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ABSTRACT 
The Internet of Things (IoT) consists of embedded low-power 

devices that collect and transmit data to centralized head nodes 

that process and analyze the data, and drive actions. The 

proliferation of these connected low-power devices will result in 

a data explosion that will significantly increase data transmission 

costs with respect to energy consumed and latency. Edge 

computing performs computations at the edge nodes prior to data 

transmission to interpret and/or utilize the data, thus reducing 

transmission costs. In this work, we seek to understand the 

interactions between IoT applications’ execution characteristics 

(e.g., compute/memory intensity, cache miss rates, etc.) and the 

edge nodes’ microarchitectural characteristics (e.g., clock 

frequency, memory capacity, etc.) for efficient and effective edge 

computing. Thus, we present a broad and tractable IoT 

application classification methodology and using this 

classification, we analyze the microarchitectural characteristics 

of a wide range of state-of-the-art embedded system 

microprocessors and evaluate the microprocessors’ applicability 

to IoT computation using various evaluation metrics. We also 

investigate and quantify the impact of leakage power reduction 

on the overall energy consumption across different architectures. 

Our work provides insights into the microarchitectural 

characteristics’ impact on system performance and efficiency for 

various IoT application requirements. Our work also provides a 

foundation for the analysis and design of a diverse set of 

microprocessor architectures for IoT edge computing. 

INTRODUCTION AND MOTIVATION 
The Internet of Things (IoT) refers to a pervasive presence of 

a variety of devices that offer connectivity, systems, and services 

that spans a variety of protocols, domains, and applications. The 

goal of the IoT is to reduce reliance on human intervention for 

data acquisition, interpretation, and use. The IoT has been 

described as one of the disruptive technologies that will 

transform life, business, and the global economy [23]. Based on 

analysis of key potential IoT use-cases (e.g., healthcare, smart 
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Figure 1. Components of the Internet of Things (IoT) 
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cities, smart home, transportation, manufacturing, etc.), Gartner 

Technology Research [10] has estimated that by 2020, the IoT 

will constitute a trillion dollar economic impact and include 26 

billion low-power devices that will generate massive amounts of 

data. 

Figure 1 depicts the high-level components in a traditional 

IoT model. The traditional IoT comprises of several low-

power/low-performance edge nodes, such as sensor nodes, that 

gather data and transmit the data to high-performance head 

nodes, such as servers, that perform computations for 

visualization and analytics. In Figure 1, data aggregation from 

edge nodes in a building facilitates power and cooling 

management. Data centers are a prime example of this IoT 

application domain [5][25].  

The growth of the IoT and the resulting exponential increase 

in acquired/transmitted data poses significant bandwidth and 

latency challenges. These challenges are exacerbated by the 

intrinsic resource constraints of most embedded edge nodes, 

coupled with increasing consumer demand for high-performance 

applications, resulting in more complex data. For example, a 

closed-circuit television (CCTV) camera surveillance system can 

be used to acquire (sense) high-resolution images and video 

streams for security analysis in high-population areas (e.g., a 

sports arenas could be the building in Figure 1) to detect the 

presence of persons-of-interest (POIs). For a fine-grained, more 

complete coverage, the surveillance system should be scalable to 

a network of many cameras, however this scalability poses 

challenges for the traditional IoT since large amounts of data 

must be transmitted over bandwidth-limited networks to process 

the acquired data. Furthermore, transmitting acquired data to a 

head node for processing poses additional challenges for real-

time systems where the latency must adhere to deadline 

constraints. 

Concomitant to these bandwidth and latency challenges, the 

traditional IoT model can also result in significant energy 

overhead. Previous work [17] established that energy consumed 

while transmitting data is significantly more than the energy 

consumed while performing computations on the data. For 

example, the energy required by Rockwell Automation’s sensor 

nodes to transmit one bit of data requires 1500-2000X more 

energy than executing a single instruction (depending on the 

transmission range and specific computations) [26].   

To address these challenges, edge computing performs 

computations that process, interpret, and use data at the edge 

node, in order to minimize the transmitted data. Using our CCTV 

example, rather than acquiring images and video streams at the 

cameras and transmitting this data to a head node for 

computation, edge computing could include face recognition at 

the level of the CCTV cameras, such that only information about 

the presence of POIs is transmitted to the head node, thus 

significantly reducing data transmission cost.  

Since transmission energy dominates computation energy in 

traditional edge nodes, edge computing has the potential to 

significantly reduce overall energy consumption in edge nodes. 

Gaura et al. [11] showed that edge computing, otherwise referred 

to as edge mining, can quantifiably reduce the amount of 

transmitted data, thereby reducing transmission energy and 

remote storage requirements. However, to support edge 

computing, especially in data-rich use-cases, the edge nodes’ 

computing capabilities must be sufficient to perform and sustain 

the required computations.  

To ensure that architectures designed for the IoT have 

sufficient computing capabilities, tradeoffs in architectural 

characteristics should be determined and considered when 

designing an IoT device or when selecting the IoT devices’ 

system configurations (e.g., cache size, clock frequency, etc.). 

However, due to the wide variety of IoT applications and the 

diverse set of available architectures, determining the appropriate 

architectures is challenging. This paper seeks to address these 

challenges and motivate future research in this direction. 

Most current IoT edge nodes consist of communication 

systems (e.g., Bluetooth [14], Wi-Fi [19], Zigbee [21], etc.), 

sensors (e.g., temperature, pressure, etc.), actuators, resource-

constrained energy/power sources (e.g., batteries, solar panels, 

etc), low-power/low-performance processor (e.g., 

microcontroller units, etc.), and memory. In this work, we focus 

on the edge node’s processing component and seek to understand 

the microarchitectural characteristics that are required to support 

IoT edge computing. In order to understand the architectures that 

will support IoT edge computing, we must first understand the 

applications that will execute on those architectures and the 

applications’ characteristics. Since most state-of-the art IoT 

devices consist of microcontroller units (MCU) with minimal 

computational capabilities, our goal is to determine if the current 

MCUs are sufficient for the computing capabilities required by 

emerging IoT applications and to propose solutions to satisfy the 

IoT applications’ requirements. 

In this paper, we perform an expansive study and 

characterization of the emerging IoT application space and 

propose an application classification methodology to broadly 

represent IoT applications. Based on this classification, we 

propose a benchmark suite that provides a tractable way to 

represent key computations that occur on the IoT application 

space. This methodology is based on computational dwarfs, as 

proposed by Asanovic et al. [2], which allows representation of 

computational patterns at a high level of abstraction, and has 

been extended by other previous work to different computing 

domains (e.g., [22]). Furthermore, we propose a high-level 

methodology for identifying right-provisioned architectures for 

edge computing use-cases, based on the executing applications 

and the applications’ execution characteristics (e.g., compute 

intensity, memory intensity, etc.). Using this methodology, we 

study several state-of-the-art low power processors’ 

microarchitectural characteristics and evaluate these processors’ 

applicability to perform IoT edge computing using various 

performance metrics. Since leakage power contributes 

significantly to the overall energy consumption in low-power 

devices, we investigate and quantify the impact of power 

optimization on overall energy consumption. Using power gating 

[15] as a power optimization example, we show that the choice 

of processors equipped with power optimization mechanisms to 

reduce leakage power is dependent on the proportion of time 

during which an application is executing—the application’s duty 

cycle. Thus, to maximize the power optimization potential, the 

processors must be carefully selected with respect to the 

executing applications.  
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RELATED WORK 
Due to the expected growth of the IoT, an increasing amount 

of research [4][12][13] focuses on understanding and discovering 

insights into various aspects of the IoT. Much emphasis has been 

placed on the software layer of the IoT, however, the edge nodes’ 

hardware components and processing capabilities must also be 

considered [27], especially in the context of edge computing.  

Bonomi et al. [7] proposed fog computing as a virtualized 

platform that provides compute, storage, and networking services 

between edge nodes and cloud computing data centers. Fog 

computing reduces the bandwidth bottleneck and latency by 

moving computation closer to the edge nodes. Our work explores 

further reduction in bandwidth, latency, and energy consumption 

by equipping the edge nodes with sufficient computation 

capacity in order to minimize data transmission. Gaura et al. [11] 

examined the benefits of edge mining, in which data mining 

takes place on the edge devices. The authors showed that edge 

mining has the potential to reduce the amount of transmitted data, 

thus reducing energy consumption and storage requirements. 

Previous works have proposed classifications for various IoT 

components. Gubbi et al. [13] presented a taxonomy for a high 

level definition of IoT components with respect to hardware, 

middleware, and presentation/data visualization. Tilak et al. [30] 

presented a taxonomy to classify wireless sensor networks 

according to different communication functions, data delivery 

models, and network dynamics. Tory et al. [31] presented a high 

level visualization taxonomy that classified algorithms based on 

the characteristics of the data models. However, to the best of our 

knowledge, our work presents the first classification of IoT 

applications based on the applications’ functions. Since the 

applications’ functions determine the execution characteristics, 

the functions have a more direct impact on the microprocessor 

requirements. 

IOT APPLICATION CLASSIFICATION 
The IoT offers computing potential for many application 

domains, including transportation and logistics, healthcare, smart 

environment, personal and social domains [4], etc. Since it is 

impractical to consider every IoT application within these 

domains, we perform an expansive study of IoT use-cases and 

the application functions performed by these use-cases. We 

propose an application classification methodology that provides a 

high level, broad, and tractable description of a variety IoT 

applications. Our IoT application classification consists of five 

application functions: sensing, communications, image 

processing, compression (lossy/lossless), security, and fault 

tolerance. In this section, we describe the application functions 

and motivate these functions using specific examples of current 

and/or emerging IoT applications. 

Sensing 
Sensing involves data acquisition (e.g., temperature, pressure, 

motion, etc.) about objects or phenomena, and is increasingly 

common in several application domains. In these applications, 

activities/information/data of interest are gathered for further 

processing and decision making. We use sensing in our IoT 

application classification to represent applications where data 

acquired using sensors must be converted to a more useable 

form. Our motivating example for sensing applications is sensor 

fusion [24], where sensed data from multiple sensors are fused to 

create data that is considered qualitatively or quantitatively more 

accurate and robust than the original data.  

Sensor fusion algorithms can involve various levels of 

complexity and compute/memory intensity. For example, sensor 

fusion could involve aggregating data from various sources using 

simple mathematical computations, such as addition, minimum, 

maximum, mean, etc. Alternatively, sensor fusion could involve 

more computationally complex/expensive applications, such as 

fusing vector data (e.g., video streams from multiple sources), 

which requires a substantial increase in intermediate processing.  

Communications 
Communications is one of the most common IoT application 

functions due to the IoT’s intrinsic connected structure, where 

data transfers traverse several connected nodes. There are many 

communication technologies (e.g., Bluetooth, Wi-Fi, etc.), and 

communication protocols (e.g., transfer control protocol (TCP), 

the emerging 6lowpan (IPv6 over low power wireless personal 

area network), etc.). However, in this work, we highlight 

software defined radio (SDR) [18], which is a communication 

system in which physical layer functions (e.g., filters, modems, 

etc.) that are typically implemented in hardware are implemented 

in software. 

SDR is an emerging communication system because of 

SDR’s inherent flexibility, which allows for flexible 

incorporation and enhancements of multiple radio functions, 

bands, and modes, without requiring hardware updates. SDR 

typically involves an antenna, an analog-to-digital converter 

(ADC) connected to an antenna (for receiving) and a digital to 

analog converter (DAC) connected to the antenna (for 

transmitting). Digital signal processing (DSP) operations (e.g., 

Fast Fourier Transform (FFT)) are then used to convert the input 

signals to any form required by the application. SDR applications 

are typically compute intensive, with small data and instruction 

memory footprints. Other examples of communication 

applications include packet switching and TCP/IP. 

Image processing 
We use image processing to represent applications that 

involve any form of signal processing where the input is an 

image or video stream from which characteristics/parameters 

must be extracted/identified, or the input must be converted to a 

more usable form. Several IoT applications, such as automatic 

number license plate recognition, traffic sign recognition, face 

recognition, etc., involve various forms of image processing. For 

example, face recognition involves operations, such as face 

detection, landmark recognition, feature extraction, and feature 

classification, all of which involve image processing.  

Several image processing use-cases and applications are still 

nascent, and are expected to grow significantly in the coming 

years [1]. These applications typically require significant 

computation capabilities, since image processing involves 

compute-intensive operations, such as matrix multiplications. 

Furthermore, some image processing applications require large 

input, intermediate, or output data to be stored (e.g., medical 

imaging), thus requiring a large amount of memory storage. 
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Compression 
With the increase in data and bandwidth-limited systems, 

compression can reduce communication requirements to ensure 

that data is quickly retrieved, transmitted, and/or analyzed. 

Additionally, since most IoT devices are resource-constrained, 

compression also reduces storage requirements when storage on 

the edge node is required. 

Compression techniques can be broadly classified as lossy or 

lossless compression. Lossy compression (e.g., JPEG) typically 

exploits the perceptibility of the data in question, and removes 

unnecessary data, such that the lost data is imperceptible to the 

user. Alternatively, lossless compression removes statistically 

redundant data in order to concisely represent data. Lossless 

compression typically achieves a lower compression ratio and is 

usually more compute and memory intensive than lossy 

compression. However, lossy compression may be unsuitable in 

some scenarios where high data fidelity is required to maintain 

the quality of service (QoS) (e.g., in medical imaging). 

Security 
Since IoT devices are often deployed in open environments, 

where the devices are susceptible to malicious attacks, security 

applications are necessary to maintain the integrity of both the 

devices and the data. Furthermore, sensitive scenarios (e.g., 

medical diagnostics) may require security applications to prevent 

unauthorized access to sensitive data.  

We highlight data encryption [28], which is a common 

technique for ensuring data confidentiality, wherein an 

encryption algorithm is used to generate encrypted data that can 

only be read/used if decrypted. Data encryption applications 

(e.g., secure hash algorithm) are typically compute intensive and 

memory intensive, since encryption speed is also dependent on 

the memory access latency for data retrieval and storage. 

Fault tolerance 
Fault tolerance refers to a system’s ability to operate properly 

in the event of a failure of some of the system’s components. 

Fault tolerant applications are especially vital since IoT devices 

may be deployed in harsh and unattended environments, where 

QoS must be maintained in potentially adverse conditions, such 

as cryogenic to extremely high temperatures, shock, vibration, 

etc. 

Fault tolerance can be hardware-based, such as hardware-

based RAID (redundant array of independent disks), which are 

storage devices that use redundancy to provide fault tolerance 

(we note that software-based methods do exist but typically 

suffer from reduced reliability). Alternatively, software-based 

fault tolerance involves applications and algorithms that perform 

operations, such as memory scrubbing, cyclic-redundancy 

checks, error detection and correction, etc. 

IOT MICROARCHITECTURE CONFIGURATIONS 
We performed an extensive study of the state-of-the-art in 

commercial-off-the-shelf (COTS) embedded systems 

microprocessor architectures from several designers and 

manufacturers ranging from low-end microcontrollers to high-

end/high-performance low-power embedded systems 

microprocessors. Based on publicly available information on 

these processors’ configurations and interactions with engineers 

directly involved with processor design with different 

manufacturers, we categorized the microprocessors in terms of 

several device characteristics, including number of cores, on-chip 

memory (e.g., cache), off-chip memory support, power 

consumption, number of pipeline stages, etc. Using this 

information, we developed a set of potential microarchitecture 

configurations for IoT edge computing support. These 

configurations represent the range of available state-of-the-art 

COTS microprocessors. Note that microprocessors could include 

central processing units (CPUs), graphics processing units 

(GPUs), DSPs, etc., however, in our work, we focus on CPUs 

and intend to evaluate other kinds of microprocessors for future 

work. 

Table 1 details the microarchitecture configurations, 

comprising of four configurations: conf1, conf2, conf3, and 

conf4, representing different kinds of systems. We highlight 

specific state-of-the-art microcontroller/microprocessor examples 

to motivate the configurations, however, we note that these 

configurations are only representative and not necessarily 

descriptive. 

Conf1 represents low-power and low-performance 

microcontroller units, such as the ARM Cortex-M4 [8] found in 

several IoT-targeted MCUs from several developers, including 

Freescale Semiconductors [9], Atmel [3], and 

STMicroelectronics [29]. Conf1 contains a single core with 48 

MHz clock frequency, three pipeline stages, in-order execution, 

and support for 1 MB of flash memory.  

Conf2 represents recently-developed IoT-targeted CPUs, such 

as the Intel Quark Technology [16], and contains a single core 

with 400 MHz clock frequency, five pipeline stages, in-order 

execution, 16 KB level one (L1) instruction  and data caches, and 

support for 2 GB RAM.  

Conf3 represents mid-range CPUs, such as the ARM Cortex-

A7 found in several general purpose embedded systems, and 

contains four cores with 1 GHz clock frequency, 8 pipeline 

TABLE 1. MICROARCHITECTURE CONFIGURATIONS (I=INSTRUCTIONS, D=DATA, L1 = LEVEL ONE, L2=LEVEL TWO)  

 Conf1 Conf2 Conf3 Conf4 

Sample CPU ARM Cortex M4 Intel Quark ARM Cortex A7 ARM Cortex A15 

Frequency 48 MHz 400 MHz 1 GHz 1.9 GHz 

Number of cores 1 1 4 4 

Pipeline stages 3 5 8 15 

Cache None None 32 KB I/D L1, 1MB L2 32 KB I/D L1, 2MB L2 

Memory 512 KB flash 2 GB RAM 2 GB support 1 TB RAM support 

Execution In-order In-order In-order Out-of-order 
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stages, in-order execution, 32 KB L1 instruction and data caches, 

1 MB level two (L2) cache, and support for 2 GB RAM.  

Finally, conf4 represents high-end/high-performance 

embedded systems CPUs, such as the ARM Cortex-A15, and 

contains four cores with 1.9 GHz clock frequency, 8 pipeline 

stages, 32 KB L1 instruction and data caches, 2 MB L2 cache, 

support for 4 GB RAM, and out-of-order execution. Out-of-order 

execution allows instructions to execute as soon as the instruction 

becomes available, unlike in-order execution where instructions 

must execute in program order. 

EXPERIMENTAL METHODOLOGY 
This section describes the simulators, our IoT benchmark 

suite, and the performance metrics considered in this study. 

Simulators 
To evaluate the applicability of our microarchitecture 

configurations to the IoT, we used the GEM5 simulator [6] to 

generate execution statistics while running several benchmarks 

on the configurations as shown in Table 1. We used the McPAT 

simulator [20] to generate leakage, dynamic power, and area 

values for the different configurations, and used Perl scripts to 

drive our simulations. 

Benchmarks and performance metrics 
To facilitate our study, we created a benchmark suite based 

on our application classification methodology with seven kernels 

to represent emerging IoT edge computing applications. We use 

the kernels as computational basic blocks to represent the 

applications’ functions, which disconnects the executions from 

specific implementations, programming languages, and 

algorithms. This methodology is supported by the concept of 

computational dwarfs, which was introduced by Asanovic et al. 

[2]. Computational dwarfs represent patterns of computation at 

high levels of abstractions to encompass several computational 

methods in modern computing. Within these dwarfs, kernels are 

used to expose computational nuances that reveal characteristics 

that may not be visible at the level of the dwarfs. 

Table 2 depicts our application functions, each application 

function’s representative benchmarks, and the benchmarks’ 

descriptions. For each benchmark, we used different input data 

sizes to model different real-world usage scenarios, and cross-

compiled all benchmarks for the ARM instruction set 

architecture (ISA). We omit the detailed descriptions of the 

benchmarks for brevity. 

To quantitatively compare the microarchitecture 

configurations, we use execution time, energy, performance 

measured in giga operations per second (GOPS), and efficiency 

measured in performance per watt (GOPS/W). 

RESULTS 
In this section, we present simulation results for execution 

time, energy, performance, and performance per watt on the 

microarchitecture configurations listed in Table 1. We also 

perform sensitivity analysis with respect to varying application 

data sizes, various microarchitectural characteristics, and 

evaluate the impacts of idle energy and leakage power reduction. 

We note that in this work we did not explore the impact of 

multiple cores on parallelizable applications. All simulations 

were performed using the single core versions of the 

microarchitecture configurations shown in Table 1, and we leave 

multi-core exploration for future work.  

TABLE 2. APPLICATION FUNCTIONS, REPRESENTATIVE BENCHMARKS, AND BENCHMARK DESCRIPTIONS 

Application function Benchmarks Benchmark description 

Sensing matrixTrans (_128, _256, _512, _1024) Dense matrix transpose of n × n matrix 

Communications fft (_small and _large) Fast Fourier Transform (FFT) 

Image processing matrixMult (_128, _256, _512) Dense matrix multiplication of n × n matrix 

Lossy compression jpeg (_small and _large) Joint Photographic Experts Group (JPEG) compression 

Lossless compression lz4 (_mr and _xray) Lossless data compression 

Security sha (_small and _large) Secure hash algorithm 

Fault tolerance crc (_small and _large) Cyclic redundancy check 

 

 
                                                     (a)                                                                                                 (b)  

Figure 2. (a) Memory references per instruction (MPI) and (b) instructions per cycle (IPC) of the benchmarks with different 

data sizes 
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Execution characteristics and sensitivity to data sizes 
To evaluate the execution characteristics of the different 

benchmarks, we used the percentage of memory references per 

instruction (MPI) and the instructions per cycle (IPC) to provide 

insight into the benchmarks’ memory and compute intensities, 

respectively. Note that IPC can also provide an indication of a 

benchmark’s memory intensity (e.g., a low IPC could indicate 

long memory access times due to accesses to lower level 

memory, and hence, a memory intensive benchmark).  

First, we evaluated the MPI and IPC on conf4. While the MPI 

is microarchitecture-independent (i.e., the MPI remains the same 

across different microarchitectures), the IPC is microarchitecture-

dependent. However, we observed that the IPC also remained 

relatively stable for different data sizes across all of the 

configurations. The execution characteristics (MPI and IPC) and 

sensitivity to different data sizes provides insights into the right 

provisioning of memory (cache) sizes and/or clock frequencies in 

order to satisfy the execution requirements. 

Figure 2 (a) and (b) depict the MPI and IPC for all of the 

benchmarks for different input data sizes. Figure 2 (a) shows that 

the memory intensity for the different benchmarks remained 

stable regardless of the data size. matrixTrans was the most 

memory intensive benchmark with an MPI of 52%, since most of 

the computations were performed in memory. Similarly, sha, 

cjpeg and lz4 were also memory intensive benchmarks with 

MPIs of up to 49%, while fft was the least memory intensive with 

an MPI of 21%. 

 Figure 2 (b) shows that the IPCs for different benchmarks 

were also relatively stable for different data sizes, since the 

working set sizes for these benchmarks remained stable, except 

for matrixTrans and matrixMult, which had variable working set 

sizes with different data sizes. For example, matrixTrans’ IPC 

reduced by 32% and 60% when the data size increased from 

matrixTrans_128 to matrixTrans_256 and from matrixTrans_256 

to matrixTrans_512, respectively. The IPC increased because the 

working set size increased as the data size increased. Thus, there 

were more processor stalls due to the increased memory activity. 

However, the working set size remained stable from 

matrixTrans_512 to matrixTrans_1024, thus, the IPC also 

remained stable. 

Execution time, energy, performance, and efficiency 
Figure 3 (a) and (b) depict the execution time and energy of 

conf1, conf2, and conf3 normalized to conf4 for all of the 

benchmarks. We used conf4 as the base configuration for 

comparison since this configuration was the biggest of our 

microarchitecture configurations. Figure 3 (a) shows that conf1, 

conf2, and conf3 increased the average execution time by 202x, 

23x, and 9x, respectively, for all of the benchmarks. These results 

show that conf4 outperforms the other configurations when 

considering latency. Similarly, Figure 3 (b) shows that conf1, 

conf2, and conf3 increased the energy consumption by 35x, 4.6x, 

and 4.7x. Conf4’s low energy consumption compared to the other 

configurations was due to the significant reduction in execution 

time, while the smaller configurations resulted in considerably 

longer execution times than conf4. The graphs do not show conf1 

results for some benchmarks because conf1’s memory was too 

small for the working set size of those benchmarks, and thus the 

those benchmarks could not be executed on conf1. Since conf1 

represents current MCUs that are used on the IoT, our results 

indicate that these current MCUs are not sufficiently equipped 

for all edge computing requirements. 

 
(a) 

 
(b) 

Figure 3. (a) Execution time and (b) energy normalized to conf4 



 7                                                            Copyright © 2015 by ASME 

 

Figure 4 (a) and (b) depict the performance and efficiency of 

conf1, conf2, and conf3 normalized to conf4 for all of the 

benchmarks. Results reveal that conf1, conf2, and conf3 degraded 

the performance by 171x, 17x, and 8x, respectively. Compared to 

conf4, conf1 degraded the efficiency by 33x, while conf2 and 

conf3 degraded the efficiency by 4x. These results reveal the 

significant improvements achieved by using the larger 

configurations. In a system that is not energy constrained (e.g., an 

IoT device that is consistently connected to a power source) or in 

real-time systems, where minimizing latency is the goal, conf4 

provides the best performance for the system. 

Sensitivity to various microarchitectural 
characteristics 

To identify the most impactful microarchitectural 

characteristics on system execution time, energy, performance, 

and efficiency, we evaluated conf4 with a 1 GHz clock 

frequency, in-order execution, and a 16 KB cache size. For each 

of these evaluated configurations, all of the other configurations 

were held constant to isolate the impact of the evaluated 

configurations. For brevity, we only show results for a subset of 

the benchmarks’ input data sizes, however, all of the benchmarks 

are included in the averages. 

Figure 5 (a) and (b) depict the execution time, energy, 

performance, and efficiency of conf4 with a 1 GHz clock 

frequency normalized to conf4 with a 1.9 GHz clock frequency. 

Figure 5 (a) illustrates the significant impact of the clock 

frequency on execution time and energy consumption. On 

average over all of the benchmarks, reducing the clock frequency 

to 1 GHz increased the execution time and energy by 75% and 

41%, respectively. However, for matrixTrans, reducing the clock 

frequency to 1 GHz did not change the execution time and 

reduced the energy by 4%. Since matrixTrans was the most 

memory intensive benchmark and spent more execution time in 

 
(a) 

 
(b) 

 

Figure 4. (a) Performance and (b) efficiency normalized to conf4 

 
(a)                                                                                                   (b) 

Figure 5. (a) Execution time and energy (b) Performance and efficiency of 1 GHz clock frequency normalized conf4 (1.9 GHz) 
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memory activities, reducing the clock frequency had little impact 

on matrixTrans than on the other benchmarks. Figure 5 (b) 

reveals that reducing the clock frequency reduced the average 

performance and efficiency by 40% and 27%, respectively. 

Similarly to the execution time and energy results, for 

matrixTrans, the performance did not change and the efficiency 

increased by 4% since matrixTrans’s performance was more 

dependent on the memory than on the clock frequency. These 

results show the significant impact that the frequency has on 

edge computing for IoT applications. 

Figure 6 (a) and (b) depict the execution time, energy, 

performance, and efficiency of conf4 with in-order execution 

normalized to conf4 with out-of-order execution. Figure 6 (a) 

shows that in-order execution increased the average execution 

time and energy by 4.8x and 2.9x, respectively, and by as high as 

9x for sha_large, which is a highly compute intensive and 

memory intensive benchmark. The results reveal that out-of-

order execution provides greater advantages over in-order 

execution for applications that are compute intensive, however, 

the impact is reduced for memory intensive applications. Figure 

6 (b) shows that in-order execution reduced the average 

performance and efficiency by 75% and 63%, respectively. 

Similarly to the execution time and energy, the performance 

degradation was more significant for the more compute intensive 

benchmarks, such as sha_large. 

Figure 7 (a) and (b) depict the execution time, energy, 

performance, and efficiency of conf4 when the cache size was 

reduced to 16 KB normalized to conf4 with the 32 KB cache. 

Unlike with the clock frequency and execution order, reducing 

the cache size did not significantly impact the overall results. 

Figure 7 (a) shows that the 16 KB cache only increased the 

average execution time by 4%, with increases as high as 18% for 

lz4_mr. The execution time increased for lz4_mr because the 16 

KB cache was not large enough to hold lz4_mr’s working set 

size, thus incurring cache misses and requiring the data to be 

fetched from main memory. However, reducing the cache size 

did not negatively impact the execution time for most of the 

applications. The 16 KB cache reduced the average energy 

consumption by 4%, but increased lz4_mr’s energy consumption 

by 3% due to the additional cache misses incurred by the 16 KB 

cache. Similarly, Figure 7 (b) shows that the 16 KB cache 

degraded the average performance by 3% and improved the 

average efficiency by 5%. For applications with large working 

set sizes, such as lossless (lz4_mr) and lossy compression 

(cjpeg_large), the 32 KB cache was more appropriate. For all 

other applications, the 16 KB cache size was sufficient. 

Impact of idle energy and power optimization 
To illustrate the impact of the idle energy on overall energy 

consumption, we simulated various application execution 

scenarios for the shortest and longest running benchmarks 

(matrixTrans_128 and crc_large). We calculated the total energy 

consumed as the sum of the energy consumed during application 

execution and the idle energy, where the idle energy is the 

product of the leakage power and the idle time. We assumed 

power gating [15] for power optimization in our evaluations, 

where the leakage power is reduced by 95%. Power gating is a 

technique used to reduce a circuit’s leakage power consumption 

by shutting off blocks of the circuit that are not being used. To 

represent a real-world scenario, we experimented with periodic 

times and random application execution time intervals, and 

observed that the results were independent of the periodicity or 

randomness of the application executions. Thus, we present the 

 
(a)                                                                                   (b) 

Figure 6. (a) Execution time and energy (b) performance and efficiency of in-order execution normalized to conf4 (out-of-order) 

 
                                                        (a)                                                                                                     (b) 

Figure 7. (a) Execution time and energy (b) performance and efficiency of 16 KB cache normalized to conf4 (32 KB cache) 
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results for both periodic and random execution time intervals 

together in this subsection. 

Figure 8 (a) and (b) depict the total energy consumed by 

conf1, conf2, and conf3 normalized to conf4 for matrixTrans and 

crc_large, representing low and high duty cycle applications, 

respectively, without power gating and with power gating. Figure 

8 (a) shows that without power gating, conf1 consumed the 

lowest amount of energy for both the low and high duty cycle 

benchmarks. Even though conf3 and conf4 executed the 

applications fastest and accounted for the least dynamic energy 

consumption, both configurations had high leakage power, thus 

negating the energy savings from the short execution times. 

Figure 8 (b) shows similar results for the matrixTrans with power 

gating. Since matrixTrans is a short benchmark that executed 

relatively fast on all of the configurations, there was not enough 

difference in the configurations’ idle times for power gating to 

provide any significant benefit. However, for crc_large, conf1 

consumed the most overall energy with power gating, while 

conf2 consumed the least energy. Due to the length of the 

application, conf1 spent most of the time executing the 

application, while conf2, conf3, and conf4 were able to go into 

the idle mode much faster due to faster execution times. Conf2 

provided the optimal balance, across all of the configurations, 

between the time spent executing the application and the time 

spent idling. Thus, these results reveal that the benefits of power 

gating are dependent on the application’s duty cycle. 

Applications executing on configurations that have low duty 

cycles have a higher potential of benefiting from power gating.  

To further evaluate the impact of idle energy, we considered a 

scenario in which multiple applications were randomly executed 

periodically or at random time intervals (we have omitted the 

figures for brevity). Without power gating, conf2 consumed the 

lowest energy on average, showing that this configuration 

provided a good balance between idle time and leakage power. 

However, with power gating, conf4 consumed the lowest energy 

on average, since this configuration provided much faster 

execution, enabling power gating to provide significant energy 

savings due to the leakage power reduction. Therefore, these 

results show that an application’s duty cycle should be 

considered when selecting configurations for execution. Larger 

configurations (e.g., conf3 or conf4) that significantly reduce the 

duty cycle compared to smaller configurations provide greater 

power optimization benefits. However, when only short 

executions are required and an application’s duty cycle is similar 

across the different configurations, and/or power optimization is 

not available (i.e., leakage power is high), the smaller 

configuration devices would consume less energy overall, since 

these configurations would typically have less leakage power 

than the larger configurations. 

CONCLUSIONS AND FUTURE RESEARCH 
The Internet of Things (IoT) is expected to grow at a fast 

pace, resulting in billions of connected devices that generate 

massive amounts of data. Due to this data explosion, the 

traditional IoT model, which involves edge nodes gathering and 

transmitting data to head nodes, will result in a communication 

bandwidth bottleneck, and latency and energy overheads. To 

ameliorate this overhead, edge computing performs computations 

on the edge nodes to interpret and utilize data, in order to reduce 

data transmission requirements, thereby reducing latency and 

energy consumption. 

In this work, we seek to understand the microarchitectural 

characteristics that will support edge computing in the IoT. In 

order to understand the architectures, we must first understand 

the applications that will execute on these architectures. To 

tractably represent the vast IoT application space, we propose an 

application classification methodology consisting of a set of 

application functions and benchmarks that represent the basic 

computational patterns of current and emerging IoT applications. 

We comprehensively studied current low-power devices’ 

microarchitectural characteristics and evaluated these devices’ 

applicability to IoT edge computing. We evaluated these 

microarchitectural characteristics with respect to various 

performance metrics, and based on our analysis, we formulated 

insights that serve as a foundation for further analysis and design 

of IoT microprocessors. Since edge computing in the IoT is a 

burgeoning area of research, the goal of this work is to provide a 

foundation for further research, through the insights gained, into 

understanding application requirements and architectures that 

support edge computing. 

Our analysis showed that an application’s working set size 

should be given priority consideration over the input data size 

when designing IoT microprocessors. Additionally, we showed 

that current IoT-targeted microprocessors are not sufficient for 

edge computing, especially due to these devices’ low memory 

capabilities (cache and main memory). In order to support edge 

computing, emerging IoT devices must be equipped with 

additional compute and memory capabilities. We also illustrated 

the need to prioritize the clock frequency and program execution 

order when designing IoT microprocessors, due to these 

 
(a) 

 
(b) 

 

Figure 8. Total energy consumption (including idle energy) 

of conf1, conf2, and conf3 normalized to conf4 (a) without 

power gating, and (b) with power gating 
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characteristics’ large impacts on performance and energy 

consumption.  

We also showed the importance of considering the executing 

applications’ duty cycles when selecting configurations for IoT 

microprocessors, especially in the presence of optimization 

mechanisms, such as power gating. Large configurations that 

may increase the dynamic power, but reduce the duty cycle are 

preferred in such instances. However, where leakage power is 

high (e.g., where power gating is not available), smaller 

configurations that reduce the dynamic power are preferred. 

Thus, while designing high-performance embedded 

microprocessors to support edge computing, emphasis must also 

be placed on microarchitectural optimizations that reduce leakage 

power in order to realize the full benefits of these high-

performance embedded systems. 

Key next steps involve validating the analysis presented in 

this work in actual real-world use-cases. For example, we would 

like to study a surveillance camera use-case, where real-time face 

recognition applications must be implemented, and evaluate how 

these applications can be supported using the methodology 

presented in this paper.  

Additionally, our work revealed some caveats that we intend 

to address in future work. For example, we plan to quantify the 

attainable performance benefits afforded by multicore 

architectures in the context of IoT edge computing. Furthermore, 

since we only considered the processing component in this study, 

we plan to extend the study to other IoT device components, such 

as input/output (I/O) bandwidth, secondary storage, etc., and 

evaluate how these components impact IoT edge computing. We 

intend to explore the tradeoffs involved in designing an 

architecture that provides runtime variability, such that the device 

can be dynamically configured to support various application 

functions, while minimizing the energy consumption. We also 

plan to study the impact of additional optimizations for low-

power devices, and propose and prototype new architecture 

designs for IoT edge computing based on our analysis. 
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