
1

Proceedings of the ASME 2015 International Mechanical Engineering Congress & Exposition
IMECE2015

November 13-19, 2015, Houston, Texas

IMECE2015-50173

ENABLING RIGHT-PROVISIONED MICROPROCESSOR ARCHITECTURES FOR THE INTERNET
OF THINGS

ABSTRACT
The Internet of Things (IoT) consists of embedded low-power

devices that collect and transmit data to centralized head nodes

that process and analyze the data, and drive actions. The

proliferation of these connected low-power devices will result in

a data explosion that will significantly increase data transmission

costs with respect to energy consumed and latency. Edge

computing performs computations at the edge nodes prior to data

transmission to interpret and/or utilize the data, thus reducing

transmission costs. In this work, we seek to understand the

interactions between IoT applications’ execution characteristics

(e.g., compute/memory intensity, cache miss rates, etc.) and the

edge nodes’ microarchitectural characteristics (e.g., clock

frequency, memory capacity, etc.) for efficient and effective edge

computing. Thus, we present a broad and tractable IoT

application classification methodology and using this

classification, we analyze the microarchitectural characteristics

of a wide range of state-of-the-art embedded system

microprocessors and evaluate the microprocessors’ applicability

to IoT computation using various evaluation metrics. We also

investigate and quantify the impact of leakage power reduction

on the overall energy consumption across different architectures.

Our work provides insights into the microarchitectural

characteristics’ impact on system performance and efficiency for

various IoT application requirements. Our work also provides a

foundation for the analysis and design of a diverse set of

microprocessor architectures for IoT edge computing.

INTRODUCTION AND MOTIVATION
The Internet of Things (IoT) refers to a pervasive presence of

a variety of devices that offer connectivity, systems, and services

that spans a variety of protocols, domains, and applications. The

goal of the IoT is to reduce reliance on human intervention for

data acquisition, interpretation, and use. The IoT has been

described as one of the disruptive technologies that will

transform life, business, and the global economy [23]. Based on

analysis of key potential IoT use-cases (e.g., healthcare, smart

Tosiron Adegbija
Department of Electrical and Computer Engineering

University of Arizona, Tucson, AZ, USA
tosiron@email.arizona.edu

Anita Rogacs
Hewlett-Packard (HP) Laboratories

Palo Alto, CA, USA
rogacs@hp.com

Chandrakant Patel
Hewlett-Packard (HP) Laboratories

Palo Alto, CA, USA
chandrakant.patel@hp.com

Ann Gordon-Ross1
Department of Electrical and Computer Engineering

University of Florida, Gainesville, FL, USA
ann@ece.ufl.edu

Figure 1. Components of the Internet of Things (IoT)

1Also affiliated with the NSF Center for High-Performance Reconfigurable
Computing (CHREC) at UF

 2 Copyright © 2015 by ASME

cities, smart home, transportation, manufacturing, etc.), Gartner

Technology Research [10] has estimated that by 2020, the IoT

will constitute a trillion dollar economic impact and include 26

billion low-power devices that will generate massive amounts of

data.

Figure 1 depicts the high-level components in a traditional

IoT model. The traditional IoT comprises of several low-

power/low-performance edge nodes, such as sensor nodes, that

gather data and transmit the data to high-performance head

nodes, such as servers, that perform computations for

visualization and analytics. In Figure 1, data aggregation from

edge nodes in a building facilitates power and cooling

management. Data centers are a prime example of this IoT

application domain [5][25].

The growth of the IoT and the resulting exponential increase

in acquired/transmitted data poses significant bandwidth and

latency challenges. These challenges are exacerbated by the

intrinsic resource constraints of most embedded edge nodes,

coupled with increasing consumer demand for high-performance

applications, resulting in more complex data. For example, a

closed-circuit television (CCTV) camera surveillance system can

be used to acquire (sense) high-resolution images and video

streams for security analysis in high-population areas (e.g., a

sports arenas could be the building in Figure 1) to detect the

presence of persons-of-interest (POIs). For a fine-grained, more

complete coverage, the surveillance system should be scalable to

a network of many cameras, however this scalability poses

challenges for the traditional IoT since large amounts of data

must be transmitted over bandwidth-limited networks to process

the acquired data. Furthermore, transmitting acquired data to a

head node for processing poses additional challenges for real-

time systems where the latency must adhere to deadline

constraints.

Concomitant to these bandwidth and latency challenges, the

traditional IoT model can also result in significant energy

overhead. Previous work [17] established that energy consumed

while transmitting data is significantly more than the energy

consumed while performing computations on the data. For

example, the energy required by Rockwell Automation’s sensor

nodes to transmit one bit of data requires 1500-2000X more

energy than executing a single instruction (depending on the

transmission range and specific computations) [26].

To address these challenges, edge computing performs

computations that process, interpret, and use data at the edge

node, in order to minimize the transmitted data. Using our CCTV

example, rather than acquiring images and video streams at the

cameras and transmitting this data to a head node for

computation, edge computing could include face recognition at

the level of the CCTV cameras, such that only information about

the presence of POIs is transmitted to the head node, thus

significantly reducing data transmission cost.

Since transmission energy dominates computation energy in

traditional edge nodes, edge computing has the potential to

significantly reduce overall energy consumption in edge nodes.

Gaura et al. [11] showed that edge computing, otherwise referred

to as edge mining, can quantifiably reduce the amount of

transmitted data, thereby reducing transmission energy and

remote storage requirements. However, to support edge

computing, especially in data-rich use-cases, the edge nodes’

computing capabilities must be sufficient to perform and sustain

the required computations.

To ensure that architectures designed for the IoT have

sufficient computing capabilities, tradeoffs in architectural

characteristics should be determined and considered when

designing an IoT device or when selecting the IoT devices’

system configurations (e.g., cache size, clock frequency, etc.).

However, due to the wide variety of IoT applications and the

diverse set of available architectures, determining the appropriate

architectures is challenging. This paper seeks to address these

challenges and motivate future research in this direction.

Most current IoT edge nodes consist of communication

systems (e.g., Bluetooth [14], Wi-Fi [19], Zigbee [21], etc.),

sensors (e.g., temperature, pressure, etc.), actuators, resource-

constrained energy/power sources (e.g., batteries, solar panels,

etc), low-power/low-performance processor (e.g.,

microcontroller units, etc.), and memory. In this work, we focus

on the edge node’s processing component and seek to understand

the microarchitectural characteristics that are required to support

IoT edge computing. In order to understand the architectures that

will support IoT edge computing, we must first understand the

applications that will execute on those architectures and the

applications’ characteristics. Since most state-of-the art IoT

devices consist of microcontroller units (MCU) with minimal

computational capabilities, our goal is to determine if the current

MCUs are sufficient for the computing capabilities required by

emerging IoT applications and to propose solutions to satisfy the

IoT applications’ requirements.

In this paper, we perform an expansive study and

characterization of the emerging IoT application space and

propose an application classification methodology to broadly

represent IoT applications. Based on this classification, we

propose a benchmark suite that provides a tractable way to

represent key computations that occur on the IoT application

space. This methodology is based on computational dwarfs, as

proposed by Asanovic et al. [2], which allows representation of

computational patterns at a high level of abstraction, and has

been extended by other previous work to different computing

domains (e.g., [22]). Furthermore, we propose a high-level

methodology for identifying right-provisioned architectures for

edge computing use-cases, based on the executing applications

and the applications’ execution characteristics (e.g., compute

intensity, memory intensity, etc.). Using this methodology, we

study several state-of-the-art low power processors’

microarchitectural characteristics and evaluate these processors’

applicability to perform IoT edge computing using various

performance metrics. Since leakage power contributes

significantly to the overall energy consumption in low-power

devices, we investigate and quantify the impact of power

optimization on overall energy consumption. Using power gating

[15] as a power optimization example, we show that the choice

of processors equipped with power optimization mechanisms to

reduce leakage power is dependent on the proportion of time

during which an application is executing—the application’s duty

cycle. Thus, to maximize the power optimization potential, the

processors must be carefully selected with respect to the

executing applications.

 3 Copyright © 2015 by ASME

RELATED WORK
Due to the expected growth of the IoT, an increasing amount

of research [4][12][13] focuses on understanding and discovering

insights into various aspects of the IoT. Much emphasis has been

placed on the software layer of the IoT, however, the edge nodes’

hardware components and processing capabilities must also be

considered [27], especially in the context of edge computing.

Bonomi et al. [7] proposed fog computing as a virtualized

platform that provides compute, storage, and networking services

between edge nodes and cloud computing data centers. Fog

computing reduces the bandwidth bottleneck and latency by

moving computation closer to the edge nodes. Our work explores

further reduction in bandwidth, latency, and energy consumption

by equipping the edge nodes with sufficient computation

capacity in order to minimize data transmission. Gaura et al. [11]

examined the benefits of edge mining, in which data mining

takes place on the edge devices. The authors showed that edge

mining has the potential to reduce the amount of transmitted data,

thus reducing energy consumption and storage requirements.

Previous works have proposed classifications for various IoT

components. Gubbi et al. [13] presented a taxonomy for a high

level definition of IoT components with respect to hardware,

middleware, and presentation/data visualization. Tilak et al. [30]

presented a taxonomy to classify wireless sensor networks

according to different communication functions, data delivery

models, and network dynamics. Tory et al. [31] presented a high

level visualization taxonomy that classified algorithms based on

the characteristics of the data models. However, to the best of our

knowledge, our work presents the first classification of IoT

applications based on the applications’ functions. Since the

applications’ functions determine the execution characteristics,

the functions have a more direct impact on the microprocessor

requirements.

IOT APPLICATION CLASSIFICATION
The IoT offers computing potential for many application

domains, including transportation and logistics, healthcare, smart

environment, personal and social domains [4], etc. Since it is

impractical to consider every IoT application within these

domains, we perform an expansive study of IoT use-cases and

the application functions performed by these use-cases. We

propose an application classification methodology that provides a

high level, broad, and tractable description of a variety IoT

applications. Our IoT application classification consists of five

application functions: sensing, communications, image

processing, compression (lossy/lossless), security, and fault

tolerance. In this section, we describe the application functions

and motivate these functions using specific examples of current

and/or emerging IoT applications.

Sensing
Sensing involves data acquisition (e.g., temperature, pressure,

motion, etc.) about objects or phenomena, and is increasingly

common in several application domains. In these applications,

activities/information/data of interest are gathered for further

processing and decision making. We use sensing in our IoT

application classification to represent applications where data

acquired using sensors must be converted to a more useable

form. Our motivating example for sensing applications is sensor

fusion [24], where sensed data from multiple sensors are fused to

create data that is considered qualitatively or quantitatively more

accurate and robust than the original data.

Sensor fusion algorithms can involve various levels of

complexity and compute/memory intensity. For example, sensor

fusion could involve aggregating data from various sources using

simple mathematical computations, such as addition, minimum,

maximum, mean, etc. Alternatively, sensor fusion could involve

more computationally complex/expensive applications, such as

fusing vector data (e.g., video streams from multiple sources),

which requires a substantial increase in intermediate processing.

Communications
Communications is one of the most common IoT application

functions due to the IoT’s intrinsic connected structure, where

data transfers traverse several connected nodes. There are many

communication technologies (e.g., Bluetooth, Wi-Fi, etc.), and

communication protocols (e.g., transfer control protocol (TCP),

the emerging 6lowpan (IPv6 over low power wireless personal

area network), etc.). However, in this work, we highlight

software defined radio (SDR) [18], which is a communication

system in which physical layer functions (e.g., filters, modems,

etc.) that are typically implemented in hardware are implemented

in software.

SDR is an emerging communication system because of

SDR’s inherent flexibility, which allows for flexible

incorporation and enhancements of multiple radio functions,

bands, and modes, without requiring hardware updates. SDR

typically involves an antenna, an analog-to-digital converter

(ADC) connected to an antenna (for receiving) and a digital to

analog converter (DAC) connected to the antenna (for

transmitting). Digital signal processing (DSP) operations (e.g.,

Fast Fourier Transform (FFT)) are then used to convert the input

signals to any form required by the application. SDR applications

are typically compute intensive, with small data and instruction

memory footprints. Other examples of communication

applications include packet switching and TCP/IP.

Image processing
We use image processing to represent applications that

involve any form of signal processing where the input is an

image or video stream from which characteristics/parameters

must be extracted/identified, or the input must be converted to a

more usable form. Several IoT applications, such as automatic

number license plate recognition, traffic sign recognition, face

recognition, etc., involve various forms of image processing. For

example, face recognition involves operations, such as face

detection, landmark recognition, feature extraction, and feature

classification, all of which involve image processing.

Several image processing use-cases and applications are still

nascent, and are expected to grow significantly in the coming

years [1]. These applications typically require significant

computation capabilities, since image processing involves

compute-intensive operations, such as matrix multiplications.

Furthermore, some image processing applications require large

input, intermediate, or output data to be stored (e.g., medical

imaging), thus requiring a large amount of memory storage.

 4 Copyright © 2015 by ASME

Compression
With the increase in data and bandwidth-limited systems,

compression can reduce communication requirements to ensure

that data is quickly retrieved, transmitted, and/or analyzed.

Additionally, since most IoT devices are resource-constrained,

compression also reduces storage requirements when storage on

the edge node is required.

Compression techniques can be broadly classified as lossy or

lossless compression. Lossy compression (e.g., JPEG) typically

exploits the perceptibility of the data in question, and removes

unnecessary data, such that the lost data is imperceptible to the

user. Alternatively, lossless compression removes statistically

redundant data in order to concisely represent data. Lossless

compression typically achieves a lower compression ratio and is

usually more compute and memory intensive than lossy

compression. However, lossy compression may be unsuitable in

some scenarios where high data fidelity is required to maintain

the quality of service (QoS) (e.g., in medical imaging).

Security
Since IoT devices are often deployed in open environments,

where the devices are susceptible to malicious attacks, security

applications are necessary to maintain the integrity of both the

devices and the data. Furthermore, sensitive scenarios (e.g.,

medical diagnostics) may require security applications to prevent

unauthorized access to sensitive data.

We highlight data encryption [28], which is a common

technique for ensuring data confidentiality, wherein an

encryption algorithm is used to generate encrypted data that can

only be read/used if decrypted. Data encryption applications

(e.g., secure hash algorithm) are typically compute intensive and

memory intensive, since encryption speed is also dependent on

the memory access latency for data retrieval and storage.

Fault tolerance
Fault tolerance refers to a system’s ability to operate properly

in the event of a failure of some of the system’s components.

Fault tolerant applications are especially vital since IoT devices

may be deployed in harsh and unattended environments, where

QoS must be maintained in potentially adverse conditions, such

as cryogenic to extremely high temperatures, shock, vibration,

etc.

Fault tolerance can be hardware-based, such as hardware-

based RAID (redundant array of independent disks), which are

storage devices that use redundancy to provide fault tolerance

(we note that software-based methods do exist but typically

suffer from reduced reliability). Alternatively, software-based

fault tolerance involves applications and algorithms that perform

operations, such as memory scrubbing, cyclic-redundancy

checks, error detection and correction, etc.

IOT MICROARCHITECTURE CONFIGURATIONS
We performed an extensive study of the state-of-the-art in

commercial-off-the-shelf (COTS) embedded systems

microprocessor architectures from several designers and

manufacturers ranging from low-end microcontrollers to high-

end/high-performance low-power embedded systems

microprocessors. Based on publicly available information on

these processors’ configurations and interactions with engineers

directly involved with processor design with different

manufacturers, we categorized the microprocessors in terms of

several device characteristics, including number of cores, on-chip

memory (e.g., cache), off-chip memory support, power

consumption, number of pipeline stages, etc. Using this

information, we developed a set of potential microarchitecture

configurations for IoT edge computing support. These

configurations represent the range of available state-of-the-art

COTS microprocessors. Note that microprocessors could include

central processing units (CPUs), graphics processing units

(GPUs), DSPs, etc., however, in our work, we focus on CPUs

and intend to evaluate other kinds of microprocessors for future

work.

Table 1 details the microarchitecture configurations,

comprising of four configurations: conf1, conf2, conf3, and

conf4, representing different kinds of systems. We highlight

specific state-of-the-art microcontroller/microprocessor examples

to motivate the configurations, however, we note that these

configurations are only representative and not necessarily

descriptive.

Conf1 represents low-power and low-performance

microcontroller units, such as the ARM Cortex-M4 [8] found in

several IoT-targeted MCUs from several developers, including

Freescale Semiconductors [9], Atmel [3], and

STMicroelectronics [29]. Conf1 contains a single core with 48

MHz clock frequency, three pipeline stages, in-order execution,

and support for 1 MB of flash memory.

Conf2 represents recently-developed IoT-targeted CPUs, such

as the Intel Quark Technology [16], and contains a single core

with 400 MHz clock frequency, five pipeline stages, in-order

execution, 16 KB level one (L1) instruction and data caches, and

support for 2 GB RAM.

Conf3 represents mid-range CPUs, such as the ARM Cortex-

A7 found in several general purpose embedded systems, and

contains four cores with 1 GHz clock frequency, 8 pipeline

TABLE 1. MICROARCHITECTURE CONFIGURATIONS (I=INSTRUCTIONS, D=DATA, L1 = LEVEL ONE, L2=LEVEL TWO)

 Conf1 Conf2 Conf3 Conf4

Sample CPU ARM Cortex M4 Intel Quark ARM Cortex A7 ARM Cortex A15

Frequency 48 MHz 400 MHz 1 GHz 1.9 GHz

Number of cores 1 1 4 4

Pipeline stages 3 5 8 15

Cache None None 32 KB I/D L1, 1MB L2 32 KB I/D L1, 2MB L2

Memory 512 KB flash 2 GB RAM 2 GB support 1 TB RAM support

Execution In-order In-order In-order Out-of-order

 5 Copyright © 2015 by ASME

stages, in-order execution, 32 KB L1 instruction and data caches,

1 MB level two (L2) cache, and support for 2 GB RAM.

Finally, conf4 represents high-end/high-performance

embedded systems CPUs, such as the ARM Cortex-A15, and

contains four cores with 1.9 GHz clock frequency, 8 pipeline

stages, 32 KB L1 instruction and data caches, 2 MB L2 cache,

support for 4 GB RAM, and out-of-order execution. Out-of-order

execution allows instructions to execute as soon as the instruction

becomes available, unlike in-order execution where instructions

must execute in program order.

EXPERIMENTAL METHODOLOGY
This section describes the simulators, our IoT benchmark

suite, and the performance metrics considered in this study.

Simulators
To evaluate the applicability of our microarchitecture

configurations to the IoT, we used the GEM5 simulator [6] to

generate execution statistics while running several benchmarks

on the configurations as shown in Table 1. We used the McPAT

simulator [20] to generate leakage, dynamic power, and area

values for the different configurations, and used Perl scripts to

drive our simulations.

Benchmarks and performance metrics
To facilitate our study, we created a benchmark suite based

on our application classification methodology with seven kernels

to represent emerging IoT edge computing applications. We use

the kernels as computational basic blocks to represent the

applications’ functions, which disconnects the executions from

specific implementations, programming languages, and

algorithms. This methodology is supported by the concept of

computational dwarfs, which was introduced by Asanovic et al.

[2]. Computational dwarfs represent patterns of computation at

high levels of abstractions to encompass several computational

methods in modern computing. Within these dwarfs, kernels are

used to expose computational nuances that reveal characteristics

that may not be visible at the level of the dwarfs.

Table 2 depicts our application functions, each application

function’s representative benchmarks, and the benchmarks’

descriptions. For each benchmark, we used different input data

sizes to model different real-world usage scenarios, and cross-

compiled all benchmarks for the ARM instruction set

architecture (ISA). We omit the detailed descriptions of the

benchmarks for brevity.

To quantitatively compare the microarchitecture

configurations, we use execution time, energy, performance

measured in giga operations per second (GOPS), and efficiency

measured in performance per watt (GOPS/W).

RESULTS
In this section, we present simulation results for execution

time, energy, performance, and performance per watt on the

microarchitecture configurations listed in Table 1. We also

perform sensitivity analysis with respect to varying application

data sizes, various microarchitectural characteristics, and

evaluate the impacts of idle energy and leakage power reduction.

We note that in this work we did not explore the impact of

multiple cores on parallelizable applications. All simulations

were performed using the single core versions of the

microarchitecture configurations shown in Table 1, and we leave

multi-core exploration for future work.

TABLE 2. APPLICATION FUNCTIONS, REPRESENTATIVE BENCHMARKS, AND BENCHMARK DESCRIPTIONS

Application function Benchmarks Benchmark description

Sensing matrixTrans (_128, _256, _512, _1024) Dense matrix transpose of n × n matrix

Communications fft (_small and _large) Fast Fourier Transform (FFT)

Image processing matrixMult (_128, _256, _512) Dense matrix multiplication of n × n matrix

Lossy compression jpeg (_small and _large) Joint Photographic Experts Group (JPEG) compression

Lossless compression lz4 (_mr and _xray) Lossless data compression

Security sha (_small and _large) Secure hash algorithm

Fault tolerance crc (_small and _large) Cyclic redundancy check

 (a) (b)

Figure 2. (a) Memory references per instruction (MPI) and (b) instructions per cycle (IPC) of the benchmarks with different

data sizes

 6 Copyright © 2015 by ASME

Execution characteristics and sensitivity to data sizes
To evaluate the execution characteristics of the different

benchmarks, we used the percentage of memory references per

instruction (MPI) and the instructions per cycle (IPC) to provide

insight into the benchmarks’ memory and compute intensities,

respectively. Note that IPC can also provide an indication of a

benchmark’s memory intensity (e.g., a low IPC could indicate

long memory access times due to accesses to lower level

memory, and hence, a memory intensive benchmark).

First, we evaluated the MPI and IPC on conf4. While the MPI

is microarchitecture-independent (i.e., the MPI remains the same

across different microarchitectures), the IPC is microarchitecture-

dependent. However, we observed that the IPC also remained

relatively stable for different data sizes across all of the

configurations. The execution characteristics (MPI and IPC) and

sensitivity to different data sizes provides insights into the right

provisioning of memory (cache) sizes and/or clock frequencies in

order to satisfy the execution requirements.

Figure 2 (a) and (b) depict the MPI and IPC for all of the

benchmarks for different input data sizes. Figure 2 (a) shows that

the memory intensity for the different benchmarks remained

stable regardless of the data size. matrixTrans was the most

memory intensive benchmark with an MPI of 52%, since most of

the computations were performed in memory. Similarly, sha,

cjpeg and lz4 were also memory intensive benchmarks with

MPIs of up to 49%, while fft was the least memory intensive with

an MPI of 21%.

 Figure 2 (b) shows that the IPCs for different benchmarks

were also relatively stable for different data sizes, since the

working set sizes for these benchmarks remained stable, except

for matrixTrans and matrixMult, which had variable working set

sizes with different data sizes. For example, matrixTrans’ IPC

reduced by 32% and 60% when the data size increased from

matrixTrans_128 to matrixTrans_256 and from matrixTrans_256

to matrixTrans_512, respectively. The IPC increased because the

working set size increased as the data size increased. Thus, there

were more processor stalls due to the increased memory activity.

However, the working set size remained stable from

matrixTrans_512 to matrixTrans_1024, thus, the IPC also

remained stable.

Execution time, energy, performance, and efficiency
Figure 3 (a) and (b) depict the execution time and energy of

conf1, conf2, and conf3 normalized to conf4 for all of the

benchmarks. We used conf4 as the base configuration for

comparison since this configuration was the biggest of our

microarchitecture configurations. Figure 3 (a) shows that conf1,

conf2, and conf3 increased the average execution time by 202x,

23x, and 9x, respectively, for all of the benchmarks. These results

show that conf4 outperforms the other configurations when

considering latency. Similarly, Figure 3 (b) shows that conf1,

conf2, and conf3 increased the energy consumption by 35x, 4.6x,

and 4.7x. Conf4’s low energy consumption compared to the other

configurations was due to the significant reduction in execution

time, while the smaller configurations resulted in considerably

longer execution times than conf4. The graphs do not show conf1

results for some benchmarks because conf1’s memory was too

small for the working set size of those benchmarks, and thus the

those benchmarks could not be executed on conf1. Since conf1

represents current MCUs that are used on the IoT, our results

indicate that these current MCUs are not sufficiently equipped

for all edge computing requirements.

(a)

(b)

Figure 3. (a) Execution time and (b) energy normalized to conf4

 7 Copyright © 2015 by ASME

Figure 4 (a) and (b) depict the performance and efficiency of

conf1, conf2, and conf3 normalized to conf4 for all of the

benchmarks. Results reveal that conf1, conf2, and conf3 degraded

the performance by 171x, 17x, and 8x, respectively. Compared to

conf4, conf1 degraded the efficiency by 33x, while conf2 and

conf3 degraded the efficiency by 4x. These results reveal the

significant improvements achieved by using the larger

configurations. In a system that is not energy constrained (e.g., an

IoT device that is consistently connected to a power source) or in

real-time systems, where minimizing latency is the goal, conf4

provides the best performance for the system.

Sensitivity to various microarchitectural
characteristics

To identify the most impactful microarchitectural

characteristics on system execution time, energy, performance,

and efficiency, we evaluated conf4 with a 1 GHz clock

frequency, in-order execution, and a 16 KB cache size. For each

of these evaluated configurations, all of the other configurations

were held constant to isolate the impact of the evaluated

configurations. For brevity, we only show results for a subset of

the benchmarks’ input data sizes, however, all of the benchmarks

are included in the averages.

Figure 5 (a) and (b) depict the execution time, energy,

performance, and efficiency of conf4 with a 1 GHz clock

frequency normalized to conf4 with a 1.9 GHz clock frequency.

Figure 5 (a) illustrates the significant impact of the clock

frequency on execution time and energy consumption. On

average over all of the benchmarks, reducing the clock frequency

to 1 GHz increased the execution time and energy by 75% and

41%, respectively. However, for matrixTrans, reducing the clock

frequency to 1 GHz did not change the execution time and

reduced the energy by 4%. Since matrixTrans was the most

memory intensive benchmark and spent more execution time in

(a)

(b)

Figure 4. (a) Performance and (b) efficiency normalized to conf4

(a) (b)

Figure 5. (a) Execution time and energy (b) Performance and efficiency of 1 GHz clock frequency normalized conf4 (1.9 GHz)

 8 Copyright © 2015 by ASME

memory activities, reducing the clock frequency had little impact

on matrixTrans than on the other benchmarks. Figure 5 (b)

reveals that reducing the clock frequency reduced the average

performance and efficiency by 40% and 27%, respectively.

Similarly to the execution time and energy results, for

matrixTrans, the performance did not change and the efficiency

increased by 4% since matrixTrans’s performance was more

dependent on the memory than on the clock frequency. These

results show the significant impact that the frequency has on

edge computing for IoT applications.

Figure 6 (a) and (b) depict the execution time, energy,

performance, and efficiency of conf4 with in-order execution

normalized to conf4 with out-of-order execution. Figure 6 (a)

shows that in-order execution increased the average execution

time and energy by 4.8x and 2.9x, respectively, and by as high as

9x for sha_large, which is a highly compute intensive and

memory intensive benchmark. The results reveal that out-of-

order execution provides greater advantages over in-order

execution for applications that are compute intensive, however,

the impact is reduced for memory intensive applications. Figure

6 (b) shows that in-order execution reduced the average

performance and efficiency by 75% and 63%, respectively.

Similarly to the execution time and energy, the performance

degradation was more significant for the more compute intensive

benchmarks, such as sha_large.

Figure 7 (a) and (b) depict the execution time, energy,

performance, and efficiency of conf4 when the cache size was

reduced to 16 KB normalized to conf4 with the 32 KB cache.

Unlike with the clock frequency and execution order, reducing

the cache size did not significantly impact the overall results.

Figure 7 (a) shows that the 16 KB cache only increased the

average execution time by 4%, with increases as high as 18% for

lz4_mr. The execution time increased for lz4_mr because the 16

KB cache was not large enough to hold lz4_mr’s working set

size, thus incurring cache misses and requiring the data to be

fetched from main memory. However, reducing the cache size

did not negatively impact the execution time for most of the

applications. The 16 KB cache reduced the average energy

consumption by 4%, but increased lz4_mr’s energy consumption

by 3% due to the additional cache misses incurred by the 16 KB

cache. Similarly, Figure 7 (b) shows that the 16 KB cache

degraded the average performance by 3% and improved the

average efficiency by 5%. For applications with large working

set sizes, such as lossless (lz4_mr) and lossy compression

(cjpeg_large), the 32 KB cache was more appropriate. For all

other applications, the 16 KB cache size was sufficient.

Impact of idle energy and power optimization
To illustrate the impact of the idle energy on overall energy

consumption, we simulated various application execution

scenarios for the shortest and longest running benchmarks

(matrixTrans_128 and crc_large). We calculated the total energy

consumed as the sum of the energy consumed during application

execution and the idle energy, where the idle energy is the

product of the leakage power and the idle time. We assumed

power gating [15] for power optimization in our evaluations,

where the leakage power is reduced by 95%. Power gating is a

technique used to reduce a circuit’s leakage power consumption

by shutting off blocks of the circuit that are not being used. To

represent a real-world scenario, we experimented with periodic

times and random application execution time intervals, and

observed that the results were independent of the periodicity or

randomness of the application executions. Thus, we present the

(a) (b)

Figure 6. (a) Execution time and energy (b) performance and efficiency of in-order execution normalized to conf4 (out-of-order)

 (a) (b)

Figure 7. (a) Execution time and energy (b) performance and efficiency of 16 KB cache normalized to conf4 (32 KB cache)

 9 Copyright © 2015 by ASME

results for both periodic and random execution time intervals

together in this subsection.

Figure 8 (a) and (b) depict the total energy consumed by

conf1, conf2, and conf3 normalized to conf4 for matrixTrans and

crc_large, representing low and high duty cycle applications,

respectively, without power gating and with power gating. Figure

8 (a) shows that without power gating, conf1 consumed the

lowest amount of energy for both the low and high duty cycle

benchmarks. Even though conf3 and conf4 executed the

applications fastest and accounted for the least dynamic energy

consumption, both configurations had high leakage power, thus

negating the energy savings from the short execution times.

Figure 8 (b) shows similar results for the matrixTrans with power

gating. Since matrixTrans is a short benchmark that executed

relatively fast on all of the configurations, there was not enough

difference in the configurations’ idle times for power gating to

provide any significant benefit. However, for crc_large, conf1

consumed the most overall energy with power gating, while

conf2 consumed the least energy. Due to the length of the

application, conf1 spent most of the time executing the

application, while conf2, conf3, and conf4 were able to go into

the idle mode much faster due to faster execution times. Conf2

provided the optimal balance, across all of the configurations,

between the time spent executing the application and the time

spent idling. Thus, these results reveal that the benefits of power

gating are dependent on the application’s duty cycle.

Applications executing on configurations that have low duty

cycles have a higher potential of benefiting from power gating.

To further evaluate the impact of idle energy, we considered a

scenario in which multiple applications were randomly executed

periodically or at random time intervals (we have omitted the

figures for brevity). Without power gating, conf2 consumed the

lowest energy on average, showing that this configuration

provided a good balance between idle time and leakage power.

However, with power gating, conf4 consumed the lowest energy

on average, since this configuration provided much faster

execution, enabling power gating to provide significant energy

savings due to the leakage power reduction. Therefore, these

results show that an application’s duty cycle should be

considered when selecting configurations for execution. Larger

configurations (e.g., conf3 or conf4) that significantly reduce the

duty cycle compared to smaller configurations provide greater

power optimization benefits. However, when only short

executions are required and an application’s duty cycle is similar

across the different configurations, and/or power optimization is

not available (i.e., leakage power is high), the smaller

configuration devices would consume less energy overall, since

these configurations would typically have less leakage power

than the larger configurations.

CONCLUSIONS AND FUTURE RESEARCH
The Internet of Things (IoT) is expected to grow at a fast

pace, resulting in billions of connected devices that generate

massive amounts of data. Due to this data explosion, the

traditional IoT model, which involves edge nodes gathering and

transmitting data to head nodes, will result in a communication

bandwidth bottleneck, and latency and energy overheads. To

ameliorate this overhead, edge computing performs computations

on the edge nodes to interpret and utilize data, in order to reduce

data transmission requirements, thereby reducing latency and

energy consumption.

In this work, we seek to understand the microarchitectural

characteristics that will support edge computing in the IoT. In

order to understand the architectures, we must first understand

the applications that will execute on these architectures. To

tractably represent the vast IoT application space, we propose an

application classification methodology consisting of a set of

application functions and benchmarks that represent the basic

computational patterns of current and emerging IoT applications.

We comprehensively studied current low-power devices’

microarchitectural characteristics and evaluated these devices’

applicability to IoT edge computing. We evaluated these

microarchitectural characteristics with respect to various

performance metrics, and based on our analysis, we formulated

insights that serve as a foundation for further analysis and design

of IoT microprocessors. Since edge computing in the IoT is a

burgeoning area of research, the goal of this work is to provide a

foundation for further research, through the insights gained, into

understanding application requirements and architectures that

support edge computing.

Our analysis showed that an application’s working set size

should be given priority consideration over the input data size

when designing IoT microprocessors. Additionally, we showed

that current IoT-targeted microprocessors are not sufficient for

edge computing, especially due to these devices’ low memory

capabilities (cache and main memory). In order to support edge

computing, emerging IoT devices must be equipped with

additional compute and memory capabilities. We also illustrated

the need to prioritize the clock frequency and program execution

order when designing IoT microprocessors, due to these

(a)

(b)

Figure 8. Total energy consumption (including idle energy)

of conf1, conf2, and conf3 normalized to conf4 (a) without

power gating, and (b) with power gating

 10 Copyright © 2015 by ASME

characteristics’ large impacts on performance and energy

consumption.

We also showed the importance of considering the executing

applications’ duty cycles when selecting configurations for IoT

microprocessors, especially in the presence of optimization

mechanisms, such as power gating. Large configurations that

may increase the dynamic power, but reduce the duty cycle are

preferred in such instances. However, where leakage power is

high (e.g., where power gating is not available), smaller

configurations that reduce the dynamic power are preferred.

Thus, while designing high-performance embedded

microprocessors to support edge computing, emphasis must also

be placed on microarchitectural optimizations that reduce leakage

power in order to realize the full benefits of these high-

performance embedded systems.

Key next steps involve validating the analysis presented in

this work in actual real-world use-cases. For example, we would

like to study a surveillance camera use-case, where real-time face

recognition applications must be implemented, and evaluate how

these applications can be supported using the methodology

presented in this paper.

Additionally, our work revealed some caveats that we intend

to address in future work. For example, we plan to quantify the

attainable performance benefits afforded by multicore

architectures in the context of IoT edge computing. Furthermore,

since we only considered the processing component in this study,

we plan to extend the study to other IoT device components, such

as input/output (I/O) bandwidth, secondary storage, etc., and

evaluate how these components impact IoT edge computing. We

intend to explore the tradeoffs involved in designing an

architecture that provides runtime variability, such that the device

can be dynamically configured to support various application

functions, while minimizing the energy consumption. We also

plan to study the impact of additional optimizations for low-

power devices, and propose and prototype new architecture

designs for IoT edge computing based on our analysis.

ACKNOWLEDGMENTS
The authors would like to thank Cullen Bash, Amip Shah,

Martin Arlitt, Paolo Faraboschi, Dejan Milojicic, and Kevin Lim

for their constructive feedback and assistance.

This work was supported by the National Science Foundation

(CNS-0953447). Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National

Science Foundation.

REFERENCES
[1] I. Akyildiz, T. Melodia, and K. Chowdhury, “A survey on wireless

multimedia sensor networks,” IEEE Wireless Communications, vol. 14,

Issue 6, December 2007.

[2] Asanovic et al., “The landscape of parallel computing research: a view
from Berkeley,” Technical Report No. UCB/EECS-2006-183, University

of California, Berkeley, December 2006.

[3] Atmel Corporation. www.atmel.com

[4] Atzori L., Iera A., and Morabito G., “The internet of things: a survey,”
International Journal of Computer and Telecommunications Networking,

October 2010.

[5] C.Bash, C. Patel, and R. Sharma, “Dynamic thermal management of air
cooled data centers,” Thermal and Thermomechanical Phenomena in

Electronics Systems, May 2006.

[6] N. Binkert et al., “The gem5 simulator,” Computer Architecure News, May
2011.

[7] Bonomi F., Milito R., Zhu J., and Addepalli S., “Fog computing and its

role in the internet of things,” Workshop on Mobile Cloud Computing,
2012.

[8] Cortex-M4 Processor – ARM.
http://www.arm.com/products/processors/cortex-m/cortex-m4-

processor.php

[9] Freescale Semiconductors. www.freescale.com

[10] Gartner Newsroom, http://www.gartner.com/newsroom/id/2684616

[11] E. Gaura, J. Brusey, and M. Allen, “Edge mining the internet of things,”
IEEE Sensors Journal, Vol 13, No. 10, October 2013.

[12] D. Giusto, A. Iera, G. Morabito, L. Atzori, “The internet of things,”
Springer, 2010.

[13] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(IoT): A vision, architectural elements, and future directions,” Future

Generation Computer Systems 29, pp. 1645-1660, 2013

[14] J. C. Haartsen, “The Bluetooth radio system,” IEEE Personal

Communications, vol 7, issue 1, pp. 28 – 36, February 2000.

[15] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P.
Bose, “Microarchitectural techniques for power gating of execution units,”

International Symposium on Low Power Electronics and Design
(ISLPED), 2004.

[16] Intel Quark Technology.
http://www.intel.com/content/www/us/en/processors/quark/intel-quark-

technologies.html

[17] T. T.-O. Kwok and T.-K. Kwok, “Computation and energy efficient image
processing in wireless sensor networks based on reconfigurable

computing,” Proc. Of the International Conference on Parallel Processing

Workshops (ICPPW), Columbus, Ohio, August 2006.

[18] H. Lee et al., “Software defined radio – a high performance embedded

challenge,” High Performance Embedded Architectures and Compilers,
Springer, 2005.

[19] W. Lehr and L. McKnight, “Wireless internet access: 3G vs. WiFi,”
Elsevier Telecommunications Policy, vol. 27, issues 5 – 6, pp. 351 – 370,

July 2003.

[20] S. Li et al., “McPAT: an integrated power, area, and timing modeling

framework for multicore and manycore architectures,” International

Symposium on Microarchitecture, 2009.

[21] Y. Liu and S. K. Das, “Information-intensive wireless sensor networks:

potential and challenges,” IEEE Communications Magazine, vol. 44, no.

11, pp. 142-147, November 2006.

[22] T. Lovely, et al., “A framework to analyze processor architectures for next-

generation on-board space computing,” IEEE Aerospace Conference,
March 2014.

[23] McKinsey Global Institute, “Disruptive technologies: advances that will
transform life, business, and the global economy,” www.mckinsey.com

[Retrieved: July 2014]

[24] E. Nakamura, A. Loureiro, and A. Frery, “Information fusion for wireless
sensor networks: methods, models, and classifications,” ACM Computing

Surveys, Vol. 39, Issue 3, 2007.

[25] C. Patel, C. Bash, R. Sharma, M. Beitelmal, and R. Friedrich, “Smart

cooling of data centers,” International Electronic Packaging Technical

Conference and Exhibition, July 2003.

[26] V. Raghunathan, S. Ganeriwal, M. Srivastava, and C. Schurgers, “Energy

efficient wireless packet scheduling and fair queuing,” ACM Transactions
on Embedded Computing Systems, February 2004.

[27] E. Sanchez-Sinencio, “Smart nodes of Internet of Things (IoT): a hardware
perspective view and implementation,” ACM Great Lakes Symposium on

VLSI (GLVLSI), May 2014.

[28] S. Singh and R. Maini, “Comparison of data encryption algorithms,”
International Journal of Computer Science and Communication, vol. 2, no.

1, pp. 125-127, January 2011.

[29] STMicroelectronics. www.st.com

[30] S. Tilak, N. Abu-Ghazaleh, and W. Heinzelman, “A taxonomy of wireless
microsensor network models,” ACM Mobile Computing and

Communications Review 6, pp. 28-36, 2002.

[31] M. Tory and T. Moller, “Rethinking visualization: a high-level taxonomy,”
IEEE Symposium on Information Visualization, 2004.

