

A Comparison-Free Sorting Algorithm

Saleh Abdel-hafeez1 and Ann Gordon-Ross2

1Jordan University of Science and Technology

IRBID 22110, Jordan, sabdel@just.edu.jo
2University of Florida, FL. 36211, USA, ann@ece.ufl.edu

Also with the NSF Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida

Abstract

We propose a novel sorting algorithm that sorts data
elements without data comparison operations—a
comparison-free sort. Our hardware-based sorting algorithm
leverages Hamming memory, which is an SRAM-based
memory structure that stores the data elements based on the
elements’ Hamming maximum order representations. The
data elements are also stored in a serial shift buffer in binary
representation, and a simple matrix multiplication between
this buffer and the Hamming memory produces the outputted
sorted elements in 2N clock cycles for N data elements.

Keywords- Hardware-based sorting, comparison-free sorting,

SOC design, Hamming memory, Hamming maximum order
representation, 8T-CELL memory.

I. Introduction and Motivation

Prior research in sorting algorithms must consider the
complexity of efficiently sorting data elements while
maximizing the capabilities of the available computing
resources, thus making efficient hardware realization
challenging [1][2]. Sorting algorithms iteratively move data
between comparison units and memory, requiring wide,
high-speed data buses, complex control logic, and numerous
shift, swap, comparison, etc. operations [3][4], thus requiring
special design considerations for scalability to big data and
specialization for certain data-type particulars.

We propose a new sorting algorithm that leverages the data
elements’ binary and Hamming weight representations to sort

the data elements without comparison operations. A simple
matrix multiplication (ANDING) operation outputs the sorted
data elements, and the associated hardware structure
alleviates the iterative movement of data elements between
the memory and processing units. Our sorting algorithm’s
complexity is on the order of O(N), which makes our sorting
method suitable for a wide range of sorting applications, and
is competitive with state of the art sorting methods.

II. Comparison-free Sorting Algorithm

The sorting algorithm’s input is an m-bit bus carrying the
data element’s binary representation, which enables sorting
N=2m data elements where each element has a Hamming
representation of size K=N for a lossless representation. For
example, 5 has a binary representation of “101”, and could
have several Hamming representations, such as “10101011”,
“11100011”, “00111110”, etc. (i.e., covering all possible
maximum order representations). However, our
binary-to-Hamming converter deterministically converts 5 to
“00011111”, with a Hamming maximum order representation
of “00010000”. This Hamming maximum order
representation ensures that different elements are orthogonal
with respect to each other when projected to a Rn linear space.

Our sorting algorithm operates in two sequential phases: the
write phase and the read phase. During the write phase, the
data elements are sequentially inputted, converted to the
element’s Hamming representation, and stored into an
SRAM-based memory [5] with a counter-based decoder
address [6] in Hamming maximum order representation. We
refer to this memory as a Hamming memory due to our
Hamming representation storage methodology. The data
elements are interpreted as a two-dimensional (2D) Hamming
matrix E of size NxK where every element of the Hamming
memory/matrix is of size 1-bit. In parallel, the element’s
binary representation is also sequentially stored in a serial
shift buffer of registers, creating a one-demensional (1D)
binary matrix B of size Nx1, where each register is of size
m-bit. Since there are N data elements, the write phase
requires N clock cycles.

The read phase effectively sorts and outputs the data elements
using a matrix multiplication (ANDING) operation, rather
than comparison operations, as in prior work. The matrix
multiplication multiplies the transposed 2D Hamming
representation matrix ET (i.e., the transpose of E) with the 1D
binary matrix B. This multiplication essentially enables a read
from the associated binary matrix B’s register that is aligned
with a ‘1’ in the read column of the Hamming matrix E. The
result is the sorted matrix S=STxB, where S is of size Kx1-bit

0 1 0

0 0 1

1 0 0

Input Buffers

Hamming Maximum Order Matrix (E)
Each element of size 1-bit

3

1

4

Transposed Hamming Maximum Order Matrix (ET)
Each element of size 1-bit

Binary Matrix
Each element of size 4-bit

Binary Matrix
Each element of size 4-bit

Sorted Matrix
Each element of size 4-bit

4-bit

0

0

0
0 0 1 0 2

0 0 1

1 0 0

0 1 0

0

0

0
0 0 1 0

3

1

4

2

4

3

1

2

30

11

22

43

Sequentially Binary Data Number

	
Fig. 1 Sorting example using matrix multiplication operations
considering a 4-bit data input bus.

and contains the sorted data elements that are shifted into a
sorted shift buffer, and outputted after the read phase
completes.

Duplicated data elements are represented using the same
vector space, such that the corresponding Hamming matrix
column has multiple ‘1’ values. These multiple ‘1’s enable
multiple registers in the binary matrix and these registers
store duplicate data elements. Therefore, our sorting
algorithm counts the number of ‘1’s in the Hamming
representation matrix column using simple control logic, and
sends the repeated register value to the sorted shift buffer.

Fig. 1 illustrates a sorting example for four 4-bit data
elements {3,1,2,4}, which generates the sorted matrix (sorted
shift buffer) S = {1,2,3,4}. Fig. 2 shows the pseudo code for
our sorting algorithm, assuming a single-threaded
uniprocessor system (future work will extend this to
multi-threaded multiprocessor systems).

III. Comparison-free Sorting Hardware Data Path and
Functional Details

Fig. 3 depicts a block diagram for our sorting algorithm’s
data path assuming a sample m=10-bit input bus, which sorts
N=2m=1024 distinct data elements. The binary-to-Hamming
converter generates the Hamming maximum order
representation by converting the m-bit binary representation
to the N-bit Hamming representation using a simple one-hot
decoding unit, which directly connects to the SRAM-based
8T-Cell [5][6] Hamming memory’s input bus. During the
write phase, the data elements are stored serially into the
serial shift buffer, and in parallel, the data elements are
converted to their Hamming representation and stored in the
Hamming memory in row order. After all elements are
written to the Hamming memory and the serial shift buffer,
the read phase processes the elements from the Hamming
memory in column order. This transpose during the read
phase facilitates the matrix multiplication (ANDING)
operation ETxB, where ET is of size KxN and B is of size Nx1,
and produces the sorted output.

IV. Conclusions

We presented a novel comparison-free sorting algorithm
and associated hardware implementation. To the best of our
knowledge, our design is the first to simultaneously leverage
the data elements’ Hamming weight and binary

representations to sort the data elements without any
comparison operations, and using only a simple matrix
multiplication (ANDING) operation. Since comparison
operations are eliminated, a key contribution of our sorting
method is the elimination of the associated comparison units’
high power dissipation. Additionally, our sorting algorithm is
data-type/ordering/duplication independent, and can sort N
data elements in 2N clock cycles—on the order O(N)— using
simple control logic. We implemented and evaluated our
sorting algorithm for a sample sorting of N=1024 data
elements using 90 nm TSMC technology at 1V and an 8T-cell
memory. Results verified that the sorting requires 2N=2048
clock cycles at an operating frequency of 0.25 GHz.

V. Acknowledgments

This work was supported in part by the National Science
Foundation (CNS-0953447). Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

VI. References

[1] Enzo Mumolo, Gabriele Capello, and Massimiliano Nolich,
VHDL Design of a Scalable VLSI Sorting Device Based on
Pipelined Computation, Journal of Computing and Information
Technology, Vol. 12, pp. 1-14, 2004.

[2] A. A. Colavita, A Cicuttin, F. Fratnik, and G. Capello,
SORTCHIP: A VLSI Implementation of a Hardware Algorithm
for Continuous data Sorting, IEEE Journal of Solid-State
Circuits, Vol. 38, No. , pp. 1076-1079, June 2003.

[3] Li Xiao, Xiaodong Zhang, Stefan A. Kubricht, Improving
Memory Performance of Sorting Algorithms, ACM Journal on
Experimental Algorithmics, Vol. 5, 1-21, 2000.

[4] L. M. Busse, M. H. Chehreghani, J. M. Buhmann, The
Information Content in Sorting Algorithms, IEEE International
Symposium on Information Theory Proceedings (ISIT), pp.
2746-2750, 2012.

[5] Saleh Abdel-Hafeez and Anas Matalkah, "CMOS
Eight-Transistor Memory Cell for Low-Dynamic-Power
High-speed Embedded SRAMS,” Journal of Circuits, Systems
and Computers, Vol. 17, No. 5, pp. 845-863,Oct. 2008.

[6] Saleh Abdel-Hafeez and Ann Gordon-Ross, "A Digital CMOS
Parallel Counter Architecture Based on State Look-Ahead
logic", Journal of IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 19, Issue 6, pp. 1023-1034,
May 23, 2011.

	 	 1.	 Input:	 integer	 Element[0	 :	 n	 –	 1]	 	
	 	 2.	 Output:	 integer	 Sorted[0	 :	 n	 –	 1]	
	 	 3.	 Hamming	 memory:	 Boolean	 H[0	 :	 n	 –	 1][0	 :	 n	 –	 1]	 initialize	 to	 zero	
	 	 4.	 while	 i	 <	 n-‐1	 do	
	 	 5.	 	 H[i][Element[i]-‐1]	 ←1	
	 	 6.	 endwhile	 	
	 	 7.	 k	 ←	 0	
	 	 8.	 while	 j	 >=	 0	 do	
	 	 9.	 	 while	 i	 <	 n-‐1	 do	
10.	 	 	 then	 if	 H[i][j]	 =	 1	
11.	 	 	 	 then	 Sorted[k]	 ←	 Element[0:	 n-‐1]	 	
12.	 	 	 	 k	 ←	 k+1	
13.	 	 	 endif	
14.	 	 endwhile	
15.	 endwhile	

Fig. 2 Pseudo	 code	 for	 our	 sorting	 algorithm	 assuming	 a	
uniprocessor	 system	 with	 no	 threading.	

m=10-bit
input bus
provides
N=1024
distinct
elements

B
inary-to-H

am
m

ing
C

onverter

K=1024-bit Bus

1024-bit Bus

Serial Shift Buffer is made of size N=1024 registers
and each register of size 10-bit

1024-bit Bus

Sorted Shift Buffer is made of size K=1024
and each register of size 10-bit

E00 E01 E0N

E10 E11 E1N

EK0 EK1 EKN

Transposed Hamming Maximum Order Matrix
K(1024-bit) X N(1024-bit)

	

Fig. 3 Block diagram of our sorting algorithm’s hardware data path
using Hamming memory.

