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 Abstract—Due to the memory hierarchy’s large contribution 

to a microprocessor’s total power, cache tuning is an ideal 

method for optimizing overall power consumption in embedded 

systems. Since most embedded systems are power and area 

constrained, the hardware and/or software that orchestrate cache 

tuning—the cache tuner—must not impose significant power and 

area overhead. Furthermore, as embedded systems increasingly 

trend towards multicore, inter-core data sharing, communication, 

and synchronization impose additional cache tuner design 

complexity, necessitating cross-core cache tuning coordination. In 

order to minimize cache tuner overhead, cache tuner design must 

consider these overheads and scalability. Whereas prior work 

proposes low-overhead cache tuners, scalability to multicore 

systems requires additional considerations. In this work, we 

present a low-overhead, scalable cache tuner and extensively 

evaluate various cache tuner design tradeoffs with respect to 

power and area for constrained multicore embedded systems. 

Based on our analysis, we formulate valuable insights and 

designer-assisted guidelines for modeling scalable and efficient 

cache tuners that best achieve optimization goals while 

maintaining power and area constraints.  

Keywords—cache tuning, low-power design, cache memories, 

multicore embedded systems, configurable hardware 

I.    INTRODUCTION AND MOTIVATION 

Since an embedded system’s memory hierarchy typically 

accounts for a large percentage of a microprocessor’s total 

system power/energy [12], much emphasis has been placed on 

optimizing the cache subsystem’s power consumption in order 

to achieve total system energy savings. Furthermore, due to 

high memory latency and memory bandwidth limitations, 

optimizing the cache subsystem is also critical for improving 

overall system performance. However, despite an embedded 

system’s stringent design constraints (e.g., size, battery 

capacity, real-time deadlines, cost, etc.), there is a growing 

demand for performance speedups. To satisfy this growing 

demand, embedded system designers are increasing the number 

of microprocessors cores. For example, the number of cores in 

Samsung’s Exynos microprocessor series has increased from 

one core in the Exynos 3 to eight cores in the Exynos 5 Octa 

[11]. However, increasing the number of cores significantly 

increases the system and optimization complexity. Thus, much 

research has focused on multicore embedded system cache 

optimizations that reduce the power consumption without 

significantly increasing overhead (e.g., performance, area, etc.). 

Cache tuning is a common optimization method that 

determines the best/optimal cache configuration (specific 

tunable parameter values, such as cache size, associativity, and 

line size) that minimizes the power/energy consumption based 

on application requirements and design constraints. Previous 

work [3] showed that cache requirements vary greatly across 

applications and tuning the cache to a particular application can 

reduce average memory access energy by 62%. Cache tuning 

requires configurable/tunable caches [6][15], which allow 

parameter values to be varied and enables specialization/tuning 

to meet the application’s requirements, and a cache tuner to 

orchestrate tuning (e.g., change the parameter values). 

Hardware and/or software cache tuners employ cache tuning 

heuristics/algorithms [1][3][15] to determine the best cache 

configuration to meet design constrains, such as reduced energy 

consumption. However, the cache tuner also imposes additional 

power, area, and/or performance overheads while exploring the 

configuration design space, which should be carefully 

considered and minimized.  

Software-based cache tuners use the embedded system’s 

processor to execute the cache tuning heuristic, which enables 

easy system integration, but affects the application’s cache and 

runtime behavior due to context switching. These effects could 

cause the heuristic to choose non-optimal, inferior cache 

configurations [16].  

To reduce cache tuning’s impact on cache and application 

behavior, non-intrusive, low-overhead, hardware-based cache 

tuners can be used. Prior work [5] presented a hardware-based 

cache tuner for single-core embedded systems. In a single-core 

system, the cache tuner is small and lightweight, and constitutes 

minimal overhead, but multicore systems involve additional 

complexities (e.g., inter-core communication, shared resources, 

etc.), which could introduce significant overheads. In [10], we 

presented the first (to the best of our knowledge) low-overhead 

cache tuner for dual-core systems. While this cache tuner 

imposed low area, energy, and power overheads on the system, 

this tuner’s scalability beyond two cores was not considered. As 

the number of cores increases, the complexity also increases, 

which compounds the imposed overheads. Thus, cache tuners 

that scale well with the number of cores without adversely 

impacting the embedded system’s overall power consumption, 

area, and performance are essential to continue cache 

optimizations for future systems.  

This paper considers three cache tuner architectural layouts 

with respect to scalability for multicore embedded systems: 

global, dedicated, and clustered cache tuners. Fig. 1 (a), (b), and 

(c) depict the architectural layouts for these tuners, respectively. 

A global cache tuner is a single cache tuner that tunes all of the 



 

 

cores in the system. This cache tuner layout imposes minimal 

power and area overhead and is suitable for systems with a 

small number of cores. However, a global cache tuner may 

become a bottleneck in systems with a large number of cores 

due to this shared resource contention, resulting in significant 

tuning delay overhead (i.e., time waiting for the shared cache 

tuner). Using a dedicated cache tuner for each core in the 

system alleviates this bottleneck (e.g., an 8-core system would 

have eight tuners). Dedicated cache tuners reduce the shared 

resource contention and tuning delay, but increase the power 

and area overhead due to a larger number of cache tuners, and 

may require inter-cache tuner communication to coordinate 

tuning and limit avoid large power spikes if too many cores are 

tuning simultaneously. To trade off power, area and shared 

resource contention in systems with a large number of cores, a 

clustered cache tuner tunes a subset of the system’s cores, and 

there would be several cache tuners. For example, an 8-core 

system could have four clustered cache tuners, each tuning two 

cores. However, the number of cores tuned by each clustered 

cache tuner could significantly impact the cache tuner’s 

performance and overheads if the cluster size is not carefully 

considered. 

In this work, we extend our custom cache tuner to support 

cache tuning in multicore embedded systems. To satisfy 

different design constraints, we extensively evaluate and 

empirically quantify the tradeoffs between global, dedicated, 

and clustered cache tuner architectural layouts for 2-, 4-, 8-, and 

16-core systems. We evaluate the scalability of our cache tuner 

in these layouts as the number of cores increases with respect to 

the cache tuner’s power consumption, area, and performance. 

Since the goal of using dedicated and clustered cache tuners is 

to reduce the shared resource contention imposed by global 

cache tuners, we evaluate the power consumption, area, and 

performance of dedicated and cluster cache tuners as compared 

to global cache tuners. Finally, we evaluate and quantify the 

power and area overheads imposed on multicore systems by the 

global, dedicated, and clustered cache tuners, and show that 

clustered cache tuners can effectively reduce shared resource 

contention without significant power and area overheads. We 

show that our cache tuner scales well with multicore systems 

and imposes low area and power overheads on embedded 

systems.  Additionally, based on our design and analysis, we 

gain valuable insights and formulate essential design guidelines 

to assist designers in modeling scalable and efficient cache 

tuner architectural layouts in multicore embedded systems, 

considering tradeoffs between power, area, and performance 

with respect to optimization goals and design constraints. 

II. BACKGROUND AND RELATED WORK 

Prior work has developed various configurable cache 

architectures and dynamic cache tuning methods to search the 

configuration design space. This design space contains all 

combinations of different tunable parameter values, and can be 

large for systems with many configurable parameters and 

parameter values (e.g., 18,000 in [4]). This section provides a 

brief overview of related work on configurable caches and 

cache tuning, which serve as background for our work. 

A. Configurable Caches 

Configurable caches allow for cache parameters to be tuned, 

enabling architectural specialization to a particular application’s 

requirements for improved power, energy, and/or performance. 

Motorola’s M*CORE processor [6] contained a configurable 4-

way cache that provided per-way configuration using way 

management, which allowed the cache’s four ways to be 

individually shutdown to reduce dynamic power during cache 

accesses. Modarresi et al. [8] developed a cache architecture 

that was partitioned and resized dynamically to improve the 

performance of object-oriented embedded systems. 

Zhang et al. [15] developed a highly configurable cache that 

provided dynamic configuration of the cache’s total size, 

associativity, and line size using small bit-width configuration 

registers. The proposed cache had four physical ways (i.e., the 

base cache was 4-way set associative) implemented as 

individual cache banks. The ways could be shutdown to reduce 

the cache size or concatenated to form a direct-mapped or 2-

way set associative cache. Given a base, physical line size, the 

configurable cache allowed multiple physical lines to be 

fetched and concatenated to logically configure larger line 

sizes. 

B.    Cache Tuning 

The overall power/energy savings achieved by cache tuning 

is strongly affected by the efficiency of the cache tuning 

heuristic/algorithm and how the cache tuner orchestrates the 

heuristic. To limit design exploration time and imposed 

overheads, heuristics must be efficient and effective. Zou et al. 

[17] proposed a configuration management heuristic to search 

the design space for the best cache configuration. The authors 

leveraged an energy-impact parameter search ordering to search 

the cache design space for the best cache configuration. In [10], 

we proposed a cache tuning heuristic that used cache statistics 
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Fig. 1.  Sample cache tuner architectural layout for a 4-core system with (a) global, (b) dedicated, and (c) clustered tuners 

 

 



 

 

combined with an energy model [15] to calculate the cache 

configurations’ energy consumption and guide cache tuning. 

The heuristic determined the best cache configuration by first 

tuning the cache size, followed by the line size, and followed 

by the associativity, and stopped tuning a parameter when a 

parameter value change increased energy consumption. The 

energy model calculated the dynamic, static, fill, write-back, 

and processor stall energies for each cache configuration. In 

this work, we leverage our cache tuning heuristic and the 

energy model proposed in [15] for comparison purposes, 

however, our studies and analysis methods are independent of 

the specific cache tuning heuristic and/or energy model. 

To facilitate cache tuning, various cache tuners have been 

proposed. Zhang et al. [16] designed a hardware-based cache 

tuner for single-core systems that dynamically tuned the cache 

to executing applications. In [10], we developed a low-

overhead dual-core cache tuner to provide hardware support for 

cache tuning heuristics. Even though the cache tuners in these 

works were low-overhead in terms of power and area, these 

works did not consider scalability to larger systems with more 

cores, which could constitute additional cache tuning 

complexity and overhead. This work significantly improves on 

previous work by extending the dual-core cache tuner to 

support cache tuning in multicore systems. Additionally, we 

extensively study and evaluate our cache tuner’s scalability in 

multicore systems with larger numbers of cores, where power, 

area, and performance tradeoffs must be carefully considered. 

Furthermore, unlike previous work, we carry out extensive 

power, area, and performance/timing analysis to quantify these 

tradeoffs. 

III.    CACHE TUNER ARCHITECTURAL LAYOUT 

Typical cache tuners orchestrate the cache tuning heuristic 

by monitoring each explored/executed configuration’s cache 

statistics, such as number of cache accesses, misses, etc., while 

the application executes for one tuning interval. To accurately 

evaluate each configuration, the tuning interval must be long 

enough to warm up the cache and stabilize the cache statistics. 

Using these statistics and an energy model, the cache tuner 

calculates each configuration’s energy consumption to 

determine the next configuration to explore, or halts tuning if 

the best configuration has been determined. Thus, even though 

the heuristic must effectively explore the design space (i.e., 

limit the number of explored configurations), the cache tuner 

architectural layout also significantly affects the overall system 

power consumption, area, and tuning delay. This section details 

the configurable cache architecture considered in this work, the 

cache tuner architectural layouts, and our hardware 

implementations. 

A. Configurable Cache Architecture 

In our analysis, we consider a multicore system with an 

arbitrary number of cores on a single chip, where each core has 

a private, highly configurable level one (L1) data cache [15]. 

Since we only evaluate the L1 data cache and there is no shared 

level two cache, the L1 instruction cache’s configuration is 

arbitrary. Each cache1 has a physical size of 32 Kbyte, which 

models a typical, current embedded systems microprocessor 

(e.g., ARM Cortex-A7 MPCore [2]). Each cache consists of 

sixteen 2 Kbyte banks that can be individually shutdown and/or 

concatenated to tune the cache size and associativity, resulting 

in cache sizes range from 2 Kbyte to 32 Kbyte and 

associativities range from direct-mapped to 4-way set 

associative. Each cache has a physical line size of 16 bytes, 

which can be logically increased by fetching multiple lines, 

resulting in line sizes ranging from 16 to 64 bytes. Given these 

parameter values, the design space contains 36 different 

configurations. Even though this design space is smaller than 

prior work, our fundamental analysis and discussions are 

applicable to any larger design space or additional configurable 

parameters, such as L1 instruction caches, shared last level 

caches, etc.  

B.  Global, Dedicated, and Clustered Tuners 

 Fig. 1 (a) depicts a sample 4-core system with a single 

global cache tuner, which connects to each core’s private L1 

cache. In an n-core system, the global cache tuner connects to 

all n cores’ caches. The global cache tuner gathers cache 

statistics from all of the cores, coordinates tuning between 

cores, and calculates each core’s cache energy consumption. 

While the global cache tuner gathers cache statistics, calculates 

power/energy consumption, and changes the cache 

configuration, application execution is typically stalled, thus 

incurring tuning power and performance overhead. Since the 

global cache tuner is a shared resource bottleneck, the tuning 

delay in number of stall cycles an application experiences 

increases as the number of cores increases. For example, our 

experiments showed a 344% increase in tuning delay for a 16-

core system as compared to an 8-core system (Section IV).  

Dedicated cache tuners reduce the tuning delay, since each 

cache tuner only tunes a single core’s cache. Fig. 1 (b) depicts a 

sample 4-core system with dedicated cache tuners, each of 

which connect to the associated core’s private L1 cache. 

Dedicated caches tuners use the system’s existing 

communication architecture for inter-cache tuner 

communication if tuning must be coordinated between cores 

(e.g., due to data sharing between the cores), depending on the 

applications’ requirements, which may impose tuning delay. 

Since most of the communication occurs between the cache 

tuner and the associated cache, dedicated cache tuners typically 

do not constitute significant communication traffic on the 

system’s communication architecture. However, since the 

number of cache tuners scales linearly with the number of 

cores, the area and power overheads are approximately n times 

greater than a global cache tuner for an n-core system. 

Clustered cache tuners trade off area and shared resource 

contention in large systems by tuning only a subset of caches. 

Fig. 1 (c) depicts a sample 4-core system with two clustered 

cache tuners, where each cache tuner tunes two cores’ caches. 

When using clustered cache tuners, an architectural layout 

decision is required since the cache tuners can connect to 

                                                           
1 Any future reference to cache implicitly refers to the L1 data cache only 
unless otherwise noted. 



 

 

several possible cluster sizes. For example, a 16-core system 

could consist of cluster sizes of two, four, or eight, with eight, 

four, or two clustered cache tuners, respectively. Fewer 

clustered cache tuners impose less power and area overhead, 

but increase the shared resource contention and tuning delay, 

since each cache tuner must tune more cores. Alternatively, 

more clustered cache tuners impose more power and area 

overhead, but reduce the shared resource contention and tuning 

delay. Thus, the cluster size must be carefully selected to 

maximize optimization potential. 

C.  Hardware Implementation 

We implemented our cache tuner in multiple architectural 

layouts and for multiple cores to evaluate the architectural 

layout options for systems with up to sixteen cores. However, 

the basic structure of the cache tuner is similar for all the 

architectural layouts. All cache tuners use a hierarchical state 

machine to explore the design space and control the datapath 

that performs the energy calculations. The global cache tuner 

has a single datapath that is shared by all the cores, the 

dedicated cache tuner’s datapath is only used by cache tuner’s 

associated core, and the clustered cache tuner’s datapath is 

shared by only the cluster’s associated cores. In this subsection, 

we describe our cache tuner’s basic state machine and datapath 

structures. 

1) State Machine 

Fig. 2 depicts the hierarchical state machine, which contains 

three sub state machines: the parameter, value, and calculation 

states. Since the cores may choose different cache 

configurations and for the global and clustered cache tuners, 

multiple cores may be tuning simultaneously, the cache tuner 

contains per-core configuration bits, which control the cache 

configuration, and parameter and value states. Since the 

calculation state contains the energy calculation datapath 

hardware, which can impose large area overhead if replicated 

per core, to reduce area requirements, all cores share a single 

calculation state, however, this shared resource imposes tuning 

delay. We evaluate the tradeoff between area and tuning delay 

using clustered cache tuners in Section IV. 

The parameter state changes the parameter being tuned. The 

initial state S0 represents the cache tuner idle state, wherein the 

associated core is not currently tuning, adjust_parameter = 

none, and initializes variables that are used with the cache 

statistics to calculate the energy consumption in the calculation 

state. When a new application is executed, tuning begins and 

start = 1, which sets adjust_parameter to designate the 

parameter being tuned in the sub-states, S1, S2, and S3, as size, 

line_size, and associativity, respectively, and triggers a 

transition to the value state.  

The value state changes the value of the parameter being 

tuned using six sub-states, and the sub-states’ actions are 

dependent on adjust_parameter’s designation. State V0 uses the 

tune_again signal from the calculation state to determine when 

to change the parameter’s value (tune_again = 1), and when to 

change the parameter being tuned (tune_again = 0, i.e., all 

values for adjust_parameter have been evaluated). State V0 

also sets the configuration bits that determine the actual 

parameter values and changes the cache configuration based on 

energy calculations from the calculation state. When 

adjust_parameter = size, states V1 through V5 change the size 

to 2, 4, 8, 16, and 32 Kbyte, respectively; when 

adjust_parameter = associativity, states V1 through V3 change 

  

 
Fig. 2. Hierarchical state machine for the cache tuners 

   

Fig. 3. Cache tuner datapath for energy calculations. The datapath is replicated for all of the tuners. 



 

 

the associativity to 1-, 2-, and 4-way, respectively; when 

adjust_parameter = line_size, states V1 through V3 change the 

line size to 16, 32, and 64 bytes, respectively. After the 

parameter value is changed, the application executes for one 

tuning interval. After the tuning interval, states V1-V5 set 

calc_start = 1, which triggers a transition to the calculation 

state. 

The calculation state interfaces with the datapath using 

multiple control signals and calculates the energy consumption 

based on the cache statistics and the energy model [15] using 

six sub-states. When calc_start = 1, state C0 sets the busy_bit 

to ensure exclusive use of the calculation state by a single core. 

To ensure atomic calculations, once the busy_bit is set, the 

busy_bit can only be cleared after the calc_done signal is set to 

1. States C1 through C5 calculate the dynamic, static, CPU 

stall, write back, and cache fill energies, respectively, using the 

energy model. After the calculations, state C0 changes the 

tune_again signal and the calc_done signal, clears the busy_bit 

to 0, and transitions the state machine from the calculation state 

back to the value state.  

2) Datapath for Energy Calculation 

Fig. 3 depicts the datapath for energy calculation, which 

uses a multiply-accumulate unit (MAC) to calculate the total 

energy consumption. For brevity, we only show a global cache 

tuner’s datapath, which is shared all cores. Dedicated and 

clustered cache tuners would contain one datapath for each core 

or cluster, respectively. Multiplexers, which are set by the 

current calculation state, select the specific cache statistic and 

energy values to multiply while calculating the dynamic, static, 

CPU stall, write back, and cache fill energies, depending on the 

current calculation state, and these intermediate values are 

accumulated to calculate the total energy consumption. 

The datapath uses 32-bit registers to store the per-core 

cache statistics—total cache access, total cycles, miss cycles, 

and write backs—during each tuning interval’s execution. The 

32-bit registers are sufficient to store the cache statistics 

without saturation considering the tuning interval length, and 

the number of registers required depends on the cache 

configuration design space. Given a tuner shared by n cores, 

there are n sets of cache statistic registers. During the tuning 

interval, the datapath snoops the cache operations to record 

these statistics and store energy values. The datapath contains 

36 16-bit registers to store pre-determined (Section IV.A) 

dynamic energies for all the 36 possible cache configurations 

and five registers to store the static energies for the 2 Kbyte, 4 

Kbyte, 8 Kbyte, 16 Kbyte, and 32 Kbyte caches. Since there are 

three possible cache line sizes, and different line sizes each 

consume different cache fill and write back energies, three 

registers each are used to store the cache fill and write back 

energies, and one register is used to store the CPU stall energy. 

Even though larger design spaces would require additional 

registers, the tuners’ basic architectural layout and functionality 

are independent of the cache configuration design space. 

To guide the design space exploration, the datapath uses 

two per-core 32-bit registers to store the value of the energy 

consumption of the prior interval’s cache configuration, 

previous_energy, and the current interval’s energy 

consumption. The cache tuning heuristic compares 

previous_energy to current_energy to determine the final 

energy value from the calculation state. If current_energy is 

less than previous_energy, tune_again is set to 1 in state C0. 

Otherwise, tune_again is 0 and previous_energy remains 

unchanged, implying that the previous cache configuration 

consumes less energy than the current cache configuration.  

Finally, a per-core 11-bit configuration_bits register stores 

the cores’ cache configurations by controlling way shutdown, 

way concatenation, and line size adjustment (Section IIA) to 

change the cache’s configuration during tuning. From each 11-

bit register, five bits represent the cache sizes, and three bits 

each are used to represent the associativities and line sizes. 

IV.    EXPERIMENTAL RESULTS 

A.  Experimental Setup 

To quantify the power and area tradeoffs of the different 

cache tuner architectural layouts, we implemented and 

extensively evaluated global and dedicated cache tuners for 2-, 

4-, 8-, and 16-core systems. For the clustered cache tuners, we 

implemented and evaluated 2-core clusters for the 4-, 8-, and 

16-core systems (i.e., one tuner for every two cores), 4-core 

clusters for the 8- and 16-core systems, and 8-core clusters for 

       
                                                     (a)                                                                                                    (b)   

Fig. 4.  (a) Power consumption and (b) area trends for the global, dedicated, and clustered cache tuners (n/cluster, where n is the cluster size) as the number of 

cores increases from two to sixteen cores.   



 

 

the 16-core systems. We did not evaluate a clustered 2-core 

system since that layout is equivalent to a global cache tuner. 

We assumed that the core’s threads/applications were 

independent, and thus the cores could be tuned independently, 

however, our future work will consider tuning dependencies.  

We modeled all the cache tuner architectural layouts in 

synthesizable VHDL, and synthesized the layouts using 

Synopsys Design Compiler [13] and the Synopsys 90nm 

Generic Library to quantify the cache tuners’ power 

consumptions, areas, and tuning delays as the number of cores 

increases. Since cache tuner’s architectural layout does not 

affect design exploration (i.e., each layout explores the 

configurations in the same order), the performance overhead 

incurred during design space exploration is consistent across all 

layouts. However, the architectural layouts could impose 

additional overhead on the tuning intervals by increasing the 

tuning stall cycles, during which energy consumption is 

calculated, the next configuration is chosen, the cache 

configuration is changed, and the cache contents are flushed (if 

necessary). 

We quantified the overhead incurred by the total tuning stall 

cycles using eleven benchmarks from the SPLASH-2 

benchmark suite [14]. We used the SESC simulator [9] to 

gather cache statistics and calculated total_tuning_stall_cycles 

as (number of configurations explored – 1) * layout’s tuning 

stall cycles. TABLE 2 depicts all the benchmarks used and the 

number of configurations explored using our cache tuning 

heuristic (Section II.B). TABLE 1 depicts the number of tuning 

stall cycles for the different number of cores and cache tuner 

architectural layouts. We assumed a clock frequency of 2 GHz 

and a tuning interval of 500000 cycles. 

B. Power, area, and tuning delay with respect to the number of 

cores 

Fig. 4 (a) and (b) depict the power consumption and area 

trends, respectively, for the global, dedicated, and clustered 

cache tuners (n/cluster, where n is the cluster size) as the 

number of cores increased. The results depict a nearly linear 

increase in the power and area as the number of cores 

increased, revealing good scalability for all architectural layouts 

to future systems.  

Fig. 4 (a) shows that for every power-of-two increase in the 

number of cores increased the global cache tuner’s power 

consumption by 49% on average. Even though all cores shared 

a single global cache tuner, additional cores introduced a 

constant number of additional registers and logic to preserve 

per-core state machine information, configuration bits, and 

energy calculations. The dedicated and clustered cache tuners’ 

power consumptions increased more rapidly than the global 

cache tuners as the number of cores increased. On average, 

every power-of-two increase in the number of cores increased 

the dedicated and clustered cache tuners’ power consumptions 

by 89% and 111%, respectively, due to the increase in number 

of cache tuners in the system.  

Similarly, Fig. 4 (b) shows that the cache tuners’ area 

increased similarly to the power consumption as the number of 

cores increased for all architectural layouts. On average, every 

power-of-two increase in the number of cores increased the 

global, dedicated, and clustered cache tuners’ areas by 51%, 

93%, and 100%, respectively.  

Results also showed that tuning delay scaled well for the 

dedicated and clustered cache tuners and increased steadily for 

the global cache tuner as the number of cores increased. The 

results showed (details omitted for brevity) that every power-

of-two increase in the number of cores increased the global 

cache tuner’s tuning delay by 121% on average. Increasing the 

number of cores did not affect the dedicated and clustered 

tuners’ tuning delays, since each tuner’s cores remained 

unchanged.  

C. Tuning delay analysis 

To quantify the importance of reducing the tuning 

bottleneck imposed by the global cache tuner, we compared the 

dedicated and clustered cache tuners’ tuning delay to the global 

cache tuner. Fig. 5 depicts the cache tuners’ tuning delays 

normalized to the global cache tuner for 2-, 4-, 8-, and 16-core 

systems. As compared to the global cache tuner, dedicated 

caches tuners reduced the tuning delay by 3%, 20%, 21%, and 

82% for the 2-, 4-, 8-, and 16-core systems, respectively; the 

2/cluster cache tuner by 17%, 18%, and 82% in the 4-, 8-, and 

16-core systems, respectively; the 4/cluster cache tuner by 1% 

and 78% in the 8- and 16-core systems, respectively; and the 

8/cluster cache tuner by 77% in the 16-core system. Even 

though dedicated tuners alleviated the global cache tuner’s 

bottleneck, these results show that clustered tuners can also 

significantly reduce these bottlenecks, especially when small 

clusters are used in large systems (e.g., 2/cluster in a 16-core 

system). For example, compared to the dedicated cache tuner, 

the 2/cluster and 4/cluster cache tuners’ average tuning delays 

increased by only 2% and 12%, respectively, thus making 

clustered cache tuners a viable tradeoff between tuning delay 

and area/power overheads.  

TABLE 1. ARCHITECTURAL LAYOUTS’ TUNING STALL CYCLES 

 Global Dedicated 2/cluster 4/cluster 8/cluster 

2-core 266 258    

4-core 322 258 266   

8-core 326 258 266 322  

16-core 1446 258 266 322 326 

 

TABLE 2. BENCHMARKS AND NUMBER OF 

CONFIGURATIONS EXPLORED FOR 2-, 4-, 8-, AND 16-CORE 

SYSTEMS 

Benchmark 2-core 4-core 8-core 16-core 

cholesky 15 14 14 14 

fft 14 14 14 14 

lucon 11 14 14 14 

lunon 10 15 14 14 

ocean-con 10 15 12 15 

ocean-non 14 14 14 15 

radiosity 12 14 14 15 

radix 10 10 13 13 

raytrace 18 16 16 16 

water-nsquare 14 15 14 17 

water-spatial 14 17 16 15 

AVERAGE 13 14 14 15 

 

 



 

 

D. Power and area analysis with respect to the global tuner 

To quantify the power and area overheads imposed by 

dedicated and clustered cache tuners with respect to the global 

tuner, we compared the dedicated and clustered cache tuners’ 

power consumption and area to the global cache tuner. Fig. 6 

(a) and (b) depict the increase in power consumption and area, 

respectively, of the dedicated and clustered cache tuners 

normalized to the global cache tuner. Fig. 6 (a) shows that the 

dedicated, 2/cluster, 4/cluster, and 8/cluster cache tuners 

increased the power consumption by an average of 149%, 86%, 

56%, and 53%, respectively, as compared to the global cache 

tuners. In summary, the power overhead with respect to the 

global tuner reduced as the number of cores per tuner increased, 

thus the global cache tuner’s power scales well with increased 

number of cores. 

Fig. 6 (b) shows that the dedicated, 2/cluster, 4/cluster, and 

8/cluster cache tuners increased the area by an average of 

156%, 87%, 44%, and 23%, respectively, as compared to the 

global cache tuners, showing similar scalability as the power 

consumption. Dedicated cache tuners imposed significant 

power consumption and area overheads, but clustered cache 

tuners significantly reduced the power consumption and area 

without significantly increasing the tuning delay. For example, 

compared to dedicated cache tuners in the 16-core system, 

clustered cache tuners reduced the power consumption and area 

on average by 40% and 51%, respectively, with an average 

tuning delay increase of only 3%. Thus, clustered tuners serve 

as a good tradeoff for power consumption, area, and tuning 

delay, especially in large system with several cores. 

E. Overheads imposed by tuning stall cycles 

To quantify the overheads imposed by 

total_tuning_stall_cycles on different benchmarks, we 

calculated total_tuning_stall_cycles imposed by the 

architectural layouts on different benchmarks using the number 

of configurations explored (TABLE 2) and the tuning stall cycles 

(TABLE 1). For brevity, we omit the graphs and only report the 

average results for the 16-core system. As expected, the global 

cache tuner in the 16-core system imposed the maximum 

number of additional cycles across all architectural layouts. On 

average over all the applications, the global cache tuner 

imposed a total_tuning_stall_cycles of 19,850 cycles. The 

dedicated, 2/cluster, 4/cluster, and 8/cluster tuners imposed 

total_tuning_stall_cycles of 3,542 cycles, 3,652 cycles, 4,421 

cycles, and 4,476 cycles, respectively. Thus, relative to the 

500,000 cycle tuning interval, the cache tuners impose a 

maximum overhead of 4%, on average over all the benchmarks.  

F. Power and area overheads with respect to microprocessors 

To quantify the power and area overheads imposed by the 

cache tuners on microprocessors, we evaluated the power and 

area overheads of the architectural layouts with respect to the 

MIPS32 M4K 90nm processor [7]. Since the MIPS32 M4K is a 

small, low power processor that consumes 12mW of power at 

200MHz and has an area of 0.21mm2, our evaluations are 

pessimistic. We estimated the power consumption and area for 

2-, 4-, 8-, and 16-core systems based on the MIPS32 M4K, 

assuming a linear increase in power consumption and area as 

the number of cores increased. Fig. 7 (a) and (b) depict the 

percentage power and area overheads, respectively, for global, 

dedicated, and clustered cache tuners in 2-, 4-, 8-, and 16-core 

systems. On average over all the systems, the global cache 

tuners imposed power and area overheads of 0.5% and 4.73%, 

respectively. Dedicated cache tuners increased the average 

power and area overheads to 1.16% and 11.03%, respectively. 

For global and dedicated cache tuners, results showed that the 

average power and area overheads decreased as the number of 

cores increased, since the microprocessor’s area increased as 

the number of cores increased. Thus, dedicated cache tuners 

scale well as the number of cores increases, and can be used as 

an alternative to a global cache tuner to reduce the tuning delay 

without significant power and area overheads. Overall, these 

results show that our cache tuners constitute minimal power 

and area overheads on a microprocessor. 

We also observed that while more cores per cluster (e.g., 

4/cluster, 8/cluster, etc.) reduced the power and area overheads, 

the 2/cluster cache tuners reduced shared resource contention in 

large systems’ cache tuners without significant power and area 

overheads. However, in systems where power consumption and 

area must be prioritized over shared resource contention (e.g., 

 

Fig. 5. Tuning delay normalized to the global cache tuner for the 

dedicated and clustered cache tuners (n/cluster, where n is the cluster 

size) as the number of cores increases from two to sixteen cores.  

           
                                                          (a)                                                                                                                       (b)   

 Fig. 6. (a) Power consumption and (b) area normalized to the global cache tuner for the dedicated and clustered cache tuners (n/cluster, where n is the cluster size) 

as the number of cores increases from two to sixteen cores. 



 

 

on a low-power chip with advanced communication networks 

that can easily be leveraged by the cache tuners), more cores 

per cluster (e.g., 4/cluster, 8/cluster) may be used to further 

reduce the power and area overheads. 

V.    CONCLUSIONS AND FUTURE WORK 

Cache tuning specializes a system’s cache configurations to 

executing applications to increase optimization potential. In 

power and area constrained embedded systems, the cache tuner 

must minimize the imposed power, area, and tuning delay 

overheads to fully realize optimization potentials. Since 

multicore embedded systems introduce additional system 

complexity, cache tuner design in multicore systems also 

increases in complexity. In this paper we presented a low-

overhead cache tuner that scales to multiple cores and 

extensively evaluated various cache tuner architectural 

layouts—global, dedicated, and clustered cache tuners—for 

multicore embedded systems. We evaluated the cache tuners’ 

power consumptions and areas as the number of system cores 

increases, and quantified the overhead imposed by these tuners 

in a power and area constrained embedded system’s 

microprocessor. Our results show that our cache tuner 

constitutes low performance, power, and area overheads. 

Additionally, our results showed that in large systems (e.g., 16-

core systems), using clustered cache tuners with a few core per 

cache tuner could be used to reduce the shared resource 

contention as compared to a global cache tuner without 

significant power and area overheads, thus precluding the need 

for private cache tuners. 

Our future work includes evaluating cache tuner designs in 

more complex embedded systems, such as high performance 

embedded systems with up to 128 cores and systems with data 

sharing between the cores, where the tuning dependencies must 

be carefully considered. We also plan to explore other options 

for reducing the cache tuning overhead, such as incorporating a 

custom lightweight communication network for cache tuners to 

make the tuning process independent of the on-chip 

communication architecture/traffic.  
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