Deep Learning with Intel DAAL on Knights Landing Processor

David Ojika dave.n.ojika@cern.ch

March 22, 2017

Outline

- Introduction and Motivation
- Intel Knights Landing Processor
- Intel Data Analytics and Acceleration Library (DAAL)
- Experiment and current progress

Object Identification

- Object identification is the task of **training** a computer to **recognize** patterns in data
 - **Object**: could be car, person, a piece of flower, higgs, muons, etc.
 - Learning algorithm (e.g. decision tree) is used to for training

http://www.cs.tau.ac.il/~wolf/OR/

Generate a "prediction model" to make "guesses"

Machine Learning

Involves two 2 steps:

Deep Learning

- Deep learning means using neural networks (a class of machine learning) with multiple hidden layers
 - Neural networks are modelled based on the dynamics of the neurons in our brain
 - *Hidden layers* represent neural computations in series of *processing stages*
 - Learning performance can generally improve with depth of network (at more cost to processing)

Neural Network

Deep Neural Network (DNN)

DNN Applications

DNN Training

 Back propagation and forward propagation method used training

DNN Inferencing

A trained network with:

- 10 Neurons
- 2 Hidden Layers

Layer 1

Layer 2

Challenge with DNN Training

- Large size of dataset
 - Gigabytes, Terabytes of data
- Large number of hyper-parameters
 - # layers, # neurons, batch size, iterations, learning rate, loss function, weight decay etc.
 - Hyperparatmer optimization techniques: random search, grid search, Bayesian, gradient-based
- Emerging hardware for deep learning
 - GPU
 - KNL
 - FPGA
- Software exists, but require manual fine-tuning

(Physics) Object identification: A Cross-layer Perspective

- Compose hardware, algorithm and software and components
- Derive efficient FPGA implementation to perform inference

Intel Knights Landing (KNL)

- Next generation Xeon Phi (after Knight Corner (KNC) co-processor)
 - Self-boot: unlike KNC
 - Binary-compatible with Intel Architecture (IA) and boots standard OS
- Some performance-enhancing features
 - Vector processors: AVX-512
 - High-bandwidth: MCDRAM
 - Cluster modes
 - Networking (in some models)

KNL Overview

- Chip: 36 Tiles interconnected by 2D Mesh
- Tile: 2 Cores + 2 VPU/core + 1 MB L2
- Memory: MCDRAM: 16 GB onpackage; High BW
- DDR4: 6 channels @ 2400 up to 384GB

KNL AVX-512

Scalar Mode

- 512-bit FP/Integer Vectors
- 32 registers, & 8 mask registers
- Gather/Scatter

http://geekswithblogs.net/akraus1/archive/2014/04/04/155858.aspx

KNL MCDRAM

numactl -m 1 ./myProgram

•

٠

KNL Cluster Modes

- All-to-all: uniformly distributed address
- Quadrant: four vertical quadrants
- Sub-NUMA Clustering (SNC): each quadrant as separate NUMA domain

Intel Data Analytics and Acceleration Library (DAAL)

- Optimized functions for deep learning and classical machine learning
- Language API for C++, Java and Python for Linux and Windows
- Support data ingress from Hadoop and Spark
- Free and open-source versions available

Intel DAAL

- Layer: NN building block
- Model: Set of layers
- Optimization: Objective function /solver
- Topology: NN description
- NN: Topology, model & optimization algorithm
- Tensor: Multidimensional data structure

Common layers	Activation	Normalization	Optimization / Solver
Convolutional	Logistic	Z-score	MSE
Pooling (max, average)	Hyperbolic tangent	Batch	Cross entropy
Fully connected	ReLU, pReLU, smooth ReLU	Local response	Mini batch SGD
	Softmax		Stochastic LBFGS
Dropout	Abs		

DAAL API Example

• Layer

SharedPtr<layers::fullyconnected::Batch<> > fcLayer1(new fullyconnected::Batch<>(20));

Topology

SharedPtr<layers::fullyconnected::Batch<> > fcLayer1(new fullyconnected::Batch<>(20)); Collection<LayerDescriptor> configuration; configuration.push_back(LayerDescriptor(0, fcLayer1, NextLayers(1)));

Optimization Solver

services::SharedPtr<optimization_solver::mse::Batch<double> > mseObjectiveFunction(new optimization_solver::mse::Batch<double>(nVectors)); optimization_solver::sgd::Batch<> sgdAlgorithm(mseObjectiveFunction);

Model

trainingNet.compute();

```
services::SharedPtr<training::Model> tModel = trainingNet.getResult()->get(model)
services::SharedPtr<prediction::Model> pModel = tModel->getPredictionModel();
```

Higgs Classification

Data

- 11 million events (Monte Carlo simulations)
 - 21 low-level features from particle detector
 - 7 high-level features (hand-crafted)
 - "1": signal; "0": background
 - A binary classification problem
- Training set: 10.5 million
- Validation set: 500 thousand

DNN

- Started with a topology with 3 layers (28-1024-2)
- Hyper-parameter: began with Random Search with minimal optimization effort

Model Development (DAAL)

• Our "simulation" environment

KNL

- MCDRAM mode = Flat
- Cluster mode = Quadrant

DNN Topology

Preliminary Results

[davido@knl-data dkn]\$ build/neural net dense batch.exe ~/dataset/higgs/8g				
Training started				
Prediction started				
Neural network classification results (first 20 observations):				
Ground truth	Neural	network predictions: each class probability		
Θ	0.639	0.361		
1	0.278	0.722		
1	0.291	0.709		
Θ	0.468	0.532		
Θ	0.469	0.531		
1	0.626	0.374		
Θ	0.430	0.570		
1	0.452	0.548		
1	0.366	0.634		
Θ	0.513	0.487		
1	0.554	0.446		
Θ	0.664	0.336		
Θ	0.570	0.430		
Θ	0.453	0.547		
1	0.653	0.347		
1	0.224	0.776		
Θ	0.360	0.640		
Θ	0.379	0.621		
Θ	0.397	0.603		
1	0.573	0.427		

code: git clone <u>https://github.com/davenso/DKN</u> Use and improve!

Discussions and Conclusions

- Performance can greatly enhance with:
 - Deeper network topology
 - Better hyper-parameters
- Deep neural networks are capable of learning underlying features, and should therefore generalize well, e.g. Higgs, Muon, etc.

Current Developments

- Exploration of **more complex models** and hyper-parameter optimization techniques (beyond Random Search)
- Integration of "real" muon data and performance benchmarking
- Tuning of KNL hardware to improve runtime performance of DNN training
- Implementation of distributed DNN algorithm, utilizing multiple KNL nodes for training
- Exploration of alternative algorithm (likely as a 'hybrid model'), e.g. Decision Forests

Thank You, UF Team

- Sergei Gleyzer
- Brendan Regnery
- Darin Acosta
- Ann Gordon-Ross
- Pranav Goswami
- Andrew Carnes
- Erik Deumens
- Jon Akers
- UF RC

Image credits

- <u>http://www.nltk.org/book/ch06.html</u>
- CERN
- <u>http://www.cs.tau.ac.il/~wolf/OR/</u>