h� to locate and label the W 2-th block in the L2 set.
The example shown in Fig. 5b follows the second case. Since
x2 is not the W 2-th block (MRU order) in L2 at ti þ 6, stack
processing continues and labels the W 2-th block x4 to
indicate a BLK after x4 in processing T ½ti þ 7�.

4.2.3 Compare-Exclude Scenario: S1 > S2

In the S1 > S2 scenario (Fig. 4c), blocks evicted from
multiple L1 sets map to one L2 set. Similarly to the S1 <
S2 scenario, one L2 set corresponds to an affinity group in
L1 and the number of L1 sets in the affinity group is equal
to S1=S2. The L2 set that T ½t� maps to has an affinity group
consisting of multiple L1 sets, and T ½t� maps to one of the
L1 sets. We denote these multiple L1 sets in the affinity
group, excluding the set that T ½t� maps to, as the
complementary sets of T ½t�. The conflicts associated with
one of the complementary sets are denoted by ��, where the
subscript � 2 ½1; S1=S2 � 1� differentiates between each of
the complementary sets. The collection of conflicts for the �
complementary set is denoted by f��g, whose cardinality is
denoted by j��j. In Fig. 4c, T ½t�’s address uses k bits for the
L1 index and l bits for the L2 index (k > l). The
complementary set’s indexes in L1 can be composed by
joining the least significant l bits with each combination of
“0”s and “1”s for the most significant (k� l) bits excluding
the combination associated with T ½t�’s L1 index. For
example, if T ½t�’s indexes are “101101” for L1 and “1101”
for L2, the collection of f��g for all � will include all
conflicts associated with {“001101,” “011101,” “111101”}.

The conflicts in f�ðS2Þg, while still present in L1, include
both the L1 conflicts in the set that T ½t� maps to (f�ðS1ÞgW 1)
and the L1 conflicts associated with the complimentary sets
(f��g). Stack processing determines these additional con-
flicts by simply considering the complementary set’s
indexes. Therefore, the compare-exclude operation in this
scenario produces

f�g ¼ f�ðS2Þg � f�ðS1ÞgW 1 �
XS1=S2�1

�¼1

f��gW1 ; ð3Þ

where f��gW 1 represents the first W 1 conflicts (MRU order)
in f��g.

4.3 Acceleration Strategies

During T-SPaCS’s processing, stack processing is the most
time consuming operation. For every T ½t� in the access trace,
stack processing repeatedly evaluates all stack addresses
Ki;t�1½m� (8m 2 ½1; hÞÞ for conflicts with every number of
cache sets in the design space. If Cs denotes the total
number of configurable S1 and S2 in the design space, the
conflict evaluation’s complexity is OðCs � hÞ (without con-
sidering the complementary sets) for each T ½t� unless T ½t�
results in L1 hits for all L1 configurations (in which case, the

complexity is OðCs1 � hÞ, where Cs1 is the total number of
configurable S1 in the L1 design space only). To reduce the
conflict evaluation runtime, stack processing can be
accelerated using the set refinement property [19]. The set
refinement property states that the blocks that map to the
same set in larger caches also map to the same set in smaller
caches. The set refinement property can be leveraged by
processing S from smallest to largest and a stack address
Ki;t�1½m� is evaluated for conflicts with T ½t� only if T ½t�
conflicts with Ki;t�1½m� for a smaller S. Alternatively,
processing S from largest to smallest leverages the set
refinement property. However, since most stack addresses
are not conflicts even for small S in a typical application,
starting from Smin reduces more trivial conflict evaluations.

This acceleration strategy can be applied to both stack
processing steps: 1) determining all conflicts f�ðS1Þg,
f�ðS2Þg, and f��g for all possible S1 and S2 using a tree
data structure (tree-assisted acceleration in Section 4.3.1);
and 2) occupied blank labeling using an array data structure
(array-assisted acceleration in Section 4.3.2).

4.3.1 Tree-Assisted Acceleration

When processing T ½t� for an arbitrary B with stack Ki;t�1
���!

on
an L1 miss, the compare-exclude operation compares the
conflicts in f�ðS1Þg for each L1 configuration with the
conflicts in f�ðS2Þg for all possible L2 configurations. An
efficient method to determine these conflicts is to determine
the conflicts for all possible S initially and store these
conflicts in a tree structure for later reference. We note that
this data structure is not a traditional tree structure, but is a
hierarchical representation that we refer to as a tree for
simplicity.

The tree structure stores T ½t�’s conflicts and the conflicts
associated with the complimentary sets for all S with the
same B. Each tree level corresponds to a different S, with S
increasing from root to leaf (higher level to lower level) by
powers of two. Tree nodes store the conflict information
and the maximum L1 and L2 associativities dictate the
maximum number of conflicts stored at each node (conflict
storage). Every conflict is represented by the conflict’s block
address and a pointer to the block’s stack location, which
assists in occupied blank labeling since the blank labels
(linked using the stack address) of the recorded conflicts
will be examined to correct the compare-exclude results in
the S1 < S2 scenario.

We accelerate stack processing by determining all con-
flicts for all S simultaneously. We denote all S from the
minimum Smin to the maximum Smax with a subscript �,
where � is an integer satisfying � 2 ½1; log2ðSmax=SminÞ þ 1�
such that the �th tree level corresponds to S� and the number
of tree levels is log2ðSmax=SminÞ þ 1. Due to the set refinement
property, evaluating the conflicts for Ki;t�1½m�ð8m 2 ½1; hÞÞ
with T ½t� for a particular S�ið�i 2 ½2; log2ðSmax=SminÞ þ 1�Þ
depends on whether Ki;t�1½m� conflicts with T ½t� for S�i�1.
When Ki;t�1½m� is T ½t�’s conflict for S�i�1, Ki;t�1½m� will be
T ½t�’s conflict forS�i on the condition that the most significant
bit in the indexes of both T ½t� and Ki;t�1½m� under S�i are the
same. On the contrary, if Ki;t�1½m� is not T ½t�’s conflict for
S�i�1, the indexes of T ½t� and Ki;t�1½m� under all larger S�
(8� 2 ½�i; log2ðSmax=SminÞ þ 1�) are also different.

396 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 2, FEBRUARY 2013

When the combined L1 and L2 configurations satisfy the
S1 > S2 scenario, the compare-exclude operation should
exclude the conflicts associated with the L1 complementary
sets as well as the L1 conflicts. Therefore, for each S� in the
L1 design space that is larger than S2

min, the additional
conflicts with each of the complimentary sets f��gmust also
be searched and recorded in the �th tree level as one node.
The number of nodes at each tree level is dictated by the
number of complementary sets required for S�. More
specifically, if 9S�i 2 ½S1

min; S
1
max� and S�i > S2

min, the num-
ber of nodes in the �ith tree level is S�i=S

2
min. When S�i is

combined with an S2 other than S2
min while still complying

with the condition that S�i > S2, the conflicts with
the complementary sets can be determined by selecting
the corresponding nodes in the �ith tree level based on the
difference between the number of index bits for S�i and S2.

Fig. 6 provides a sample tree structure for a processed
address T ½t� with block address A½t� ¼ “100110110110”. The
configurable number of sets in the design space for the
certain B are bounded by S1

min ¼ 4, S1
max ¼ 64, S2

min ¼ 16,
and S2

max ¼ 256. Rectangles correspond to tree nodes and
values in the nodes correspond to the indexes of the
recorded conflicts. For levels S1, S2, S3, S6, and S7, only one
node is required in each level to record the conflicts with
T ½t�. For levels S4 and S5, the complementary set’s conflicts
must be recorded since S4 and S5 are larger than S2

min (i.e.,
S3). When S1 ¼ S5 and S2 ¼ S3, the conflicts selected from
all the four nodes in the fifth level will be excluded during
the compare-exclude operation. When S1 ¼ S5 and S2 ¼ S4,
only the conflicts in the first two nodes will be excluded.

Fig. 7 summarizes the tree-assisted stack processing
acceleration algorithm. For each T ½t� and B, the tree
contents are cleared and Sstart is initialized to S1 (line 1).
For each stack address Ki;t�1½m� (8m 2 ½1; hÞÞ (lines 2-19),
conflict evaluation determines the conflicts with T ½t� or the
complementary sets from Sstart to Smax (lines 3-13). If the
complementary set’s conflicts are not required for the
�th tree level, Ki;t�1½m� is directly evaluated for conflict
with T ½t� for S� by comparing the most significant index
bits of T ½t� and Ki;t�1½m� under S� (since S increases by
powers of two) (lines 4-6). If Ki;t�1½m� conflicts with T ½t� for
S�, Ki;t�1½m� is recorded into the node in the �th tree level
(lines 7-8); otherwise conflict evaluation for Ki;t�1½m� is
terminated (larger S� conflict evaluations are not neces-
sary) (lines 9-10). If the complimentary set’s conflicts are
required in the �th tree level, Ki;t�1½m� is stored into a node
in the �th tree level based on the most log2ðS�=S2

minÞ

significant index bits (lines 11-13). In this situation, only
checking the most log2ðS�=S2

minÞ significant bits requires
the condition that Ki;t�1½m� conflicts with T ½t� for S2

min

when processing proceeds to line 12. This condition is
guaranteed by the constraint in changing Sstart in line 18.
Since the required number of conflicts stored in each node
is limited by the L1 and L2 associativities, if all nodes in the
Sstart level are full after processing Ki;t�1½m� for all S�
(8S� 2 ½Sstart; Smax�), searching for more conflicts in the
Sstart level is trivial. Therefore, the value for Sstart may
change (line 14). If the complementary set’s conflicts are
not needed for the level with Sstartþ1, Sstart is updated by
Sstartþ1 (lines 15-16); otherwise conflict evaluation always
starts from S2

min (lines 17-18) since the evaluation of the
conflicts for S2

min is a prior requirement for determining the
complimentary set’s conflicts.

Since only one tree is built and the tree’s contents are
cleared for every T ½t� and B, the storage space required by
the tree is minimal as compared to the stack structures.

4.3.2 Array-Assisted Acceleration

Stack processing for T ½t� is limited to only evaluating the
stack addresses before Ki;t�1½h� except during occupied
blank labeling for the S1 < S2 scenario. In this scenario,
additional stack processing after Ki;t�1½h� is required if
Ki;t�1½h� is not the W 2th (MRU order) block in the L2 set.
Since this additional stack processing may be required for
all possible S2, we propose array-assisted acceleration for
this additional stack processing.

An array �, whose size (number of elements) is dictated
by the maximum L2 associativity W 2

max, records additional
conflicts in the stack after Ki;t�1½h�. Each element stores the
information for one conflict using the same format as the
tree structure nodes in Section 4.3.1.

Fig. 8 depicts the array-assisted stack processing accel-
eration algorithm. When T ½t� results in an L1 miss for a
particular L1 configuration, �’s contents are cleared (line 3)
and all possible L2 configurations for all combinations of S2

and W 2 are analyzed by the compare-exclude operation
(lines 4-6). If there is a hit in an L2 configuration andKi;t�1½h�
is not theW 2th block in the L2 set, additional stack processing
is required to determine and label theW 2th block (line 7). If �
is empty, this L2 configuration is the first configuration to

ZANG AND GORDON-ROSS: T-SPACS—A TWO-LEVEL SINGLE-PASS CACHE SIMULATION METHODOLOGY 397

Fig. 6. A sample tree structure where rectangles correspond to tree
nodes and values in the nodes are the indexes of the recorded conflicts.

Fig. 7. Tree-assisted stack processing acceleration algorithm.

require the W 2th block and stack processing determines the
additional conflicts after Ki;t�1½h� for S2, and records these
additional conflicts in � (lines 8-11). If � is not empty, one of
two situations occurs. 1) If theW 2th block is first required for
that particular S2 (lines 13-18), the additional conflicts can be
obtained by evaluating �’s elements (line 14) since � already
stores the conflicts for the previously processed smaller S2

and contains the first several conflicts for largerS2 (according
to the set refinement property). If the conflicts determined in
� are not enough to determine theW 2th block for the new S2,
additional stack processing continually evaluates the stack
addresses until the W 2th block is determined (lines 15-16),
and all additional conflicts for the new S2 will replace �’s
contents (lines 17-18). 2) If the additional conflicts for that
particular S2 with previously processed larger W 2 were
determined and stored in �, the W 2th block for smaller W 2

can be directly determined in � (lines 19-20).
Since �0s contents are updated for each T ½t� with each

specific cache configuration, only one array is required and
the storage overhead for array-assisted acceleration is
negligible as compared to the stack structures.

5 EXPERIMENTAL RESULTS AND ANALYSIS

We verified T-SPaCS using the 15 benchmarks from
EEMBC benchmark suite [11], five arbitrarily selected
benchmarks from the Powerstone benchmark suite [23],
and four arbitrarily selected benchmarks from the Media-
Bench benchmark suite [22]. We gathered the access trace
for each benchmark by modifying “sim-cache” in SimpleS-
calar 3.0d [7] and these traces served as input to T-SPaCS.
For comparison, we modified the widely used trace-driven
cache simulator Dinero IV [10] to simulate both two-level
exclusive instruction and data caches, respectively, for each
benchmark.

We used the same design space for the two-level
configurable cache hierarchy as in [17]. The design space
consisted of 243 configurations by varying (in increments of
powers of 2) the L1 size from 2 to 8 Kbytes, the L2 size from
16 to 64 Kbytes, the L1 and L2 associativities from direct-
mapped to 4-way, and the cache block size from 16 to

64 bytes. We note that we selected this design space for
comparison convenience and T-SPaCS itself does not
impose any restriction on the configurable cache para-
meters, and is thus valid for any design space.

In order to determine T-SPaCS’s accuracy and efficiency,
we gathered the cache miss rates for all 243 configurations
using the modified Dinero, which produces exact results,
and T-SPaCS, then evaluated the margin of errors in
T-SPaCS with respect to the exact miss rate and the optimal
(lowest) energy cache.

5.1 Miss Rate Accuracy

We compared the miss rates determined by T-SPaCS with
the exact miss rates determined by the modified Dinero for
each benchmark. The results showed that for both instruc-
tion and data caches, T-SPaCS’s L1 miss rates were
100 percent accurate for all configurations and the L2 miss
rates were 100 percent accurate for 240 out of 243 config-
urations, which accounts for 99 percent of the design space.
For each benchmark, we calculated the average and standard
deviation of miss rate errors across the three inaccurate cache
configurations. For the instruction cache, across all bench-
marks, the maximum values for the average and standard
deviation of miss rate errors were 1.16 and 0.64 percent,
respectively. For the data cache, across all benchmarks, the
maximum values for the average and standard deviation of
miss rate errors were 0.69 and 0.32 percent, respectively.
Since inaccurate miss rates result in inaccurate write-back
rates in the data cache, the maximum values for the average
and standard deviation of write-back rate errors across all
benchmarks were only 0.15 and 0.07 percent, respectively.

For the three inaccurate configurations, multiple L1 sets
in one affinity group corresponded to one L2 set (i.e.,
scenario S1 > S2 in Section 4.2.3). In this scenario, the
eviction order of blocks from the different L1 sets to the
same L2 set does not follow the memory access order and
the blocks in the L2 set are disordered. When we determine
the conflicts of T ½t� in L2, only the blocks that are evicted
into L2 after Ki;t�1½h� affect Ki;t�1½h�’s eviction from L2.
Since the stack structure only records the latest memory
access order, the historical eviction order of the blocks from
multiple L1 sets to the same L2 set cannot be obtained from
the stack. Therefore, the blocks in f�g generated by the
compare-exclude operation are not guaranteed to be the
blocks present in the L2 set. However, inaccurate f�g does
not necessarily produce an incorrect cache hit/miss
classification since a cache miss is determined when j�j >
= W 2. Only when the inaccurate j�j’s error is larger than the
difference between W 2 and accurate j�j, the cache hit/miss
classification will be affected. Our experimental results
showed that the effect of errors in j�j on miss rate estimation
was nominal.

5.2 Optimal Cache Configurations

Since low energy/power consumption is a critical optimi-
zation for both embedded systems and desktop computers,
we evaluated T-SPaCS’s ability to determine the optimal
(lowest energy) cache configuration. We expanded a two-
level inclusive cache hierarchy energy model [17] to include
evicted block write energy, and determined the energy

398 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 2, FEBRUARY 2013

Fig. 8. Array-assisted stack processing acceleration algorithm.

consumption for each cache configuration using the
following energy model:

total_energy ¼ static_energy þ dynamic_energy

dynamic_energy ¼ L1_dynamic_energy

þ L2_dynamic_energy þ offchip_access_energy

þ (miss_cycles . CPU_stall_energy)

L1_dynamic_energy ¼ L1_accesses . L1_per_read_energy

L2_dynamic_energy ¼ (L2_hits . L2_per_read_energy)
þ (L2_misses . L2_per_tag_read_energy)

þ (L1_evicts . L2_per_write_energy)

offchip_access_energy = L2_misses.

memory_per_read_energy

þ write-backs . memory_per_write_energy

miss_cycles ¼ L1_miss_cycles þ L2_miss_cycles

L1_miss_cycles ¼ L1_misses . L1_miss_latency

þ (L1_misses . blocksize. L1_bandwidth)
L2_miss_cycles ¼ L2_misses . L2_miss_latency

þ (L2_misses . blocksize. L2_bandwidth)

static_energy ¼ total_cycles . static_energy_per_cycle

static_energy_per_cycle ¼ energy_per_Kbyte

. cache_size_in_Kbytes

energy_per_Kbyte

¼ ((dynamic_energy_of_base_cache)�20%)

/ base_cache_size_in_Kbytes

We used T-SPaCS and modified Dinero for a two-level
exclusive cache to determine L1_accesses, L1_misses, L2_hits,
L2_misses, L1_evicts, and write-backs. We obtained dynamic
cache and memory read/write energy using CACTI 6.5 [8]
for 0.09-micron technology and the cache static energy
consumption accounted for 20 percent of the total cache
energy [17]. We assumed the CPU_stall_energy to be
20 percent [17] of a 0.09-micron ARM1156 microprocessor
[3], and estimated bandwidth and latency based on a
reasonable system architecture: an L2 fetch is 4 times longer
than an L1 fetch; a main memory fetch is 20 times longer
than an L2 fetch; and the memory throughput is 50 percent
of the latency [17].

We applied this energy model to the miss rates
determined by T-SPaCS and the exact miss rates deter-
mined by the modified Dinero. The calculated results
showed that the optimal cache configurations determined
by T-SPaCS were exactly the same as those determined by
Dinero for all benchmarks. Table 2 shows the optimal
instruction and data cache configurations for each bench-
mark. Despite incorrect miss rates for the three configura-
tions where S1 > S2, the errors were too small to affect the
determined optimal cache configurations. Considering that
the number of configurations with S1 > S2 generally
occupies a small percentage (3 out of 243 (1 percent) in
our experiment) of the design space since caches’ sizes are
technically limited by Z1 < Z2, and the introduced errors
do not affect the determined optimal cache configuration,
there is no need to eliminate the small miss rate errors since
doing so would significantly increase the simulation time.

Fig. 9 depicts the normalized energy savings for the
optimal cache configurations compared to a base cache
configuration for each benchmark. The base cache config-
uration represents a configuration that may be commonly
found on a platform intended to run benchmarks similar to

those we studied. The base cache configuration was an

8 Kbyte L1 cache with a 32-byte block size and 4-way set

associativity and a 64 Kbyte L2 cache with a 32-byte block

size and 4-way set associativity. Fig. 9 shows average and

maximum energy savings of 22 and 46 percent, respec-

tively, for instruction caches, and average and maximum

energy savings of 26 and 48 percent, respectively, for

data caches.
To further corroborate the significance of two-level cache

tuning over single-level cache tuning in embedded systems
intended for low power, we compared the energy savings
using the two-level optimal cache configurations with the
energy savings using single-level optimal cache configura-
tions. The single-level configurable cache design space

ZANG AND GORDON-ROSS: T-SPACS—A TWO-LEVEL SINGLE-PASS CACHE SIMULATION METHODOLOGY 399

TABLE 2
Optimal Instruction and Data Cache Configurations (L1 and

L2 Configurations for Instruction Caches (I) and Data Caches
(D) Are Listed as the Total Size in kbytes (kB) Followed by the
Block Size in Bytes (B) Followed by the Associativity in Ways

(W))

consisted of the same L1 configurations as in the two-level
configurable cache. We determined the optimal single-level
cache configurations using an exhaustive search. Fig. 10
depicts the energy consumption of the two-level optimal
cache configurations normalized to the energy consumption
of the single-level optimal cache configurations. The results
indicate that for instruction caches, six of the 24 benchmarks
consumed less energy using a single-level cache as
compared to a two-level cache, while the remaining
18 benchmarks showed increased energy savings using
two-level caches; for data caches, 16 of the 24 benchmarks
presented increased energy savings using two-level caches.
On average, over all benchmarks, the two-level optimal
instruction caches consumed 28 percent less energy than the
single-level optimal instruction caches, and the two-level
optimal data caches consumed 22 percent less energy than
the single-level optimal data caches.

5.3 Simulation Time Efficiency

To illustrate T-SPaCS’s efficiency, we compared the
simulation time required for T-SPaCS to simultaneously
evaluate all 243 configurations with the simulation time
required to sequentially simulate all 243 configurations with
the modified Dinero. We tabulated the user time reported
from the Linux time command for the simulations running
on a Red Hat Linux Server v5.2 with a 2.66 GHz processor
and 4 Gigabytes of RAM.

To verify the speedup improvement obtained using our
acceleration strategies (Section 4.3), we simulated the
benchmarks using two T-SPaCS versions: T-SPaCS without
acceleration and T-SPaCS with acceleration.

The actual simulation times for evaluating all 243 in-
struction cache configurations for a single benchmark ranged
from 9.2 to 419.5 minutes for Dinero, 41 to 1,409 seconds
for T-SPaCS without acceleration, and 24 to 1,108 seconds for

T-SPaCS with acceleration. For all simulators, the bench-
marks that required the most and least simulation times
were blit and BaseFP01, respectively. Fig. 11 shows
the simulation speedups as compared to the modified
Dinero for instruction caches. T-SPaCS with acceleration
(second bar) achieved maximum and average speedups of
25.42X and 21.02X, respectively, which improved the
speedup of T-SPaCS without acceleration (first bar) by
6.79X and 7.84X, respectively.

The actual simulation times for evaluating all 243 data
cache configurations for a single benchmark ranged from
14.6 to 804.3 minutes for Dinero, 22 to 1,774 seconds for
T-SPaCS without acceleration, and 19 to 1,499 seconds for
T-SPaCS with acceleration. For all simulators, the bench-
mark that required the most simulation time was blit and
the benchmark that required the least simulation time was
jpegencode for Dinero and TBLOOK01 for both versions of
T-SPaCS. Fig. 12 shows the simulation speedups for data
caches. T-SPaCS with acceleration (second bar) acquired
maximum and average speedups of 46.8X and 33.34X,
respectively, which reduced the simulation time by 6.52X
and 2.07X as compared to T-SPaCS without acceleration
(first bar), respectively. We note that two benchmarks in
Fig. 12 did not show acceleration improvement, which was
due to the fact that our acceleration strategies reduced the
simulation time using the set refinement property. The
conflict determinations are omitted for the larger S if the
stack address is not a conflict for a small S. Thus, in a rare
case that a large amount of stack addresses are the conflicts
for most S in the design space, there will be no significant
speedup obtained by using our acceleration strategy. Due to
the processing overhead introduced by acceleration, the
total simulation time with acceleration can be longer than
the simulation time without acceleration.

400 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 2, FEBRUARY 2013

Fig. 9. Energy savings for the optimal instruction and data cache
configurations normalized to the base cache configuration.

Fig. 10. Energy consumption of the two-level optimal cache configura-
tions normalized to the energy consumption of the single-level optimal
cache configurations.

Fig. 11. Simulation time speedup of T-SPaCS without acceleration,
T-SPaCS, and simplified-T-SPaCS compared to the modified Dinero for
instruction caches.

Fig. 12. Simulation time speedup of T-SPaCS without acceleration, T-
SPaCS, and simplified-T-SPaCS compared to the modified Dinero for
data caches.

To avoid the miss rate error introduced during the S1 <
S2 scenario (Section 4.2.2), we supplemented the compare-
exclude operation with occupied blank labeling for each
L2 hit. Experiments revealed that occupied blank labeling
accounted for a large portion of T-SPaCS’s simulation time
even when leveraging the array-assisted acceleration (Sec-
tion 4.3.2). Therefore, we evaluated a simplified version of
T-SPaCS (simplified-T-SPaCS) by removing occupied blank
labeling. The measured simulation times for evaluating all
243 configurations for a single benchmark using simplified-
T-SPaCS ranged from 18 (BaseFP01) to 873 (blit) seconds for
the instruction caches and from 16 (TBLOOK01) to 1,254
(blit) seconds for the data caches. Fig. 11 shows the
simulation time speedups obtained by simplified-T-SPaCS
for each benchmark (third bar) as compared to the modified
Dinero for instruction caches. Simplified-T-SPaCS’s max-
imum and average speedups were increased to 33.92X and
30.15X, respectively. Fig. 12 depicts the simulation time
speedups of simplified-T-SPaCS (third bar) for data caches,
and the maximum and average speedups were 54.71X and
41.31X, respectively.

The tradeoff for the increased simulation speedups of
simplified-T-SPaCS is additional L2 miss rate errors for the
228 configurations where S1 < S2. In order to quantify the
degradation in the miss rate accuracy without occupied
blank labeling, we counted the number of occurrences of
occupied blanks and the number of inaccurate L2 hit/miss
classifications without labeling the occupied blanks. Aver-
aged across all benchmarks, occupied blanks accounted for
92 percent of the L2 hits (only L2 hits introduce occupied
blanks) for instruction caches and 90 percent of the L2 hits
for data caches. However, the average number of L2 hit/
miss classifications corrected by occupied blank labeling
was only 0.47 percent of the occurrences of occupied blanks
for instruction caches and 0.52 percent for data caches. We
further calculated the average and standard deviation of
miss rate errors across the 228 inaccurate cache configura-
tions for each benchmark. Across all benchmarks, the
maximum values of the average and standard deviation
of miss rate errors were 0.71 and 0.90 percent, respectively,
for instruction caches. For data caches, the maximum values
of the average and standard deviation of miss rate errors
were 1.02 and 1.65 percent, respectively. We also examined
the maximum values for the average and standard
deviation of write-back rate errors across all benchmarks,
which were 0.13 and 0.14 percent, respectively. Further-
more, we determined the optimal cache configurations
using simplified-T-SPaCS. Results revealed that even with

the inaccurate miss rates, simplified-T-SPaCS produced
identical optimal configurations as those determined using
the exact miss rates for both instruction and data caches.

Therefore, simplified-T-SPaCS is an ideal choice for
cache tuning due to simplified-T-SPaCS’s competitively
fast simulation time and accurate optimal configuration
determination. Alternatively, T-SPaCS is suitable in situa-
tions that require more accurate cache miss rate estimation
(e.g., performance analysis) while still providing simulation
speedup.

5.4 Comparison with TCaT

To further verify T-SPaCS’s and simplified-T-SPaCS’s
efficiency, we compared to a state-of-the-art two-level cache
tuner, TCaT [13]. TCaT is an efficient heuristic that
determines the optimal energy cache configuration using
an interlaced exploration methodology. Since TCaT sequen-
tially simulates the design space using SimpleScalar’s [7]
“sim-cache” [13], we modified “sim-cache” to simulate a
two-level exclusive cache. Even though TCaT sequentially
simulates the cache configurations, TCaT only simulates
6.5 percent of the configurations on average and can thus
determine the optimal energy cache configuration quickly.
Fig. 13 shows the simulation time speedup of T-SPaCS (first
bar) and simplified-T-SPaCS (second bar) as compared to
TCaT for instruction caches. The results indicated that
T-SPaCS required more simulation time than TCaT for all
the 24 benchmarks. For simplified-T-SPaCS, results re-
vealed that 12 benchmarks required less simulation time
than TCaT. There was a maximum speedup of 1.22X, and
the average simulation time of simplified-T-SPaCS was
approximately equal to TCaT. Fig. 14 shows the simulation
time speedup obtained by T-SPaCS (first bar) and simpli-
fied-T-SPaCS (second bar) as compared to TCaT for data
caches. The results revealed that T-SPaCS simulated
22 benchmarks faster than TCaT, and simplified-T-SPaCS
simulated all 24 benchmarks faster than TCaT. The average
speedups of T-SPaCS and simplified-T-SPaCS were 1.54X
and 1.90X, respectively.

Even though TCaT is generally faster than T-SPaCS,
since TCaT is an inexact heuristic, TCaT trades off fast
simulation time for reduced accuracy and TCaT is unable to
determine the optimal energy cache configuration for all
benchmarks. We refer to the cache configuration deter-
mined by TCaT as TCaT’s configuration, which may be
suboptimum. Fig. 15 compares the normalized (normalize
to the base cache) energy savings between the optimal cache
configurations (first bar) and TCaT’s configurations (second

ZANG AND GORDON-ROSS: T-SPACS—A TWO-LEVEL SINGLE-PASS CACHE SIMULATION METHODOLOGY 401

Fig. 13. Simulation time speedup of T-SPaCS and simplified-T-SPaCS
compared to TCaT for instruction caches.

Fig. 14. Simulation time speedup of T-SPaCS and simplified-T-SPaCS
as compared to TCaT for data caches.

bar) for instruction caches. For four benchmarks, TCaT’s
configurations were the same as the optimal cache config-
urations. TCaT’s configurations consumed 24 percent more
energy than the optimal cache configurations in the worst
case, and the average degradation in energy saving for
TCaT’s configurations across all the 24 benchmarks was
4 percent. Fig. 16 provides the normalized energy savings
between the optimal cache configurations (first bar) and
TCaT’s configurations (second bar) for data caches. TCaT’s
configurations were the same as the optimal cache config-
urations for ten benchmarks. However, in the worst case,
TCaT’s configuration consumed 47 percent more energy
than the optimal cache configuration, and the average
degradation in energy saving for TCaT’s configurations
across all the 24 benchmarks was 10 percent.

These results suggest that TCaT is less effective than
originally reported in [13]. To explain this discrepancy, we
point out that TCaT was originally designed for a two-level
inclusive cache and the adaptation to an exclusive cache
hierarchy explains the relatively poor performance. There-
fore, despite T-SPaCS’s generally longer simulation time
and simplified-T-SPaCS’s similar or slightly better simula-
tion time as compared to TCaT, T-SPaCS, and simplified-
T-SPaCS estimate the miss rates for all cache configurations
in the design space accurately enough to determine the
optimal cache configuration.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we presented T-SPaCS—a Two-level Single-
Pass trace-driven Cache Simulation methodology for ex-
clusive instruction and data cache hierarchies by using a
stack-based algorithm to simulate both the level one and
level two caches simultaneously. T-SPaCS reduces the
storage and time complexity required for simulating two-
level caches as compared to direct adaptation of existing
single-pass cache simulation methods to two level caches
using sequential simulation. T-SPaCS produces 100 percent
accurate results for 99 percent of the design space, and the
average simulation time speedups compared to sequential
simulation time for instruction and data caches are 21.02X
and 33.34X, respectively. A simplified version of T-SPaCS
(simplified-T-SPaCS) increases the average simulation
speedup to 30.15X for instruction caches and 41.31X for
data caches, at the expense of inaccurate miss rates for
95 percent of the design space. However, even with these
miss rate errors, both T-SPaCS and simplified-T-SPaCS are

still able to accurately determine the optimal energy
configuration for all studied benchmarks, thereby facilitat-
ing rapid design space exploration for cache tuning.

T-SPaCS is designed to simulate instruction and data
caches. In unified cache simulation, the relative ordering of
cache misses in separate level one instruction and level one
data caches must be maintained to simulate the unified
level two cache. Unfortunately, this required history of the
relative access ordering cannot be captured given the
current data structures and algorithms in T-SPaCS. There-
fore, single-pass trace-driven unified cache simulation will
be significantly different than T-SPaCS. Our future work
includes extending T-SPaCS to unified cache simulation
and hardware implementation for dynamic cache tuning.

ACKNOWLEDGMENTS

This work was supported by the US National Science
Foundation (NSF) (CNS-0953447). Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the US National Science Foundation.

REFERENCES

[1] Altera, “Nios Embedded Processor System Development,”
http://www.altera.com/corporate/news_room/releases/
products/nrnios_delivers_goods.html, 2012.

[2] Arc Int’l, http://www.arccores.com, 2012.
[3] ARM 1156 Processor, http://www.arm.com/products/

processors/classic/arm11, 2012.
[4] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S.

Dwarkadas, “Memory Hierarchy Reconfiguration for Energy and
Performance in General-Purpose Processor Architectures,” Proc.
IEEE/ACM 33rd Ann. Int’l Symp. Microarchitecture, pp. 245-257,
Dec. 2000.

[5] S. Banerjee, G. Surendra, and S.K. Nandy, “Program Phase
Directed Dynamic Cache Way Reconfiguration for Power Effi-
ciency,” Proc. Asia and South Pacific Design Automation Conf.,
pp. 884-889, Jan. 2007.

[6] M. Brehob and R.J. Enbody, “An Analytical Model of Locality and
Caching,” technical report, Michigan State Univ., 1996.

[7] D. Burger, T. Austin, and S. Bennet, “Evaluating Future Micro-
processors: The Simplescalar Toolset,” Technical Report CS-TR-
1308, Computer Science Department, Univ. of Wisconsin-Madi-
son, July 2000.

[8] CACTI, http://www.hpl.hp.com/research/cacti/, 2012.
[9] T.M. Conte, M.A. Hirsch, and W.W. Hwu, “Combining Trace

Sampling with Single Pass Methods for Efficient Cache Simula-
tion,” IEEE Trans. Computers, vol. 47, no. 6, pp. 714-720, June 1998.

[10] Dinero IV Trace-Driven Uniprocessor Cache Simulator, http://
pages.cs.wisc.edu/~markhill/DineroIV/, 2012.

[11] EEMBC, the Embedded Microprocessor Benchmark Consortium,
www.eembc.org, 2012.

402 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 2, FEBRUARY 2013

Fig. 15. The comparison of the normalized energy savings between the
optimal cache configurations and TCaT’s configurations for instruction
caches.

Fig. 16. The comparison of normalized energy savings between the
optimal cache configurations and TCaT’s configurations for data caches.

[12] A. Ghosh and T. Givargis, “Cache Optimization for Embedded
Processor Cores: An Analytical Approach,” ACM Trans. Design
Automation of Electronic Systems, vol. 9, no. 4, pp. 419-440, Oct.
2004.

[13] A. Gordon-Ross, F. Vahid, and N. Dutt, “Automatic Tuning of
Two-Level Caches to Embedded Applications,” Proc. IEEE/ACM
Design Automation and Test in Europe Conf. and Exhibition, pp. 208-
213, Feb. 2004.

[14] A. Gordon-Ross and F. Vahid, “A Self-Tuning Configurable
Cache,” Proc. IEEE Design Automation Conf., pp. 234-237, July 2007.

[15] A. Gordon-Ross, P. Viana, F. Vahid, W. Najjar, and E. Barros, “A
One-Shot Configurable-Cache Tuner for Improved Energy and
Performance,” Proc. IEEE/ACM Design, Automation and Test in
Europe Conf. Exhibition, pp. 1-6, Apr. 2007.

[16] A. Gordon-Ross, J. Lau, and B. Calder, “Phase-Based Cache
Reconfiguration for Highly-Configurable Two-Level Cache Hier-
archy,” Proc. ACM 18th Great Lakes Symp. VLSI, pp. 323-337, May
2008.

[17] A. Gordon-Ross, F. Vahid, and N. Dutt, “Fast Configurable-Cache
Tuning with a Unified Second-Level Cache,” IEEE Tran. VLSI
Systems, vol. 17, no. 1, pp. 80-91, Jan. 2009.

[18] P. Heidelberger and H.S. Stone, “Parallel Trace-driven Cache
Simulation by Time Partitioning,” Proc. Winter Simulation Conf.,
pp. 734-737, Dec. 1990.

[19] M.D. Hill and A.J. Smith, “Evaluating Associativity in CPU
Caches,” IEEE Trans. Computers, vol. 38, no. 12, pp. 1612-1630, Dec.
1989.

[20] A. Janapsatya, A. Lgnjatovi�c, and S. Parameswaran, “Finding
Optimal L1 Cache Cinfiguration for Embedded Systems,” Proc.
Asia and South Pacific Design Automation Conf., Jan. 2006.

[21] A. Janapsatya, A. Lgnjatovi�c, S. Parameswaran, and J. Henkel,
“Instruction Trace Compression for Rapid Instruction Cache
Simulation,” Proc. Conf. Design, Automation and Test in Europe,
pp. 1-6, Apr. 2007.

[22] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, “MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Commu-
nication Systems,” Proc. 30th Ann. Int’l Symp. Microarchitecture,
pp. 330-335, Dec. 1997.

[23] A. Malik, W. Moyer, and D. Cermak, “A Low Power Unified
Cache Architecture Providing Power and Performance Flexibil-
ity,” Proc. Int’l Symp. Low Power Electronics and Design, pp. 241-243,
2000.

[24] R.L. Mattson, J. Gecsei, D.R. Slutz, and I.L. Traiger, “Evaluation
Techniques for Storage Hierarchies,” IBM Systems J., vol. 9, no. 2,
pp. 78-117, 1970.

[25] MIPS32 4KE Family, http://www.mips.com/products/cores/32-
64-bit-cores/, 2012.

[26] S. Segars, “Low Power Design Techniques for Micropocessors,”
Proc. Int’l Solid State Circuit Conf., Feb. 2001.

[27] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder,
“Discovering and Exploiting Program Phases,” Proc. IEEE Micro:
Top Picks from Computer Architecture Conf., pp. 84-93, Dec. 2003.

[28] SimPoint, http://cseweb.ucsd.edu/~calder/simpoint/, 2012.
[29] R. Sugumar and S. Abraham, “Efficient Simulation of Multiple

Cache Configurations Using Binomial Trees,” technical report,
1991.

[30] R.A. Sugumar, “Multi-Reconfiguration Simulation Algorithms for
the Evaluation of Computer Architecture Designs,” PhD thesis,
Univ. of Michigan, Ann Arbor, Michigan, 1993.

[31] Tensilica, Xtensa Processor Generator, http://www.tensilica.
com/, 2012.

[32] J.G. Thompson and A.J. Smith, “Efficient (stack) Algorithms for
Analysis of Write-Back and Sector Memories,” ACM Trans.
Computer Systems, vol. 7, no. 1, pp. 78-117, 1989.

[33] P. Viana, A. Gordon-Ross, E. Baros, and F. Vahid, “A Table-Based
Method for Single-Pass Cache Optimization,” Proc. ACM Great
Lakes Symp. VLSI (GLSVLSI), May 2008.

[34] H. Wan, X. Gao, X. Long, and Z. Wang, “GCSim: A GPU-Based
Trace-Driven Simulator for Multi-level Cache,” Proc. Advanced
Parallel Processing Technologies, pp. 177-190, 2009.

[35] Z. Ying, B.T. Davis, and M. Jordan, “Performance Evaluation of
Exclusive Cache Hierarchies,” Proc. IEEE Int’l Symp. Performance
Analysis of Systems and Software, pp. 89-96, 2004.

[36] C. Zhang, F. Vahid, and R. Lysecky, “A Self-Tuning Cache
Architecture for Embedded Systems,” ACM Trans. Embedded
Computing Systems, vol. 3, no. 2, pp. 407-425, May 2004.

Wei Zang received the BS and MS degrees from
the Zhejiang University, Hangzhou, China, in
2006 and 2008, respectively, and is currently
working toward the PhD degree in electrical and
computer engineering in the University of Florida,
Gainesville. Her research interests include low-
power embedded system design, design auto-
mation with an emphasis on cache reconfigura-
tion, cache partitioning on multicore platforms,
and energy-aware scheduling on real-time sys-
tems. She is a student member of the IEEE.

Ann Gordon-Ross (M’00) received the BS and
PhD degrees in computer science and engineer-
ing from the University of California, Riverside, in
2000 and 2007, respectively. She is currently an
assistant professor of electrical and computer
engineering at the University of Florida, and is a
member of the US National Science Foundation
(NSF) Center for High Performance Reconfigur-
able Computing (CHREC) at the University of
Florida. She is also the faculty advisor for the

Women in Electrical and Computer Engineering (WECE) and the Phi
Sigma Rho National Society for Women in Engineering and Engineering
Technology. She received her CAREER award from the US National
Science Foundation in 2010 and Best Paper awards at the Great Lakes
Symposium on VLSI (GLSVLSI) in 2010 and the IARIA International
Conference on Mobile Ubiquitous Computing, Systems, Services and
Technologies (UBICOMM) in 2010. Her research interests include
embedded systems, computer architecture, low-power design, reconfi-
gurable computing, dynamic optimizations, hardware design, real-time
systems, and multicore platforms. She is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZANG AND GORDON-ROSS: T-SPACS—A TWO-LEVEL SINGLE-PASS CACHE SIMULATION METHODOLOGY 403

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

