

Dynamic Phase-based Optimization of Embedded Systems

Tosiron Adegbija and Ann Gordon-Ross*
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA

tosironkbd@ufl.edu & ann@ece.ufl.edu

*Also affiliated with the NSF Center for High-Performance Reconfigurable Computing (CHREC) at UF

Abstract—Phase-based optimization specializes system

configurations to runtime application requirements in order to

achieve optimization goals. Due to potentially large design spaces

in configurable systems, one major challenge of phase-based

optimization is determining the best configuration for achieving

optimization goals without incurring significant optimization

overhead during design space exploration. This work proposes

phase distance mapping, which uses the correlation between

phases and the phases’ characteristics to dynamically determine

optimal or near-optimal configurations with minimal design

space exploration, thereby minimizing optimization overhead.

Keywords—phase based tuning, phase distance mapping, dynamic

optimization, energy savings, low power, configurable hardware

I. INTRODUCTION AND MOTIVATION

Much research has focused on achieving optimization goals

(e.g., reduce cost, energy consumption, time to market, etc.) in

embedded systems. However, embedded systems have intrinsic

stringent design constraints, imposed by battery capacity, cost,

physical size, consumer market competition, etc., that make

optimization challenging. These optimization challenges are

exacerbated by the dynamic nature of executing applications,

requiring optimizations to dynamically specialize (or tune)

configurable system parameters (e.g., cache size, associativity,

and line size; core frequency and voltage; etc.) to different

application execution phases.

A phase is an execution interval where application

characteristics (e.g., cache misses, instructions per cycle,

branch mispredicts, etc.) are relatively stable. Since same-

phased intervals tend to have the same optimal configurations

for achieving optimization goals [11], dynamic phase-based

optimization increases optimization potential by dynamically

determining best (optimal or near-optimal) configurations for

different execution phases. However, phase-based optimization

increases the potential for optimization overhead (e.g., energy,

performance, etc.), especially in systems with large design

spaces, since the best configurations for multiple phases must

be determined.

To address the challenge of determining the best

configurations for different phases, several tuning methods

have been proposed. Exhaustive search methods (e.g., [15])

physically explore the design space by executing and

evaluating different configurations, however, these methods

incur significant optimization overhead while executing non-

optimal configurations. Heuristic search methods (e.g., [6]) use

intelligent heuristics/algorithms to prune the design space,

however, these heuristics still execute non-optimal

configurations and incur optimization overhead. Analytical

methods (e.g., [9]) significantly reduce optimization overhead

by directly determining or predicting the best configurations

based on the design constraints and application characteristics.

However, most previous analytical methods are either

computationally complex or not dynamic.

We propose a computationally simple and dynamic

analytical method—phase distance mapping (PDM)—to

determine the phases’ best configurations without significant

optimization overhead. Rather than tuning all of the phases in

the phase space (i.e., collection of all distinct phases), PDM

tunes only one phase—the base phase—and uses the

correlation between the base phase’s characteristics and

subsequent new phases’ characteristics to predict the new

phases’ best configurations based on the base phase’s best

configuration. Our proposed approach offers the following

advantages and contributions:

 a low overhead and dynamic analytical method for

determining a phase’s best configuration,

 significant reduction in optimization overhead as

compared to extensive design space exploration,

 minimal designer effort, and

 applicability to various dynamic optimization

scenarios.

II. PHASE DISTANCE MAPPING

Phase distance mapping is based on the hypothesis that the

more disparate two phases’ characteristics are, the more

disparate the phases’ best configurations are likely to be. Thus,

given a phase X and X’s best configuration, we can predict

another phase Y’s best configuration based on the distance

between X’s and Y’s characteristics, known as the phase

distance between both phases. We define the configuration

Figure 1. Phase distance mapping (PDM) overview

Phase History Table

Characteristics Best Configurations

Pb Config[Pb]

Pi Config[Pi]

d (Pb, Pi)

Configuration

distances

Distance windows

Base phase, Pb

New phase, Pi

Distance window table

distance as the difference between the two phases’

configurations, represented by the difference in configurable

system parameter values between the two configurations.

Fig. 1 depicts an overview of PDM. When a new phase Pi is

executed, PDM computes the phase distance, denoted as d (Pb,

Pi), between Pi’s characteristics and the base phase Pb’s

characteristics. The base phase’s best configuration is

previously determined using any arbitrary efficient tuning

method, such as [6]. To accurately represent the correlation

between phase characteristics and configurations, the phase

distance must be computed using characteristics that are most

impacted by the configurable parameters. For example, since

cache characteristics are most impacted by cache

configurations, the phase distance could be computed using

cache miss rates when optimizing cache configurations.

We evaluated various methods for calculating the phase

distance, including normalization and Euclidean distance.

Normalization can be used when only one characteristic is

being considered during optimization. For example, when

optimizing cache configurations, Pi’s cache miss rates can be

normalized to Pb’s cache miss rates to evaluate d (Pb, Pi).

Alternatively, Euclidean distance can be used when multiple

configurable parameters are being optimized to impact multiple

characteristics. For example, to optimize the data cache,

instruction cache, and clock frequency, d (Pb, Pi) can be

computed as:

√(𝑖𝑀𝑅𝑃𝑏 − 𝑖𝑀𝑅𝑃𝑖)2 + (𝑑𝑀𝑅𝑃𝑏 − 𝑑𝑀𝑅𝑝𝑖)2 + (𝐼𝑃𝐶𝑃𝑏 − 𝐼𝑃𝐶𝑃𝑖)2

where iMR, dMR, and IPC represent the instruction cache miss

rate, data cache miss rate, and instructions per cycle,

respectively.

After computing d (Pb, Pi), PDM searches the distance

window table for the distance window that the phase distance

maps to. A distance window is a phase distance range, with a

minimum WinL and maximum WinU value, representing Pi’s

configuration distance from Pb, and a phase distance maps to a

distance window when WinL < d (Pb, Pi) < WinU. Each

distance window contains a configuration distance from Pb’s

best configuration (e.g., Lb * 2, where Lb is Pb’s cache line

size), which is used to determine Pi’s best configuration when d

(Pb, Pi) maps to that distance window.

Distance windows can be created statically or dynamically.

Static distance windows require a priori knowledge of the

system’s applications/application domains, significant a priori

analysis of the applications to determine the configuration

distances with respect to the base phase, and significant

designer effort. To overcome the limitations of static distance

windows, we developed a low-overhead, low-designer-effort

algorithm that dynamically created distance windows during

runtime [1]. This algorithm eliminated designer effort and

made PDM more amenable to general purpose systems with

unknown applications, without sacrificing the optimization

performance.

After Pi’s best configuration is determined, the

configuration is then stored in the phase history table [11] for

subsequent executions of Pi.

III. RESULTS

We have evaluated PDM in various optimization scenarios,

including cache tuning and thermal-aware phase-based

optimization. This section summarizes the motivations and

results obtained from using PDM in these optimization

scenarios.

A. Cache Tuning

Since caches have been widely used to bridge the

processor-memory performance gap, and the memory hierarchy

accounts for a significant portion of an embedded system’s

microprocessor’s overall power consumption, caches are good

candidates for dynamic optimization. Cache tuning determines

the best cache configuration, such as cache size, associativity,

and line size, that best achieves optimization goals.

Fig. 2 depicts a sample phase-based cache tuning

architecture for a sample dual-core system, which can be

extended to any n-core system. On-chip components include

the processing cores with private level one (L1) instruction and

data caches and the phase characterization hardware,

comprised of the tuner, phase classification module, phase

history table, and the PDM module, which includes the

distance window table. The tuner changes configurable

parameters and evaluates each configuration, the phase

classification module groups similar intervals into phases, and

the phase history table stores phase characteristics and best

configurations [11].

The PDM module determines a new phase’s best

configuration and constitutes the only additional hardware

overhead imposed by our work. We have implemented the

PDM module in synthesizable VHDL and quantified the area

and power consumption using Synopsys Design Compiler [14].

Results showed that the PDM module only imposes a 0.30%

area overhead and a 0.11% power overhead with respect to a

MIPS32 M4K 90nm processor [8], showing that our work

constitutes minimal hardware overhead.

Figure 2. Phase-based tuning architecture for a sample dual-core system [1]

Processing core 1

Processing core 2

Main
Memory

L1

L1

Phase
history
table

Phase
classifi-
cation

module

Tuner

Phase characterization hardware

On-chip
components

PDM module

Distance window
table

Data cache

Instruction cache

Data cache

Instruction cache

We evaluated PDM’s optimization potential using nineteen

workloads, representing a variety of realistic real-world

applications, from the EEMBC Multibench benchmark suite

[5]. We modeled a highly configurable cache architecture

similar to [15] with the GEM5 simulator [4] and used the

energy delay product (EDP) as our evaluation metric. The

cache offered configurable cache size, line size, and

associativity ranging from 2 to 8 Kbyte, 16 to 64 byte, and 1- to

4-way, respectively, in power-of-two increments. We

quantified PDM’s EDP savings with respect to a base cache

configuration with cache size, line size, and associativity of 8

Kbyte, 64 byte, and 4-way, respectively. This base cache

configuration represents an averagely good configuration for

all the phases evaluated in our experiments.

Fig. 3 depicts the EDP savings achieved by the PDM

configurations and optimal configurations (determined by

exhaustive search) as compared to the base configuration’s

EDP. On average over all of the phases, PDM achieved EDP

savings of 27%, with savings as high as 47%. PDM determined

the optimal configurations for twelve out of the nineteen

phases, with configurations within 1% of the optimal, on

average. Compared to exhaustive search, PDM reduced the

exploration time by an average of 95%, and up to 98% for

some phases. These results show PDM’s ability to achieve

significant EDP savings with minimal designer effort while

significantly reducing optimization overhead.

B. Thermal-aware Phase-based Optimization

Due to area, cost, and energy constraints, most embedded

systems have fewer cooling options as compared to general

purpose computers. Thus, much research focuses on optimizing

the temperature in embedded systems to prevent thermal

emergencies, which could lead to reduced reliability, reduced

mean time to failure (MTTF), or even permanent chip damage.

We developed a thermal-aware phase-based tuning

algorithm (TaPT) [2], using PDM concepts, which dynamically

determined Pareto optimal cache configurations and clock

frequency configurations (using dynamic frequency scaling

[12]) that traded off execution time, energy, and temperature in

embedded systems. However, optimizing multiple optimization

goals presented a multi-objective optimization problem, where

one optimization goal could adversely impact other

optimization goals (e.g., optimizing the temperature could

adversely impact the execution time). Thus, we leveraged the

strength Pareto evolutionary algorithm II (SPEA2) [16], which

is a well-known and effective evolutionary algorithm for

solving multi-objective optimization problems.

TaPT contained three designer-specified priority settings to

prioritize execution time, energy, or temperature minimization

during optimization. The priority settings allowed TaPT to

trade off the non-prioritized optimization goals in favor of the

prioritized optimization goal, thus adhering the optimization to

the design constraints. Furthermore, TaPT was computationally

simple and imposed no additional hardware overhead.

To evaluate TaPT’s optimization potential, we modeled an

embedded processor architecture, similar to the ARM Cortex

A9 [3], using GEM5. The processor contained configurable L1

instruction and data caches with cache sizes, line sizes, and

associativities ranging from 8 to 32 Kbyte, 16 to 64 byte, and

1- to 4-way, respectively, in power-of-two increments. The

processor offered seven clock frequencies ranging from 800

MHz to 2 GHz in 200 MHz increments. We used the largest

parameter values as the base configuration, representing a

modern-day non-configurable embedded system’s

microprocessor. We used Hotspot 5.0 [13] to measure the

temperature using a floorplan and silicon chip area similar to

the ARM Cortex A9 processor, and simulated an embedded

system without cooling mechanisms, such as heat sink and/or

spreader. We used eighteen benchmarks from the EEMBC [10]

Automotive and Mibench [7] suites to model a variety of real-

world embedded system applications.

Fig. 4 depicts the execution time, energy, EDP, and

temperature of the best configurations as determined by TaPT

normalized to the base system configuration. For brevity, we

only show results for energy and temperature prioritization.

Fig. 4 (a) shows that when energy prioritization was specified,

TaPT achieved average EDP, energy, execution time, and

temperature savings of 34%, 31%, 4%, and 20%, respectively.

For temperature prioritization, we specified a 65oC temperature

threshold to simulate a highly temperature-constrained

embedded system. Fig. 4 (b) shows that when temperature

prioritization was specified, TaPT achieved energy and

temperature savings of 13% and 25%, respectively. However,

the execution time and EDP increased by 39% and 22%,

respectively, due to the stringent temperature constraints.

Figure 3. EDP savings as compared to the base configuration

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ED
P

 n
o

rm
al

iz
ed

 t
o

 t
h

e
b

as
e

co
n

fi
gu

ra
ti

o
n

Optimal PDM

Compared to exhaustive search, TaPT reduced the exploration

time by 96% on average.

These results reveal the extent to which some optimization

goals may be adversely affected by stringent design constraints.

However, the results also show TaPT’s ability to trade off

optimization goals in order to adhere to design constraints.

IV. POTENTIAL PDM USAGE SCENARIOS

To motivate future research, we have identified potential

scenarios in which PDM can be used, and we intend to

investigate these usage scenarios for future work.

Similar to the scenarios presented in this paper, PDM can

be used for fast configuration of other configurable hardware

and multi-objective optimization scenarios, including

optimizing the issue logic, multi-level caches, etc. To adapt

PDM to other configurable hardware, the application

characteristics used to evaluate the phase distance must closely

relate to the configurable hardware in order to achieve

optimization goals.

Furthermore, PDM can be used for scheduling in

heterogeneous multicore systems, where the best

application/phase-to-core schedules must be determined. PDM

can evaluate the phase distance between a previously executed

phase and a new phase, and use the correlation between both

phases to predict the best core schedule with respect to the

optimization goals for the new phase.

Finally, PDM can be used to speed up simulations in

computer architecture research, where the best configurations

must be rapidly determined for various architectures and

compared to a base configuration to evaluate the new

architectures’ adherence to the optimization goals.

V. CONCLUSIONS

This work presents phase distance mapping (PDM), a low-

overhead and dynamic analytical approach to dynamic phase-

based optimization of embedded systems. PDM significantly

reduces optimization overhead and designer effort by

dynamically correlating a known phase’s characteristics and

best configuration with a new phase’s characteristics to

determine the new phase’s best configuration. PDM is suitable

for various optimization scenarios and general purpose

embedded systems where the system applications are not

known a priori.

ACKNOWLEDGMENT

This work was supported by the National Science

Foundation (CNS-0953447). Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of

the National Science Foundation.

REFERENCES

[1] T. Adegbija, A. Gordon-Ross, and A. Munir, “Phase distance mapping: a
phase-based cache tuning methodology for embedded systems,”

Springer Design Automation for Embedded Systems (DAEM), January

2014.
[2] T. Adegbija and A. Gordon-Ross, “Thermal-aware phase-based tuning

of embedded systems,” ACM Great Lakes Symposium on VLSI

(GLSVLSI), May 2014.
[3] ARM, http://www.arm.com/products/processors/cortex-a/cortex-a9.php

[4] N. Binkert, et. al, “ The gem5 simulator,” Computer Architecture News,

May 2011.

[5] S. Gal-On and M. Levy, “Measuring multicore performance,” Computer,

November 2008.

[6] A. Gordon-Ross, F. Vahid, and N. Dutt, “Automatic tuning of two-level
caches to embedded applications,” Design Automation and Test in

Europe (DATE), February 2004.

[7] M. R. Guthausch et al., “Mibench: a free, commercially representative
embedded benchmark suite,” IEEE Workshop on Workload

Characterization, 2001.

[8] MIPS32 M14K. http://www.mips.com/products/cores/32-64-bit-
cores/mips32-m14k/ Accessed 26 July 2013

[9] A. Munir, A. Gordon-Ross, S. Lysecky, and R. Lysecky, “A one-shot
dynamic optimization methodology for wireless sensor networks,”

International Conference on Mobile and Ubiquitous Computing

(UBICOMM), October 2010.
[10] J. Poovey, M. Levy, and S. Gal-On, “A benchmark characterization of

the EEMBC benchmark suite,” International Symposium on

Microarchitecture, October 2009.
[11] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,”

30th International Symposium on Computer Architecture (ISCA), May

2003.
[12] K. Skadron, “Hybrid architectural dynamic thermal management,”

Design Automation and Test in Europe (DATE), February 2004.

[13] K. Skadron, et al., “Temperature-aware microarchitecture: modeling and
implementation,” Transactions on Architecture and Code Optimization,

March 2004.

[14] Synopsys Design Compiler, Synopsis Inc. www.synopsys.com
[15] C. Zhang, F. Vahid, and W. Najjar, “A highly-configurable cache

architecture for embedded systems,” 30th International Symposium on

Computer Architecture (ISCA), May 2003.
[16] E. Zitler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength

Pareto evolutionary algorithm,” Swiss Federal Institute of Technology,

Dept. of Electrical Engineering, Technical Report 103, 2001.

(a) (b)

Figure 4. Execution time, energy, EDP, and temperature normalized to the base configuration for priority settings (a) energy, and (b) temperature

0

0.2

0.4

0.6

0.8

1

1.2
E

x
e
c
u
ti
o
n
 t
im

e
,
e
n
e
rg

y
,
E

D
P

,
te

m
p
e
ra

tu
re

 n
o
rm

a
liz

e
d
 t

o

th
e
 b

a
s
e
 c

o
n
fi
g
u
ra

ti
o
n

Execution time Energy EDP Temperature

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

E
x
e
c
u
tio

n
 ti

m
e
, e

n
e
rg

y
,
E

D
P

,
te

m
p
e
ra

tu
re

 n
o
rm

a
liz

e
d
 t

o
 t
h
e

b
a
se

 c
o
n
fi
g
u
ra

tio
n

Execution time Energy EDP Temperature

