Deep Learning with Intel DAAL
on Knights Landing Processor

David Ojika

dave.n.ojika@cern.ch

March 22, 2017

Outline

ntroduction and Motivation
ntel Knights Landing Processor

ntel Data Analytics and Acceleration Library (DAAL)
Experiment and current progress

GitHub: https://github.com/davenso/DKN

https://github.com/davenso/DKN

Object Identification

* Object identification is the task of training a computer to recognize
patterns in data

* Object: could be car, person, a piece of flower, higgs, muons, etc.
* Learning algorithm (e.g. decision tree) is used to for training

Generate a “prediction model” to make “guesses”

http://www.cs.tau.ac.il/~wolf/OR/

Machine Learning

* Involves two 2 steps:

A
. feature
extractor

A
. feature
extractor

machine
learning
algorithm

classifier
model

Deep Learning

* Deep learning means using neural networks
(a class of machine learning) with multiple ..
hidden layers "\

 Neural networks are modelled based on the
dynamics of the neurons in our brain

* Hidden layers represent neural computations in
series of processing stages

* Learning performance can generally improve with
depth of network (at more cost to processing)

termanal branches of axon

® @ o o o 0 @
o O e [o0 uv Svem IS0 B
® O o @ @ 0 9@

Neural Network Deep Neural Network (DNN)

Fu? coew, 64, 2

34 layers to
> 1, 000 layers

123
456
789

—

Tiger

W \dense

J

2023

Kensey

k

I

MNIST, 2012

128

pooling

12% Max

DNN Applications

7 Layers
Error rate 15.3%

pocling

128

pocling

PP =T R SN
FeNSMEENYN
ERNEEEONG-
MM NG
GBI
SISV I ESIEISY
SIS S RSN SRR
NeNN~EGSS]s)
TMEEEEE R
IS TRMINSN

ILSVR 2014 Winner/

R

iy

= A

e
1252

= 62 A

IIII

e
L=}

22 layers
Error rate: 6.67%

GoogleNet

Handwriting

Images

ILSVR 2015 Winner

DNN Training

inputs bias

a, {weights
a w

2 2 output
an

activation

function

10 Neurons
2 Hidden Layers

* Back propagation and forward propagation
method used training

DNN Inferencing

Input . Layer 1
®
. . Layer 2
A trained network with: - ® Output
- 10 Neurons : D e » :
- 2 Hidden Layers pd [2 Newrons
® -
®
. 10 Neurons
Layer 1 Layer 2

0.613 0.721 0.721 0.993 0.683

0.787 0.635 0.915 0.669 0.769

Learned Weights (5 x 2)

Learned Weights (10 x 5)

0.618

0.72

Learned Biases (1 x 2)

Learned Biases (1 x 5)

Challenge with DNN Training

* Large size of dataset
* Gigabytes, Terabytes of data

e Large number of hyper-parameters
* # layers, # neurons, batch size, iterations, learning rate, loss function, weight decay etc.

* Hyperparatmer optimization techniques: random search, grid search, Bayesian, gradient-based
* Emerging hardware for deep learning

* GPU
* KNL
* FPGA

* Software exists, but require manual fine-tuning

(Physics) Object identification: A Cross-layer
Perspective

 Compose hardware, algorithm and software and components
 Derive efficient FPGA implementation to perform inference

Object Recognition

Hardware
FPGA

Intel Knights Landing (KNL)

* Next generation Xeon Phi (after Knight Corner (KNC) co-processor)
 Self-boot: unlike KNC
e Binary-compatible with Intel Architecture (IA) and boots standard OS

* Some performance-enhancing features
* Vector processors: AVX-512
* High-bandwidth: MCDRAM
* Cluster modes
e Networking (in some models)

KNL Overview

Chip: 36 Tiles interconnected by
2D Mesh

Tile: 2 Cores + 2 VPU/core + 1
36 Tiles MB L2

connected by . - -]
2D Mesh Memory: MCDRAM: 16 GB on

Interconnect package; High BW

DDR4: 6 channels @ 2400 up to
384GB

3
D
D
R
a
C
H
FiY
M
M
E
L
5

SIMD Mode

A6 AS!M

D OE

o

|
[

AVX-512

http://geekswithblogs.net/akraus1/archive/2014/04/04/155858.aspx

KNL AVX-512

Scalar Mode

-
-
E

e 512-bit FP/Integer Vectors
* 32 registers, & 8 mask registers
* Gather/Scatter

SSE and AVX-128 types g 2x double

-bit wor

AVX-256 types

3 16x float
_g 8x double

KNL MCDRAM

A
wn v
i &
= TG 3
= MCDRAM .
© 4or8GB ©
g MCDRAM 9
> w
£ Z
e (a
Flat mode Cache mode Hybrid mode
* MCDRAM as regular memory e MCDRAM as cache * MCDRAM part cache, part
. memory; 25% or 75% as cache

* Managed by SW * No code change required* Vi 25% 4

float *fv;

fv = (float *)hbw_malloc(sizeof(float) * 100); float *fv; fv = (float *)malloc(sizeof(float)*100);

numactl -m 1 ./myProgram

KNL Cluster Modes

* All-to-all: uniformly distributed address
* Quadrant: four vertical quadrants
* Sub-NUMA Clustering (SNC): each quadrant as separate NUMA domain

36 Tiles
connected by
2D Mesh
Interconnect

/'J; J J 7 \
\ mm\ m...l ek e (mcoanet Tiles can be organized in 3 different
: cluster modes

Intel Data Analytics and Acceleration Library

)

Pre-processing Transformation Analysis Modeling Validation Decision Making
e . ®
ot ®e PN &
1228 o . .. ll"
e, . . m o=

PCA Linear regression

(De-)Compression Statistical moments Naive Bayes Collaborative filtering
Variance matrix SVM
QR, SVD, Cholesky Classifier boosting Neural Networks
Apriori
Kmeans
EM GMM

* Optimized functions for deep learning and classical machine learning
* Language API for C++, Java and Python for Linux and Windows

* Support data ingress from Hadoop and Spark

* Free and open-source versions available

Intel DAAL

/ Neural Network \ * Layer: NN building block
=

. L]
- m - Model: Set of layers
Ry * Optimization: Objective function /solver
Topology * Topology: NN description
4 Layerl N * NN: Topology, model & optimization algorithm
* Tensor: Multidimensional data structure
Layer2
m—-—
Layer3
Convolutional Logistic Z-score
\ Model / Pooling (max, average) Hyperbolic tangent Batch Cross entropy
Dptll‘ﬂl‘latlﬂn Fully connected RelLU, pRelU, smooth RelU Local response Mini batch SGD
\ algorithm /
Softmax Stochastic LBFGS

Dropout Abs

DAAL API Example

* Layer

SharedPtr<layers::fullyconnected: :Batch<> > fclLayerl (new fullyconnected: :Batch<>(20));

* Topology
SharedPtr<layers::fullyconnected: :Batch<> > fclayerl (new fullyconnected: :Batch<>(20));

Collection<LayerDescriptor> configuration;

configuration.push back (LayerDescriptor (0, fcLayerl, NextLayers(l)));

* Optimization Solver

services::SharedPtr<optimization solver::mse::Batch<double> > mseObjectiveFunction (new
optimization_solver::mse::Batch<double>(nVectors));
optimization solver::sgd::Batch<> sgdAlgorithm(mseObjectiveFunction);

* Model

services::SharedPtr<training::Model> tModel = trainingNet.getResult ()->get (model)
services::SharedPtr<prediction::Model> pModel = tModel->getPredictionModel() ;

Higgs Classification

Data Model Development (DAAL)

* 11 million events (monte carlo simulations) e Our “simulation” environment
e 21 low-level features from particle detector

* 7 high-level features (hand-crafted) Classification Task: Higgs /
« “1”:signal; “0”: background __ Background __

* A binary classification problem - ‘ Algorithm: DNN ‘

* Training set: 10.5 million Software: DAAL

« Validation set: 500 thousand Hardware: KNL
DNN KNL
» Started with a topology with 3 layers (28-1024-2) e MCDRAM mode = Flat

* Hyper-parameter: began with Random Search with

minimal optimization effort * Cluster mode = Quadrant

Training s

DNN Topology

Large number of examples

Prediction

:
:

Preliminary Results

[davido@knl-data dkn]$ build/neural net dense batch.exe ~/dataset/higg
Training started...
Prediction started...
Neural network classification results (first 20 observations):
Ground truth Neural network predictions: each class probability

0.639 0.361

0.278 0.722

0.291 0.709

0.468 0.532

0.469 0.531

0.626 0.374

0.430 0.570

0.452 0.548

0.366 0.634

0.513 0.487

0.554 0.446

0.664 0.336

0.570 0.430

0.453 0.547

0.653 0.347

0.224 0.776

0.360 0.640

0.379 0.621

0.397 0.603

0.573 0.427

code: git clone https://github.com/davenso/DKN

Use and improve!

https://github.com/davenso/DKN

Discussions and Conclusions

e Performance can greatly enhance with:
* Deeper network topology
* Better hyper-parameters

* Deep neural networks are capable of learning underlying features,
and should therefore generalize well, e.g. Higgs, Muon, etc.

Current Developments

* Exploration of more complex models and hyper-parameter optimization
techniques (beyond Random Search)

* Integration of “real” muon data and performance benchmarking
* Tuning of KNL hardware to improve runtime performance of DNN training

* Implementation of distributed DNN algorithm, utilizing multiple KNL
nodes for training

* Exploration of alternative algorithm (likely as a ‘hybrid model’), e.g.
Decision Forests

Thank You, UF Team

e Sergei Gleyzer

* Brendan Regnery
* Darin Acosta

* Ann Gordon-Ross
* Pranav Goswami
* Andrew Carnes

* Erik Deumens

* Jon Akers

* UF RC

Image credits

e http://www.nltk.org/book/ch06.html

* CERN
e http://www.cs.tau.ac.il/~wolf/OR/

http://www.nltk.org/book/ch06.html
http://www.cs.tau.ac.il/~wolf/OR/

