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Abstract 
 

We propose a novel sorting algorithm that sorts data 
elements without data comparison operations—a 
comparison-free sort. Our hardware-based sorting algorithm 
leverages Hamming memory, which is an SRAM-based 
memory structure that stores the data elements based on the 
elements’ Hamming maximum order representations. The 
data elements are also stored in a serial shift buffer in binary 
representation, and a simple matrix multiplication between 
this buffer and the Hamming memory produces the outputted 
sorted elements in 2N clock cycles for N data elements. 
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I. Introduction and Motivation 

Prior research in sorting algorithms must consider the 
complexity of efficiently sorting data elements while 
maximizing the capabilities of the available computing 
resources, thus making efficient hardware realization 
challenging [1][2]. Sorting algorithms iteratively move data 
between comparison units and memory, requiring wide, 
high-speed data buses, complex control logic, and numerous 
shift, swap, comparison, etc. operations [3][4], thus requiring 
special design considerations for scalability to big data and 
specialization for certain data-type particulars.  

We propose a new sorting algorithm that leverages the data 
elements’ binary and Hamming weight representations to sort 

the data elements without comparison operations. A simple 
matrix multiplication (ANDING) operation outputs the sorted 
data elements, and the associated hardware structure 
alleviates the iterative movement of data elements between 
the memory and processing units. Our sorting algorithm’s 
complexity is on the order of O(N), which makes our sorting 
method suitable for a wide range of sorting applications, and 
is competitive with state of the art sorting methods. 

II. Comparison-free Sorting Algorithm 

The sorting algorithm’s input is an m-bit bus carrying the 
data element’s binary representation, which enables sorting 
N=2m data elements where each element has a Hamming 
representation of size K=N for a lossless representation. For 
example, 5 has a binary representation of “101”, and could 
have several Hamming representations, such as “10101011”, 
“11100011”, “00111110”, etc. (i.e., covering all possible 
maximum order representations). However, our 
binary-to-Hamming converter deterministically converts 5 to 
“00011111”, with a Hamming maximum order representation 
of “00010000”. This Hamming maximum order 
representation ensures that different elements are orthogonal 
with respect to each other when projected to a Rn linear space.  

Our sorting algorithm operates in two sequential phases: the 
write phase and the read phase. During the write phase, the 
data elements are sequentially inputted, converted to the 
element’s Hamming representation, and stored into an 
SRAM-based memory [5] with a counter-based decoder 
address [6] in Hamming maximum order representation. We 
refer to this memory as a Hamming memory due to our 
Hamming representation storage methodology. The data 
elements are interpreted as a two-dimensional (2D) Hamming 
matrix E of size NxK where every element of the Hamming 
memory/matrix is of size 1-bit. In parallel, the element’s 
binary representation is also sequentially stored in a serial 
shift buffer of registers, creating a one-demensional (1D) 
binary matrix B of size Nx1, where each register is of size 
m-bit. Since there are N data elements, the write phase 
requires N clock cycles. 

The read phase effectively sorts and outputs the data elements 
using a matrix multiplication (ANDING) operation, rather 
than comparison operations, as in prior work. The matrix 
multiplication multiplies the transposed 2D Hamming 
representation matrix ET (i.e., the transpose of E) with the 1D 
binary matrix B. This multiplication essentially enables a read 
from the associated binary matrix B’s register that is aligned 
with a ‘1’ in the read column of the Hamming matrix E. The 
result is the sorted matrix S=STxB, where S is of size Kx1-bit 
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Fig. 1 Sorting example using matrix multiplication operations 
considering a 4-bit data input bus. 

 



and contains the sorted data elements that are shifted into a 
sorted shift buffer, and outputted after the read phase 
completes.  

Duplicated data elements are represented using the same 
vector space, such that the corresponding Hamming matrix 
column has multiple ‘1’ values. These multiple ‘1’s enable 
multiple registers in the binary matrix and these registers 
store duplicate data elements. Therefore, our sorting 
algorithm counts the number of ‘1’s in the Hamming 
representation matrix column using simple control logic, and 
sends the repeated register value to the sorted shift buffer.  

Fig. 1 illustrates a sorting example for four 4-bit data 
elements {3,1,2,4}, which generates the sorted matrix (sorted 
shift buffer) S = {1,2,3,4}. Fig. 2 shows the pseudo code for 
our sorting algorithm, assuming a single-threaded 
uniprocessor system (future work will extend this to 
multi-threaded multiprocessor systems). 

III. Comparison-free Sorting Hardware Data Path and 
Functional Details 

Fig. 3 depicts a block diagram for our sorting algorithm’s 
data path assuming a sample m=10-bit input bus, which sorts 
N=2m=1024 distinct data elements. The binary-to-Hamming 
converter generates the Hamming maximum order 
representation by converting the m-bit binary representation 
to the N-bit Hamming representation using a simple one-hot 
decoding unit, which directly connects to the SRAM-based 
8T-Cell [5][6] Hamming memory’s input bus. During the 
write phase, the data elements are stored serially into the 
serial shift buffer, and in parallel, the data elements are 
converted to their Hamming representation and stored in the 
Hamming memory in row order. After all elements are 
written to the Hamming memory and the serial shift buffer, 
the read phase processes the elements from the Hamming 
memory in column order. This transpose during the read 
phase facilitates the matrix multiplication (ANDING) 
operation ETxB, where ET is of size KxN and B is of size Nx1, 
and produces the sorted output. 

IV. Conclusions 

We presented a novel comparison-free sorting algorithm 
and associated hardware implementation. To the best of our 
knowledge, our design is the first to simultaneously leverage 
the data elements’ Hamming weight and binary 

representations to sort the data elements without any 
comparison operations, and using only a simple matrix 
multiplication (ANDING) operation. Since comparison 
operations are eliminated, a key contribution of our sorting 
method is the elimination of the associated comparison units’ 
high power dissipation. Additionally, our sorting algorithm is 
data-type/ordering/duplication independent, and can sort N 
data elements in 2N clock cycles—on the order O(N)— using 
simple control logic. We implemented and evaluated our 
sorting algorithm for a sample sorting of N=1024 data 
elements using 90 nm TSMC technology at 1V and an 8T-cell 
memory. Results verified that the sorting requires 2N=2048 
clock cycles at an operating frequency of  0.25 GHz. 
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	  	  1.	   Input:	  integer	  Element[0	  :	  n	  –	  1]	  	  
	  	  2.	   Output:	  integer	  Sorted[0	  :	  n	  –	  1]	  
	  	  3.	   Hamming	  memory:	  Boolean	  H[0	  :	  n	  –	  1][	  0	  :	  n	  –	  1]	  initialize	  to	  zero	  
	  	  4.	   while	  i	  <	  n-‐1	  do	  
	  	  5.	   	   H[i][Element[i]-‐1]	  ←1	  
	  	  6.	   endwhile	  	  
	  	  7.	   k	  ←	  0	  
	  	  8.	   while	  j	  >=	  0	  do	  
	  	  9.	   	   while	  i	  <	  n-‐1	  do	  
10.	   	   	   then	  if	  H[i][j]	  =	  1	  
11.	   	   	   	   then	  Sorted[k]	  ←	  Element[0:	  n-‐1]	  	  
12.	   	   	   	   k	  ←	  k+1	  
13.	   	   	   endif	  
14.	   	   endwhile	  
15.	   endwhile	  

Fig. 2 Pseudo	  code	  for	  our	  sorting	  algorithm	  assuming	  a	  
uniprocessor	  system	  with	  no	  threading.	  
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Fig. 3 Block diagram of our sorting algorithm’s hardware data path 
using Hamming memory. 


