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Abstract—Phase-based optimization specializes system 

configurations to runtime application requirements in order to 

achieve optimization goals. Due to potentially large design spaces 

in configurable systems, one major challenge of phase-based 

optimization is determining the best configuration for achieving 

optimization goals without incurring significant optimization 

overhead during design space exploration. This work proposes 

phase distance mapping, which uses the correlation between 

phases and the phases’ characteristics to dynamically determine 

optimal or near-optimal configurations with minimal design 

space exploration, thereby minimizing optimization overhead. 
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I.    INTRODUCTION AND MOTIVATION 

Much research has focused on achieving optimization goals 

(e.g., reduce cost, energy consumption, time to market, etc.) in 

embedded systems. However, embedded systems have intrinsic 

stringent design constraints, imposed by battery capacity, cost, 

physical size, consumer market competition, etc., that make 

optimization challenging. These optimization challenges are 

exacerbated by the dynamic nature of executing applications, 

requiring optimizations to dynamically specialize (or tune) 

configurable system parameters (e.g., cache size, associativity, 

and line size; core frequency and voltage; etc.) to different 

application execution phases. 

A phase is an execution interval where application 

characteristics (e.g., cache misses, instructions per cycle, 

branch mispredicts, etc.) are relatively stable. Since same-

phased intervals tend to have the same optimal configurations 

for achieving optimization goals [11], dynamic phase-based 

optimization increases optimization potential by dynamically 

determining best (optimal or near-optimal) configurations for 

different execution phases. However, phase-based optimization 

increases the potential for optimization overhead (e.g., energy, 

performance, etc.), especially in systems with large design 

spaces, since the best configurations for multiple phases must 

be determined. 

To address the challenge of determining the best 

configurations for different phases, several tuning methods 

have been proposed. Exhaustive search methods (e.g., [15]) 

physically explore the design space by executing and 

evaluating different configurations, however, these methods 

incur significant optimization overhead while executing non-

optimal configurations. Heuristic search methods (e.g., [6]) use 

intelligent heuristics/algorithms to prune the design space, 

however, these heuristics still execute non-optimal 

configurations and incur optimization overhead. Analytical 

methods (e.g., [9]) significantly reduce optimization overhead 

by directly determining or predicting the best configurations 

based on the design constraints and application characteristics. 

However, most previous analytical methods are either 

computationally complex or not dynamic. 

We propose a computationally simple and dynamic 

analytical method—phase distance mapping (PDM)—to 

determine the phases’ best configurations without significant 

optimization overhead. Rather than tuning all of the phases in 

the phase space (i.e., collection of all distinct phases), PDM 

tunes only one phase—the base phase—and uses the 

correlation between the base phase’s characteristics and 

subsequent new phases’ characteristics to predict the new 

phases’ best configurations based on the base phase’s best 

configuration. Our proposed approach offers the following 

advantages and contributions: 

 a low overhead and dynamic analytical method for 

determining a phase’s best configuration, 

 significant reduction in optimization overhead as 

compared to extensive design space exploration, 

 minimal designer effort, and 

 applicability to various dynamic optimization 

scenarios. 

II. PHASE DISTANCE MAPPING 

Phase distance mapping is based on the hypothesis that the 

more disparate two phases’ characteristics are, the more 

disparate the phases’ best configurations are likely to be. Thus, 

given a phase X and X’s best configuration, we can predict 

another phase Y’s best configuration based on the distance 

between X’s and Y’s characteristics, known as the phase 

distance between both phases. We define the configuration 

 

Figure 1. Phase distance mapping (PDM) overview 
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distance as the difference between the two phases’ 

configurations, represented by the difference in configurable 

system parameter values between the two configurations. 

Fig. 1 depicts an overview of PDM. When a new phase Pi is 

executed, PDM computes the phase distance, denoted as d (Pb, 

Pi), between Pi’s characteristics and the base phase Pb’s 

characteristics. The base phase’s best configuration is 

previously determined using any arbitrary efficient tuning 

method, such as [6]. To accurately represent the correlation 

between phase characteristics and configurations, the phase 

distance must be computed using characteristics that are most 

impacted by the configurable parameters. For example, since 

cache characteristics are most impacted by cache 

configurations, the phase distance could be computed using 

cache miss rates when optimizing cache configurations.  

We evaluated various methods for calculating the phase 

distance, including normalization and Euclidean distance. 

Normalization can be used when only one characteristic is 

being considered during optimization. For example, when 

optimizing cache configurations, Pi’s cache miss rates can be 

normalized to Pb’s cache miss rates to evaluate d (Pb, Pi). 

Alternatively, Euclidean distance can be used when multiple 

configurable parameters are being optimized to impact multiple 

characteristics. For example, to optimize the data cache, 

instruction cache, and clock frequency, d (Pb, Pi) can be 

computed as: 

 

√(𝑖𝑀𝑅𝑃𝑏  −  𝑖𝑀𝑅𝑃𝑖)2 + (𝑑𝑀𝑅𝑃𝑏  −  𝑑𝑀𝑅𝑝𝑖)2 + (𝐼𝑃𝐶𝑃𝑏  −  𝐼𝑃𝐶𝑃𝑖)2       

 

where iMR, dMR, and IPC represent the instruction cache miss 

rate, data cache miss rate, and instructions per cycle, 

respectively. 

After computing d (Pb, Pi), PDM searches the distance 

window table for the distance window that the phase distance 

maps to. A distance window is a phase distance range, with a 

minimum WinL and maximum WinU value, representing Pi’s 

configuration distance from Pb, and a phase distance maps to a 

distance window when WinL  < d (Pb, Pi) < WinU. Each 

distance window contains a configuration distance from Pb’s 

best configuration (e.g., Lb * 2, where Lb is Pb’s cache line 

size), which is used to determine Pi’s best configuration when d 

(Pb, Pi) maps to that distance window.  

Distance windows can be created statically or dynamically. 

Static distance windows require a priori knowledge of the 

system’s applications/application domains, significant a priori 

analysis of the applications to determine the configuration 

distances with respect to the base phase, and significant 

designer effort. To overcome the limitations of static distance 

windows, we developed a low-overhead, low-designer-effort 

algorithm that dynamically created distance windows during 

runtime [1]. This algorithm eliminated designer effort and 

made PDM more amenable to general purpose systems with 

unknown applications, without sacrificing the optimization 

performance. 

After Pi’s best configuration is determined, the 

configuration is then stored in the phase history table [11] for 

subsequent executions of Pi. 

III. RESULTS 

We have evaluated PDM in various optimization scenarios, 

including cache tuning and thermal-aware phase-based 

optimization. This section summarizes the motivations and 

results obtained from using PDM in these optimization 

scenarios. 

A. Cache Tuning 

Since caches have been widely used to bridge the 

processor-memory performance gap, and the memory hierarchy 

accounts for a significant portion of an embedded system’s 

microprocessor’s overall power consumption, caches are good 

candidates for dynamic optimization. Cache tuning determines 

the best cache configuration, such as cache size, associativity, 

and line size, that best achieves optimization goals. 

Fig. 2 depicts a sample phase-based cache tuning 

architecture for a sample dual-core system, which can be 

extended to any n-core system. On-chip components include 

the processing cores with private level one (L1) instruction and 

data caches and the phase characterization hardware, 

comprised of the tuner, phase classification module, phase 

history table, and the PDM module, which includes the 

distance window table. The tuner changes configurable 

parameters and evaluates each configuration, the phase 

classification module groups similar intervals into phases, and 

the phase history table stores phase characteristics and best 

configurations [11].  

The PDM module determines a new phase’s best 

configuration and constitutes the only additional hardware 

overhead imposed by our work. We have implemented the 

PDM module in synthesizable VHDL and quantified the area 

and power consumption using Synopsys Design Compiler [14]. 

Results showed that the PDM module only imposes a 0.30% 

area overhead and a 0.11% power overhead with respect to a 

MIPS32 M4K 90nm processor [8], showing that our work 

constitutes minimal hardware overhead. 

 

Figure 2. Phase-based tuning architecture for a sample dual-core system [1]  
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We evaluated PDM’s optimization potential using nineteen 

workloads, representing a variety of realistic real-world 

applications, from the EEMBC Multibench benchmark suite 

[5]. We modeled a highly configurable cache architecture 

similar to [15] with the GEM5 simulator [4] and used the 

energy delay product (EDP) as our evaluation metric. The 

cache offered configurable cache size, line size, and 

associativity ranging from 2 to 8 Kbyte, 16 to 64 byte, and 1- to 

4-way, respectively, in power-of-two increments. We 

quantified PDM’s EDP savings with respect to a base cache 

configuration with cache size, line size, and associativity of 8 

Kbyte, 64 byte, and 4-way, respectively. This base cache 

configuration represents an averagely good configuration for 

all the phases evaluated in our experiments. 

Fig. 3 depicts the EDP savings achieved by the PDM 

configurations and optimal configurations (determined by 

exhaustive search) as compared to the base configuration’s 

EDP. On average over all of the phases, PDM achieved EDP 

savings of 27%, with savings as high as 47%. PDM determined 

the optimal configurations for twelve out of the nineteen 

phases, with configurations within 1% of the optimal, on 

average. Compared to exhaustive search, PDM reduced the 

exploration time by an average of 95%, and up to 98% for 

some phases. These results show PDM’s ability to achieve 

significant EDP savings with minimal designer effort while 

significantly reducing optimization overhead. 

B. Thermal-aware Phase-based Optimization 

Due to area, cost, and energy constraints, most embedded 

systems have fewer cooling options as compared to general 

purpose computers. Thus, much research focuses on optimizing 

the temperature in embedded systems to prevent thermal 

emergencies, which could lead to reduced reliability, reduced 

mean time to failure (MTTF), or even permanent chip damage. 

We developed a thermal-aware phase-based tuning 

algorithm (TaPT) [2], using PDM concepts, which dynamically 

determined Pareto optimal cache configurations and clock 

frequency configurations (using dynamic frequency scaling 

[12]) that traded off execution time, energy, and temperature in 

embedded systems. However, optimizing multiple optimization 

goals presented a multi-objective optimization problem, where 

one optimization goal could adversely impact other 

optimization goals (e.g., optimizing the temperature could 

adversely impact the execution time). Thus, we leveraged the 

strength Pareto evolutionary algorithm II (SPEA2) [16], which 

is a well-known and effective evolutionary algorithm for 

solving multi-objective optimization problems. 

TaPT contained three designer-specified priority settings to 

prioritize execution time, energy, or temperature minimization 

during optimization. The priority settings allowed TaPT to 

trade off the non-prioritized optimization goals in favor of the 

prioritized optimization goal, thus adhering the optimization to 

the design constraints. Furthermore, TaPT was computationally 

simple and imposed no additional hardware overhead. 

To evaluate TaPT’s optimization potential, we modeled an 

embedded processor architecture, similar to the ARM Cortex 

A9 [3], using GEM5. The processor contained configurable L1 

instruction and data caches with cache sizes, line sizes, and 

associativities ranging from 8 to 32 Kbyte, 16 to 64 byte, and 

1- to 4-way, respectively, in power-of-two increments. The 

processor offered seven clock frequencies ranging from 800 

MHz to 2 GHz in 200 MHz increments. We used the largest 

parameter values as the base configuration, representing a 

modern-day non-configurable embedded system’s 

microprocessor. We used Hotspot 5.0 [13] to measure the 

temperature using a floorplan and silicon chip area similar to 

the ARM Cortex A9 processor, and simulated an embedded 

system without cooling mechanisms, such as heat sink and/or 

spreader. We used eighteen benchmarks from the EEMBC [10] 

Automotive and Mibench [7] suites to model a variety of real-

world embedded system applications. 

Fig. 4 depicts the execution time, energy, EDP, and 

temperature of the best configurations as determined by TaPT 

normalized to the base system configuration. For brevity, we 

only show results for energy and temperature prioritization. 

Fig. 4 (a) shows that when energy prioritization was specified, 

TaPT achieved average EDP, energy, execution time, and 

temperature savings of 34%, 31%, 4%, and 20%, respectively. 

For temperature prioritization, we specified a 65oC temperature 

threshold to simulate a highly temperature-constrained 

embedded system. Fig. 4 (b) shows that when temperature 

prioritization was specified, TaPT achieved energy and 

temperature savings of 13% and 25%, respectively. However, 

the execution time and EDP increased by 39% and 22%, 

respectively, due to the stringent temperature constraints. 

 
Figure 3. EDP savings as compared to the base configuration 
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Compared to exhaustive search, TaPT reduced the exploration 

time by 96% on average. 

These results reveal the extent to which some optimization 

goals may be adversely affected by stringent design constraints. 

However, the results also show TaPT’s ability to trade off 

optimization goals in order to adhere to design constraints. 

IV. POTENTIAL PDM USAGE SCENARIOS 

To motivate future research, we have identified potential 

scenarios in which PDM can be used, and we intend to 

investigate these usage scenarios for future work. 

Similar to the scenarios presented in this paper, PDM can 

be used for fast configuration of other configurable hardware 

and multi-objective optimization scenarios, including 

optimizing the issue logic, multi-level caches, etc. To adapt 

PDM to other configurable hardware, the application 

characteristics used to evaluate the phase distance must closely 

relate to the configurable hardware in order to achieve 

optimization goals. 

Furthermore, PDM can be used for scheduling in 

heterogeneous multicore systems, where the best 

application/phase-to-core schedules must be determined. PDM 

can evaluate the phase distance between a previously executed 

phase and a new phase, and use the correlation between both 

phases to predict the best core schedule with respect to the 

optimization goals for the new phase. 

Finally, PDM can be used to speed up simulations in 

computer architecture research, where the best configurations 

must be rapidly determined for various architectures and 

compared to a base configuration to evaluate the new 

architectures’ adherence to the optimization goals. 

V. CONCLUSIONS 

This work presents phase distance mapping (PDM), a low-

overhead and dynamic analytical approach to dynamic phase-

based optimization of embedded systems. PDM significantly 

reduces optimization overhead and designer effort by 

dynamically correlating a known phase’s characteristics and 

best configuration with a new phase’s characteristics to 

determine the new phase’s best configuration. PDM is suitable 

for various optimization scenarios and general purpose 

embedded systems where the system applications are not 

known a priori. 
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(a)                                                                                                       (b)  

Figure 4. Execution time, energy, EDP, and temperature normalized to the base configuration for priority settings (a) energy, and (b) temperature 
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