

Analysis of Cache Tuner Architectural Layouts

for Multicore Embedded Systems

Tosiron Adegbija and Ann Gordon-Ross*
Department of Electrical and Computer Engineering

University of Florida, Gainesville FL, USA 32611

tosironkbd@ufl.edu and ann@ece.ufl.edu
*Also affiliated with the NSF Center for High-Performance Reconfigurable

Computing (CHREC) at UF

Marisha Rawlins
Center for Information and Communication Technology

University of Trinidad and Tobago
Republic of Trinidad and Tobago

marisha.rawlins@utt.edu.tt

 Abstract—Due to the memory hierarchy’s large contribution

to a microprocessor’s total power, cache tuning is an ideal

method for optimizing overall power consumption in embedded

systems. Since most embedded systems are power and area

constrained, the hardware and/or software that orchestrate cache

tuning—the cache tuner—must not impose significant power and

area overhead. Furthermore, as embedded systems increasingly

trend towards multicore, inter-core data sharing, communication,

and synchronization impose additional cache tuner design

complexity, necessitating cross-core cache tuning coordination. In

order to minimize cache tuner overhead, cache tuner design must

consider these overheads and scalability. Whereas prior work

proposes low-overhead cache tuners, scalability to multicore

systems requires additional considerations. In this work, we

present a low-overhead, scalable cache tuner and extensively

evaluate various cache tuner design tradeoffs with respect to

power and area for constrained multicore embedded systems.

Based on our analysis, we formulate valuable insights and

designer-assisted guidelines for modeling scalable and efficient

cache tuners that best achieve optimization goals while

maintaining power and area constraints.

Keywords—cache tuning, low-power design, cache memories,

multicore embedded systems, configurable hardware

I. INTRODUCTION AND MOTIVATION

Since an embedded system’s memory hierarchy typically

accounts for a large percentage of a microprocessor’s total

system power/energy [12], much emphasis has been placed on

optimizing the cache subsystem’s power consumption in order

to achieve total system energy savings. Furthermore, due to

high memory latency and memory bandwidth limitations,

optimizing the cache subsystem is also critical for improving

overall system performance. However, despite an embedded

system’s stringent design constraints (e.g., size, battery

capacity, real-time deadlines, cost, etc.), there is a growing

demand for performance speedups. To satisfy this growing

demand, embedded system designers are increasing the number

of microprocessors cores. For example, the number of cores in

Samsung’s Exynos microprocessor series has increased from

one core in the Exynos 3 to eight cores in the Exynos 5 Octa

[11]. However, increasing the number of cores significantly

increases the system and optimization complexity. Thus, much

research has focused on multicore embedded system cache

optimizations that reduce the power consumption without

significantly increasing overhead (e.g., performance, area, etc.).

Cache tuning is a common optimization method that

determines the best/optimal cache configuration (specific

tunable parameter values, such as cache size, associativity, and

line size) that minimizes the power/energy consumption based

on application requirements and design constraints. Previous

work [3] showed that cache requirements vary greatly across

applications and tuning the cache to a particular application can

reduce average memory access energy by 62%. Cache tuning

requires configurable/tunable caches [6][15], which allow

parameter values to be varied and enables specialization/tuning

to meet the application’s requirements, and a cache tuner to

orchestrate tuning (e.g., change the parameter values).

Hardware and/or software cache tuners employ cache tuning

heuristics/algorithms [1][3][15] to determine the best cache

configuration to meet design constrains, such as reduced energy

consumption. However, the cache tuner also imposes additional

power, area, and/or performance overheads while exploring the

configuration design space, which should be carefully

considered and minimized.

Software-based cache tuners use the embedded system’s

processor to execute the cache tuning heuristic, which enables

easy system integration, but affects the application’s cache and

runtime behavior due to context switching. These effects could

cause the heuristic to choose non-optimal, inferior cache

configurations [16].

To reduce cache tuning’s impact on cache and application

behavior, non-intrusive, low-overhead, hardware-based cache

tuners can be used. Prior work [5] presented a hardware-based

cache tuner for single-core embedded systems. In a single-core

system, the cache tuner is small and lightweight, and constitutes

minimal overhead, but multicore systems involve additional

complexities (e.g., inter-core communication, shared resources,

etc.), which could introduce significant overheads. In [10], we

presented the first (to the best of our knowledge) low-overhead

cache tuner for dual-core systems. While this cache tuner

imposed low area, energy, and power overheads on the system,

this tuner’s scalability beyond two cores was not considered. As

the number of cores increases, the complexity also increases,

which compounds the imposed overheads. Thus, cache tuners

that scale well with the number of cores without adversely

impacting the embedded system’s overall power consumption,

area, and performance are essential to continue cache

optimizations for future systems.

This paper considers three cache tuner architectural layouts

with respect to scalability for multicore embedded systems:

global, dedicated, and clustered cache tuners. Fig. 1 (a), (b), and

(c) depict the architectural layouts for these tuners, respectively.

A global cache tuner is a single cache tuner that tunes all of the

cores in the system. This cache tuner layout imposes minimal

power and area overhead and is suitable for systems with a

small number of cores. However, a global cache tuner may

become a bottleneck in systems with a large number of cores

due to this shared resource contention, resulting in significant

tuning delay overhead (i.e., time waiting for the shared cache

tuner). Using a dedicated cache tuner for each core in the

system alleviates this bottleneck (e.g., an 8-core system would

have eight tuners). Dedicated cache tuners reduce the shared

resource contention and tuning delay, but increase the power

and area overhead due to a larger number of cache tuners, and

may require inter-cache tuner communication to coordinate

tuning and limit avoid large power spikes if too many cores are

tuning simultaneously. To trade off power, area and shared

resource contention in systems with a large number of cores, a

clustered cache tuner tunes a subset of the system’s cores, and

there would be several cache tuners. For example, an 8-core

system could have four clustered cache tuners, each tuning two

cores. However, the number of cores tuned by each clustered

cache tuner could significantly impact the cache tuner’s

performance and overheads if the cluster size is not carefully

considered.

In this work, we extend our custom cache tuner to support

cache tuning in multicore embedded systems. To satisfy

different design constraints, we extensively evaluate and

empirically quantify the tradeoffs between global, dedicated,

and clustered cache tuner architectural layouts for 2-, 4-, 8-, and

16-core systems. We evaluate the scalability of our cache tuner

in these layouts as the number of cores increases with respect to

the cache tuner’s power consumption, area, and performance.

Since the goal of using dedicated and clustered cache tuners is

to reduce the shared resource contention imposed by global

cache tuners, we evaluate the power consumption, area, and

performance of dedicated and cluster cache tuners as compared

to global cache tuners. Finally, we evaluate and quantify the

power and area overheads imposed on multicore systems by the

global, dedicated, and clustered cache tuners, and show that

clustered cache tuners can effectively reduce shared resource

contention without significant power and area overheads. We

show that our cache tuner scales well with multicore systems

and imposes low area and power overheads on embedded

systems. Additionally, based on our design and analysis, we

gain valuable insights and formulate essential design guidelines

to assist designers in modeling scalable and efficient cache

tuner architectural layouts in multicore embedded systems,

considering tradeoffs between power, area, and performance

with respect to optimization goals and design constraints.

II. BACKGROUND AND RELATED WORK

Prior work has developed various configurable cache

architectures and dynamic cache tuning methods to search the

configuration design space. This design space contains all

combinations of different tunable parameter values, and can be

large for systems with many configurable parameters and

parameter values (e.g., 18,000 in [4]). This section provides a

brief overview of related work on configurable caches and

cache tuning, which serve as background for our work.

A. Configurable Caches

Configurable caches allow for cache parameters to be tuned,

enabling architectural specialization to a particular application’s

requirements for improved power, energy, and/or performance.

Motorola’s M*CORE processor [6] contained a configurable 4-

way cache that provided per-way configuration using way

management, which allowed the cache’s four ways to be

individually shutdown to reduce dynamic power during cache

accesses. Modarresi et al. [8] developed a cache architecture

that was partitioned and resized dynamically to improve the

performance of object-oriented embedded systems.

Zhang et al. [15] developed a highly configurable cache that

provided dynamic configuration of the cache’s total size,

associativity, and line size using small bit-width configuration

registers. The proposed cache had four physical ways (i.e., the

base cache was 4-way set associative) implemented as

individual cache banks. The ways could be shutdown to reduce

the cache size or concatenated to form a direct-mapped or 2-

way set associative cache. Given a base, physical line size, the

configurable cache allowed multiple physical lines to be

fetched and concatenated to logically configure larger line

sizes.

B. Cache Tuning

The overall power/energy savings achieved by cache tuning

is strongly affected by the efficiency of the cache tuning

heuristic/algorithm and how the cache tuner orchestrates the

heuristic. To limit design exploration time and imposed

overheads, heuristics must be efficient and effective. Zou et al.

[17] proposed a configuration management heuristic to search

the design space for the best cache configuration. The authors

leveraged an energy-impact parameter search ordering to search

the cache design space for the best cache configuration. In [10],

we proposed a cache tuning heuristic that used cache statistics

 (a) (b)

(c)

Fig. 1. Sample cache tuner architectural layout for a 4-core system with (a) global, (b) dedicated, and (c) clustered tuners

combined with an energy model [15] to calculate the cache

configurations’ energy consumption and guide cache tuning.

The heuristic determined the best cache configuration by first

tuning the cache size, followed by the line size, and followed

by the associativity, and stopped tuning a parameter when a

parameter value change increased energy consumption. The

energy model calculated the dynamic, static, fill, write-back,

and processor stall energies for each cache configuration. In

this work, we leverage our cache tuning heuristic and the

energy model proposed in [15] for comparison purposes,

however, our studies and analysis methods are independent of

the specific cache tuning heuristic and/or energy model.

To facilitate cache tuning, various cache tuners have been

proposed. Zhang et al. [16] designed a hardware-based cache

tuner for single-core systems that dynamically tuned the cache

to executing applications. In [10], we developed a low-

overhead dual-core cache tuner to provide hardware support for

cache tuning heuristics. Even though the cache tuners in these

works were low-overhead in terms of power and area, these

works did not consider scalability to larger systems with more

cores, which could constitute additional cache tuning

complexity and overhead. This work significantly improves on

previous work by extending the dual-core cache tuner to

support cache tuning in multicore systems. Additionally, we

extensively study and evaluate our cache tuner’s scalability in

multicore systems with larger numbers of cores, where power,

area, and performance tradeoffs must be carefully considered.

Furthermore, unlike previous work, we carry out extensive

power, area, and performance/timing analysis to quantify these

tradeoffs.

III. CACHE TUNER ARCHITECTURAL LAYOUT

Typical cache tuners orchestrate the cache tuning heuristic

by monitoring each explored/executed configuration’s cache

statistics, such as number of cache accesses, misses, etc., while

the application executes for one tuning interval. To accurately

evaluate each configuration, the tuning interval must be long

enough to warm up the cache and stabilize the cache statistics.

Using these statistics and an energy model, the cache tuner

calculates each configuration’s energy consumption to

determine the next configuration to explore, or halts tuning if

the best configuration has been determined. Thus, even though

the heuristic must effectively explore the design space (i.e.,

limit the number of explored configurations), the cache tuner

architectural layout also significantly affects the overall system

power consumption, area, and tuning delay. This section details

the configurable cache architecture considered in this work, the

cache tuner architectural layouts, and our hardware

implementations.

A. Configurable Cache Architecture

In our analysis, we consider a multicore system with an

arbitrary number of cores on a single chip, where each core has

a private, highly configurable level one (L1) data cache [15].

Since we only evaluate the L1 data cache and there is no shared

level two cache, the L1 instruction cache’s configuration is

arbitrary. Each cache1 has a physical size of 32 Kbyte, which

models a typical, current embedded systems microprocessor

(e.g., ARM Cortex-A7 MPCore [2]). Each cache consists of

sixteen 2 Kbyte banks that can be individually shutdown and/or

concatenated to tune the cache size and associativity, resulting

in cache sizes range from 2 Kbyte to 32 Kbyte and

associativities range from direct-mapped to 4-way set

associative. Each cache has a physical line size of 16 bytes,

which can be logically increased by fetching multiple lines,

resulting in line sizes ranging from 16 to 64 bytes. Given these

parameter values, the design space contains 36 different

configurations. Even though this design space is smaller than

prior work, our fundamental analysis and discussions are

applicable to any larger design space or additional configurable

parameters, such as L1 instruction caches, shared last level

caches, etc.

B. Global, Dedicated, and Clustered Tuners

 Fig. 1 (a) depicts a sample 4-core system with a single

global cache tuner, which connects to each core’s private L1

cache. In an n-core system, the global cache tuner connects to

all n cores’ caches. The global cache tuner gathers cache

statistics from all of the cores, coordinates tuning between

cores, and calculates each core’s cache energy consumption.

While the global cache tuner gathers cache statistics, calculates

power/energy consumption, and changes the cache

configuration, application execution is typically stalled, thus

incurring tuning power and performance overhead. Since the

global cache tuner is a shared resource bottleneck, the tuning

delay in number of stall cycles an application experiences

increases as the number of cores increases. For example, our

experiments showed a 344% increase in tuning delay for a 16-

core system as compared to an 8-core system (Section IV).

Dedicated cache tuners reduce the tuning delay, since each

cache tuner only tunes a single core’s cache. Fig. 1 (b) depicts a

sample 4-core system with dedicated cache tuners, each of

which connect to the associated core’s private L1 cache.

Dedicated caches tuners use the system’s existing

communication architecture for inter-cache tuner

communication if tuning must be coordinated between cores

(e.g., due to data sharing between the cores), depending on the

applications’ requirements, which may impose tuning delay.

Since most of the communication occurs between the cache

tuner and the associated cache, dedicated cache tuners typically

do not constitute significant communication traffic on the

system’s communication architecture. However, since the

number of cache tuners scales linearly with the number of

cores, the area and power overheads are approximately n times

greater than a global cache tuner for an n-core system.

Clustered cache tuners trade off area and shared resource

contention in large systems by tuning only a subset of caches.

Fig. 1 (c) depicts a sample 4-core system with two clustered

cache tuners, where each cache tuner tunes two cores’ caches.

When using clustered cache tuners, an architectural layout

decision is required since the cache tuners can connect to

1 Any future reference to cache implicitly refers to the L1 data cache only
unless otherwise noted.

several possible cluster sizes. For example, a 16-core system

could consist of cluster sizes of two, four, or eight, with eight,

four, or two clustered cache tuners, respectively. Fewer

clustered cache tuners impose less power and area overhead,

but increase the shared resource contention and tuning delay,

since each cache tuner must tune more cores. Alternatively,

more clustered cache tuners impose more power and area

overhead, but reduce the shared resource contention and tuning

delay. Thus, the cluster size must be carefully selected to

maximize optimization potential.

C. Hardware Implementation

We implemented our cache tuner in multiple architectural

layouts and for multiple cores to evaluate the architectural

layout options for systems with up to sixteen cores. However,

the basic structure of the cache tuner is similar for all the

architectural layouts. All cache tuners use a hierarchical state

machine to explore the design space and control the datapath

that performs the energy calculations. The global cache tuner

has a single datapath that is shared by all the cores, the

dedicated cache tuner’s datapath is only used by cache tuner’s

associated core, and the clustered cache tuner’s datapath is

shared by only the cluster’s associated cores. In this subsection,

we describe our cache tuner’s basic state machine and datapath

structures.

1) State Machine

Fig. 2 depicts the hierarchical state machine, which contains

three sub state machines: the parameter, value, and calculation

states. Since the cores may choose different cache

configurations and for the global and clustered cache tuners,

multiple cores may be tuning simultaneously, the cache tuner

contains per-core configuration bits, which control the cache

configuration, and parameter and value states. Since the

calculation state contains the energy calculation datapath

hardware, which can impose large area overhead if replicated

per core, to reduce area requirements, all cores share a single

calculation state, however, this shared resource imposes tuning

delay. We evaluate the tradeoff between area and tuning delay

using clustered cache tuners in Section IV.

The parameter state changes the parameter being tuned. The

initial state S0 represents the cache tuner idle state, wherein the

associated core is not currently tuning, adjust_parameter =

none, and initializes variables that are used with the cache

statistics to calculate the energy consumption in the calculation

state. When a new application is executed, tuning begins and

start = 1, which sets adjust_parameter to designate the

parameter being tuned in the sub-states, S1, S2, and S3, as size,

line_size, and associativity, respectively, and triggers a

transition to the value state.

The value state changes the value of the parameter being

tuned using six sub-states, and the sub-states’ actions are

dependent on adjust_parameter’s designation. State V0 uses the

tune_again signal from the calculation state to determine when

to change the parameter’s value (tune_again = 1), and when to

change the parameter being tuned (tune_again = 0, i.e., all

values for adjust_parameter have been evaluated). State V0

also sets the configuration bits that determine the actual

parameter values and changes the cache configuration based on

energy calculations from the calculation state. When

adjust_parameter = size, states V1 through V5 change the size

to 2, 4, 8, 16, and 32 Kbyte, respectively; when

adjust_parameter = associativity, states V1 through V3 change

Fig. 2. Hierarchical state machine for the cache tuners

Fig. 3. Cache tuner datapath for energy calculations. The datapath is replicated for all of the tuners.

the associativity to 1-, 2-, and 4-way, respectively; when

adjust_parameter = line_size, states V1 through V3 change the

line size to 16, 32, and 64 bytes, respectively. After the

parameter value is changed, the application executes for one

tuning interval. After the tuning interval, states V1-V5 set

calc_start = 1, which triggers a transition to the calculation

state.

The calculation state interfaces with the datapath using

multiple control signals and calculates the energy consumption

based on the cache statistics and the energy model [15] using

six sub-states. When calc_start = 1, state C0 sets the busy_bit

to ensure exclusive use of the calculation state by a single core.

To ensure atomic calculations, once the busy_bit is set, the

busy_bit can only be cleared after the calc_done signal is set to

1. States C1 through C5 calculate the dynamic, static, CPU

stall, write back, and cache fill energies, respectively, using the

energy model. After the calculations, state C0 changes the

tune_again signal and the calc_done signal, clears the busy_bit

to 0, and transitions the state machine from the calculation state

back to the value state.

2) Datapath for Energy Calculation

Fig. 3 depicts the datapath for energy calculation, which

uses a multiply-accumulate unit (MAC) to calculate the total

energy consumption. For brevity, we only show a global cache

tuner’s datapath, which is shared all cores. Dedicated and

clustered cache tuners would contain one datapath for each core

or cluster, respectively. Multiplexers, which are set by the

current calculation state, select the specific cache statistic and

energy values to multiply while calculating the dynamic, static,

CPU stall, write back, and cache fill energies, depending on the

current calculation state, and these intermediate values are

accumulated to calculate the total energy consumption.

The datapath uses 32-bit registers to store the per-core

cache statistics—total cache access, total cycles, miss cycles,

and write backs—during each tuning interval’s execution. The

32-bit registers are sufficient to store the cache statistics

without saturation considering the tuning interval length, and

the number of registers required depends on the cache

configuration design space. Given a tuner shared by n cores,

there are n sets of cache statistic registers. During the tuning

interval, the datapath snoops the cache operations to record

these statistics and store energy values. The datapath contains

36 16-bit registers to store pre-determined (Section IV.A)

dynamic energies for all the 36 possible cache configurations

and five registers to store the static energies for the 2 Kbyte, 4

Kbyte, 8 Kbyte, 16 Kbyte, and 32 Kbyte caches. Since there are

three possible cache line sizes, and different line sizes each

consume different cache fill and write back energies, three

registers each are used to store the cache fill and write back

energies, and one register is used to store the CPU stall energy.

Even though larger design spaces would require additional

registers, the tuners’ basic architectural layout and functionality

are independent of the cache configuration design space.

To guide the design space exploration, the datapath uses

two per-core 32-bit registers to store the value of the energy

consumption of the prior interval’s cache configuration,

previous_energy, and the current interval’s energy

consumption. The cache tuning heuristic compares

previous_energy to current_energy to determine the final

energy value from the calculation state. If current_energy is

less than previous_energy, tune_again is set to 1 in state C0.

Otherwise, tune_again is 0 and previous_energy remains

unchanged, implying that the previous cache configuration

consumes less energy than the current cache configuration.

Finally, a per-core 11-bit configuration_bits register stores

the cores’ cache configurations by controlling way shutdown,

way concatenation, and line size adjustment (Section IIA) to

change the cache’s configuration during tuning. From each 11-

bit register, five bits represent the cache sizes, and three bits

each are used to represent the associativities and line sizes.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To quantify the power and area tradeoffs of the different

cache tuner architectural layouts, we implemented and

extensively evaluated global and dedicated cache tuners for 2-,

4-, 8-, and 16-core systems. For the clustered cache tuners, we

implemented and evaluated 2-core clusters for the 4-, 8-, and

16-core systems (i.e., one tuner for every two cores), 4-core

clusters for the 8- and 16-core systems, and 8-core clusters for

 (a) (b)

Fig. 4. (a) Power consumption and (b) area trends for the global, dedicated, and clustered cache tuners (n/cluster, where n is the cluster size) as the number of

cores increases from two to sixteen cores.

the 16-core systems. We did not evaluate a clustered 2-core

system since that layout is equivalent to a global cache tuner.

We assumed that the core’s threads/applications were

independent, and thus the cores could be tuned independently,

however, our future work will consider tuning dependencies.

We modeled all the cache tuner architectural layouts in

synthesizable VHDL, and synthesized the layouts using

Synopsys Design Compiler [13] and the Synopsys 90nm

Generic Library to quantify the cache tuners’ power

consumptions, areas, and tuning delays as the number of cores

increases. Since cache tuner’s architectural layout does not

affect design exploration (i.e., each layout explores the

configurations in the same order), the performance overhead

incurred during design space exploration is consistent across all

layouts. However, the architectural layouts could impose

additional overhead on the tuning intervals by increasing the

tuning stall cycles, during which energy consumption is

calculated, the next configuration is chosen, the cache

configuration is changed, and the cache contents are flushed (if

necessary).

We quantified the overhead incurred by the total tuning stall

cycles using eleven benchmarks from the SPLASH-2

benchmark suite [14]. We used the SESC simulator [9] to

gather cache statistics and calculated total_tuning_stall_cycles

as (number of configurations explored – 1) * layout’s tuning

stall cycles. TABLE 2 depicts all the benchmarks used and the

number of configurations explored using our cache tuning

heuristic (Section II.B). TABLE 1 depicts the number of tuning

stall cycles for the different number of cores and cache tuner

architectural layouts. We assumed a clock frequency of 2 GHz

and a tuning interval of 500000 cycles.

B. Power, area, and tuning delay with respect to the number of

cores

Fig. 4 (a) and (b) depict the power consumption and area

trends, respectively, for the global, dedicated, and clustered

cache tuners (n/cluster, where n is the cluster size) as the

number of cores increased. The results depict a nearly linear

increase in the power and area as the number of cores

increased, revealing good scalability for all architectural layouts

to future systems.

Fig. 4 (a) shows that for every power-of-two increase in the

number of cores increased the global cache tuner’s power

consumption by 49% on average. Even though all cores shared

a single global cache tuner, additional cores introduced a

constant number of additional registers and logic to preserve

per-core state machine information, configuration bits, and

energy calculations. The dedicated and clustered cache tuners’

power consumptions increased more rapidly than the global

cache tuners as the number of cores increased. On average,

every power-of-two increase in the number of cores increased

the dedicated and clustered cache tuners’ power consumptions

by 89% and 111%, respectively, due to the increase in number

of cache tuners in the system.

Similarly, Fig. 4 (b) shows that the cache tuners’ area

increased similarly to the power consumption as the number of

cores increased for all architectural layouts. On average, every

power-of-two increase in the number of cores increased the

global, dedicated, and clustered cache tuners’ areas by 51%,

93%, and 100%, respectively.

Results also showed that tuning delay scaled well for the

dedicated and clustered cache tuners and increased steadily for

the global cache tuner as the number of cores increased. The

results showed (details omitted for brevity) that every power-

of-two increase in the number of cores increased the global

cache tuner’s tuning delay by 121% on average. Increasing the

number of cores did not affect the dedicated and clustered

tuners’ tuning delays, since each tuner’s cores remained

unchanged.

C. Tuning delay analysis

To quantify the importance of reducing the tuning

bottleneck imposed by the global cache tuner, we compared the

dedicated and clustered cache tuners’ tuning delay to the global

cache tuner. Fig. 5 depicts the cache tuners’ tuning delays

normalized to the global cache tuner for 2-, 4-, 8-, and 16-core

systems. As compared to the global cache tuner, dedicated

caches tuners reduced the tuning delay by 3%, 20%, 21%, and

82% for the 2-, 4-, 8-, and 16-core systems, respectively; the

2/cluster cache tuner by 17%, 18%, and 82% in the 4-, 8-, and

16-core systems, respectively; the 4/cluster cache tuner by 1%

and 78% in the 8- and 16-core systems, respectively; and the

8/cluster cache tuner by 77% in the 16-core system. Even

though dedicated tuners alleviated the global cache tuner’s

bottleneck, these results show that clustered tuners can also

significantly reduce these bottlenecks, especially when small

clusters are used in large systems (e.g., 2/cluster in a 16-core

system). For example, compared to the dedicated cache tuner,

the 2/cluster and 4/cluster cache tuners’ average tuning delays

increased by only 2% and 12%, respectively, thus making

clustered cache tuners a viable tradeoff between tuning delay

and area/power overheads.

TABLE 1. ARCHITECTURAL LAYOUTS’ TUNING STALL CYCLES

 Global Dedicated 2/cluster 4/cluster 8/cluster

2-core 266 258

4-core 322 258 266

8-core 326 258 266 322

16-core 1446 258 266 322 326

TABLE 2. BENCHMARKS AND NUMBER OF

CONFIGURATIONS EXPLORED FOR 2-, 4-, 8-, AND 16-CORE

SYSTEMS

Benchmark 2-core 4-core 8-core 16-core

cholesky 15 14 14 14

fft 14 14 14 14

lucon 11 14 14 14

lunon 10 15 14 14

ocean-con 10 15 12 15

ocean-non 14 14 14 15

radiosity 12 14 14 15

radix 10 10 13 13

raytrace 18 16 16 16

water-nsquare 14 15 14 17

water-spatial 14 17 16 15

AVERAGE 13 14 14 15

D. Power and area analysis with respect to the global tuner

To quantify the power and area overheads imposed by

dedicated and clustered cache tuners with respect to the global

tuner, we compared the dedicated and clustered cache tuners’

power consumption and area to the global cache tuner. Fig. 6

(a) and (b) depict the increase in power consumption and area,

respectively, of the dedicated and clustered cache tuners

normalized to the global cache tuner. Fig. 6 (a) shows that the

dedicated, 2/cluster, 4/cluster, and 8/cluster cache tuners

increased the power consumption by an average of 149%, 86%,

56%, and 53%, respectively, as compared to the global cache

tuners. In summary, the power overhead with respect to the

global tuner reduced as the number of cores per tuner increased,

thus the global cache tuner’s power scales well with increased

number of cores.

Fig. 6 (b) shows that the dedicated, 2/cluster, 4/cluster, and

8/cluster cache tuners increased the area by an average of

156%, 87%, 44%, and 23%, respectively, as compared to the

global cache tuners, showing similar scalability as the power

consumption. Dedicated cache tuners imposed significant

power consumption and area overheads, but clustered cache

tuners significantly reduced the power consumption and area

without significantly increasing the tuning delay. For example,

compared to dedicated cache tuners in the 16-core system,

clustered cache tuners reduced the power consumption and area

on average by 40% and 51%, respectively, with an average

tuning delay increase of only 3%. Thus, clustered tuners serve

as a good tradeoff for power consumption, area, and tuning

delay, especially in large system with several cores.

E. Overheads imposed by tuning stall cycles

To quantify the overheads imposed by

total_tuning_stall_cycles on different benchmarks, we

calculated total_tuning_stall_cycles imposed by the

architectural layouts on different benchmarks using the number

of configurations explored (TABLE 2) and the tuning stall cycles

(TABLE 1). For brevity, we omit the graphs and only report the

average results for the 16-core system. As expected, the global

cache tuner in the 16-core system imposed the maximum

number of additional cycles across all architectural layouts. On

average over all the applications, the global cache tuner

imposed a total_tuning_stall_cycles of 19,850 cycles. The

dedicated, 2/cluster, 4/cluster, and 8/cluster tuners imposed

total_tuning_stall_cycles of 3,542 cycles, 3,652 cycles, 4,421

cycles, and 4,476 cycles, respectively. Thus, relative to the

500,000 cycle tuning interval, the cache tuners impose a

maximum overhead of 4%, on average over all the benchmarks.

F. Power and area overheads with respect to microprocessors

To quantify the power and area overheads imposed by the

cache tuners on microprocessors, we evaluated the power and

area overheads of the architectural layouts with respect to the

MIPS32 M4K 90nm processor [7]. Since the MIPS32 M4K is a

small, low power processor that consumes 12mW of power at

200MHz and has an area of 0.21mm2, our evaluations are

pessimistic. We estimated the power consumption and area for

2-, 4-, 8-, and 16-core systems based on the MIPS32 M4K,

assuming a linear increase in power consumption and area as

the number of cores increased. Fig. 7 (a) and (b) depict the

percentage power and area overheads, respectively, for global,

dedicated, and clustered cache tuners in 2-, 4-, 8-, and 16-core

systems. On average over all the systems, the global cache

tuners imposed power and area overheads of 0.5% and 4.73%,

respectively. Dedicated cache tuners increased the average

power and area overheads to 1.16% and 11.03%, respectively.

For global and dedicated cache tuners, results showed that the

average power and area overheads decreased as the number of

cores increased, since the microprocessor’s area increased as

the number of cores increased. Thus, dedicated cache tuners

scale well as the number of cores increases, and can be used as

an alternative to a global cache tuner to reduce the tuning delay

without significant power and area overheads. Overall, these

results show that our cache tuners constitute minimal power

and area overheads on a microprocessor.

We also observed that while more cores per cluster (e.g.,

4/cluster, 8/cluster, etc.) reduced the power and area overheads,

the 2/cluster cache tuners reduced shared resource contention in

large systems’ cache tuners without significant power and area

overheads. However, in systems where power consumption and

area must be prioritized over shared resource contention (e.g.,

Fig. 5. Tuning delay normalized to the global cache tuner for the

dedicated and clustered cache tuners (n/cluster, where n is the cluster

size) as the number of cores increases from two to sixteen cores.

 (a) (b)

 Fig. 6. (a) Power consumption and (b) area normalized to the global cache tuner for the dedicated and clustered cache tuners (n/cluster, where n is the cluster size)

as the number of cores increases from two to sixteen cores.

on a low-power chip with advanced communication networks

that can easily be leveraged by the cache tuners), more cores

per cluster (e.g., 4/cluster, 8/cluster) may be used to further

reduce the power and area overheads.

V. CONCLUSIONS AND FUTURE WORK

Cache tuning specializes a system’s cache configurations to

executing applications to increase optimization potential. In

power and area constrained embedded systems, the cache tuner

must minimize the imposed power, area, and tuning delay

overheads to fully realize optimization potentials. Since

multicore embedded systems introduce additional system

complexity, cache tuner design in multicore systems also

increases in complexity. In this paper we presented a low-

overhead cache tuner that scales to multiple cores and

extensively evaluated various cache tuner architectural

layouts—global, dedicated, and clustered cache tuners—for

multicore embedded systems. We evaluated the cache tuners’

power consumptions and areas as the number of system cores

increases, and quantified the overhead imposed by these tuners

in a power and area constrained embedded system’s

microprocessor. Our results show that our cache tuner

constitutes low performance, power, and area overheads.

Additionally, our results showed that in large systems (e.g., 16-

core systems), using clustered cache tuners with a few core per

cache tuner could be used to reduce the shared resource

contention as compared to a global cache tuner without

significant power and area overheads, thus precluding the need

for private cache tuners.

Our future work includes evaluating cache tuner designs in

more complex embedded systems, such as high performance

embedded systems with up to 128 cores and systems with data

sharing between the cores, where the tuning dependencies must

be carefully considered. We also plan to explore other options

for reducing the cache tuning overhead, such as incorporating a

custom lightweight communication network for cache tuners to

make the tuning process independent of the on-chip

communication architecture/traffic.

ACKNOWLEDGMENTS

This work was supported by the National Science

Foundation (CNS-0953447). Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of

the National Science Foundation.

REFERENCES

[1] T. Adegbija and A. Gordon-Ross, “Exploiting dynamic phase distance

mapping for phase-based tuning of embedded systems,” IEEE

International Conference on Computer Design, October 2013.
[2] Cortex-A7 Processor – ARM,

http://www.arm.com/products/processors/cortex-a/cortex-a7.php

[3] A. Gordon-Ross and F. Vahid, “A self-tuning configurable cache,” IEEE
Design Automation Conference, July 2007.

[4] A. Gordon-Ross, F. Vahid, and N. Dutt, “Fast configurable-cache tuning

with a unified second level cache,” International Symposium on Low
Power Electronics and Design, 2005.

[5] A. Gordon-Ross, P. Viana, F. Vahid, W. Najjar, and E. Barros, “A one-

shot configurable-cache tuner for improved energy and performance,”
Design, Automation, and Test in Europe, April 2007.

[6] A. Malik, B. Moyer, and D. Cermak, “A low power unified cache

architecture providing power and performance flexibility,” International
Symposium on Low Power Electronics and Design, 2000.

[7] MIPS32 M14K. http://www.mips.com/products/cores/32-64-bit-

cores/mips32-m14k.
[8] Modarressi, S. Hessabi, and M. Gourdarzi, “A reconfigurable cache

architecture for object-oriented embedded systems,” Canadian

Conference on Electrical and Computer Engineering, 2006.
[9] P. Ortega and P. Sack, “SESC: superscalar simulator,”

http://iacoma.cs.uiuc.edu/~paulsack/sescdoc December 2004.

[10] M. Rawlins and A. Gordon-Ross, “A cache tuning heuristic for multi-
core architectures,” IEEE Transactions on Computers, Vol. 62, Issue 8,

August 2013.

[11] Samsung Exynos, http://www.samsung.com/exynos/
[12] S. Segars, “Low power design techniques for microprocessors,”

International Solid State Circuit Conference, February 2001.

[13] Synopsys Design Compiler, Synopsis Inc. www.synopsys.com.
[14] S. C. Woo, et al., “The splash-2 programs: characterization and

methodological considerations,” International Symposium on Computer

Architecture, June 1995.
[15] C. Zhang, F. Vahid, and W. Najjar, “A highly-configurable cache

architecture for embedded systems,” International Symposium on

Computer Architecture, May 2003.
[16] C. Zhang, F. Vahid, and R. Lysecky, “A self-tuning cache architecture

for embedded systems,” ACM Transactions on Embedded Computing

Systems, May 2004.
[17] X. Zou, J. Lei, and Z. Liu, “Dynamically reconfigurable cache for low

power embedded systems,” International Conference on Natural

Computation, August 2007.

 (a) (b)

Fig. 7. Percentage (a) power and (b) area overheads with respect to the MIPS M4K processor

