
Realizing Closed-loop, Online Tuning and Control for
Configurable-cache Embedded Systems: Progress and

Challenges

Islam S. Badreldin∗, Ann Gordon-Ross∗, Tosiron Adegbija†, and Mohamad Hammam Alsafrjalani‡
∗University of Florida, †University of Arizona, ‡University of Miami

∗{ibadreldin,anngordonross}@ufl.edu, †tosiron@email.arizona.edu, ‡alsafrjalani@miami.edu

Abstract—The cache subsystem is a major contributor to
energy consumption in commercial microprocessors used in
embedded systems. To reduce energy, designers can perform
design space exploration (DSE) to determine a suitable cache
configuration that matches system constraints and goals while
minimizing energy consumption. Traditionally, this cache tuning
step has been a static process where heuristics or analytical
models are used to determine an optimal or near-optimal cache
configuration prior to runtime given a known application, appli-
cation set, or application domain. Even though the configuration
may change during runtime for different phases of execution,
the specific configuration for each phase remains fixed. This
static nature is too restrictive for modern, complex embedded
systems that are expected to operate under diverse, unknown
operating environments, run unknown applications, and with
vastly different user quality of experience (QoE) expectations
(e.g., smart phones). Therefore, cache tuning must change from a
static optimization process to a dynamic optimization process that
adapts online during runtime transparently to the user/system
needs. The key challenge is determining the configuration that
adheres to QoE expectations while minimizing energy consump-
tion without degrading the user experience during DSE. Despite
the wealth of progress that has been made, the realization of a
closed-loop, fully adaptive, online-tunable cache subsystem still
faces many challenges. In this paper, we review the progress
made in the area of static and dynamic cache tuning, discuss the
challenges that still exist in this area, and propose a prediction-
assisted control-theoretic framework to address these challenges.

I. INTRODUCTION AND MOTIVATION

Heterogeneous multicore processors are becoming pervasive
in embedded systems as a way to enable the efficient execution
of increasingly complex applications while minimizing energy
consumption. Using a system with different core configura-
tions enables applications to execute on a core that is suitable
given the application’s performance/energy goals. Different
core configurations range from coarse-grained optimization
options, such as cores with different instruction set archi-
tectures (ISAs), voltages, frequencies, specialized hardware
(graphic processing units (GPUs) and field-programmable gate
arrays (FPGAs)), etc. to fine-grained optimization options,
such as different pipeline depths, reorder buffer size, instruc-
tion issue width, etc. Since the cache subsystem consumes
16% to 50% [1], [2] of the total system power, this fine-grained
option offers potentially significant energy savings, thus mak-
ing the cache subsystem an ideal optimization candidate.

The cache subsystem provides optimized performance and
reduced energy consumption by exploiting application-specific
resource requirements using the best (optimal or near-optimal)
cache configuration that most closely adheres to system con-
straints and goals. This configuration designates the best values
for the cache’s tunable parameters, such as cache size, line
size, and associativity. Since prior work showed that tuning
these particular cache parameters enable the largest energy
savings potential [3], without loss of generality, we assume
that these parameters are tunable in our work.

To provide flexible optimization options, configurable
caches (e.g., [3]) must be suitable for modern complex em-
bedded systems. These caches must operate in unknown and
changing environments, run a wide variety of potentially
unknown applications, and adhere to system constraints, goals,
and runtime-defined time-varying user-defined quality of ex-
perience (QoE) expectations. Given the diversity of subjective
end-user QoE expectations, the tunable cache parameters must
now also be able to change during runtime in response to user-
specific feedback as well as application requirements while
adhering to system constraints.

Achieving this goal is extremely challenging due to many
factors since QoE expectations vary substantially during run-
time for individual users and between different users. For
example, based on a user’s battery lifetime or performance
quality expectancies, the best configuration can range from
lowest energy to best performance, respectively. These ex-
pectancies may differ for different types of applications and
environmental conditions, such as time-of-day (e.g., less fre-
quent notifications during work hours), ambient lighting (e.g.,
slower frame rates in low lighting), accelerometer readings
(e.g., fewer GPS updates while walking as compared to driv-
ing). Since different applications or application phases (i.e.,
execution intervals with stable performance characteristics,
such as instructions per cycle (IPC), cache miss rate (CMR),
etc.) have varying runtime memory requirements [4], [5],
[6], [7], the best cache configuration must correlate these
differences with the user QoE expectations, resulting in an
extremely large and complex design space.

Design space exploration (DSE) is an optimization process
that dynamically evaluates an optimization objective function
to dynamically determine the best cache configuration at run-
time. The objective function includes optimization metrics [8],

such as application performance and/or energy consumption.
Efficient and effective DSE is a challenging process, and
prior work has extensively explored static and dynamic so-
lutions (e.g., [5], [6], [9], [10], [11], [12], [13], [14], [15],
[16], [17]) using heuristic searches, subsetting methods, or
analytical models.

Complex heterogeneous architectures exacerbate many
cache tuning challenges, and introduce new challenges that
necessitate novel dynamic cache tuning methods. To the
best of our knowledge, few prior works have begun to ad-
dress these challenges, some of which include: determining
when to reconfigure the cache–the tuning interval–with no
prior knowledge of the running applications [5]; considering
runtime-defined time-varying user-defined QoE expectations
and optimization metric objectives; considering the general
complexity of multicore architectures (e.g., cache coherence,
data sharing among cores, synchronization, etc.).

Another critical challenge is addressing DSE’s impact on the
user experience. Since exploring configurations far from the
best configuration incurs significant tuning overhead (e.g., sig-
nificantly increased power or reduced performance) [5], DSE
must ensure that while determining the best configuration,
the user experience is not degraded beyond a dissatisfaction
threshold (e.g., the point at which the user experiences anger
or frustration with the device). One recent work by Alsafrjalani
et al. [6] studied online tuning while considering DSE-related
degradation and showed that best configurations could be
determined while limiting this degradation.

Despite all of the advancements in cache tuning methods,
these outstanding challenges leave a void in adaptive, on-
line, closed-loop cache tuning systems that consider runtime-
defined time-varying user-defined QoE expectations while
limiting DSE-related degradation. In this work, we review
the progress made toward static and dynamic cache tuning,
detail some of the challenges that face the progress in the
area of online dynamic cache tuning, and propose a system
architecture that addresses some of these challenges.

II. GENERAL PROBLEM FORMULATION

In this section, we formally define the general problem of
cache tuning for configurable-cache embedded systems, define
optimization metrics, and review general DSE solutions.

A. Formal Notations

Following the notation in [11], we denote a set of n appli-
cations A = {a1, a2, . . . , an} to be executed on an embedded
system with a configurable cache offering a set of m possible
cache configurations C = {c1, c2, . . . , cm}. Each application
has a set of ki phases Pai

= {p1, p2, . . . , pki
}, wherein each

phase can require a different cache configuration. Without loss
of generality, we assume an optimization process in which
a Pareto-optimal configuration (i.e., best configuration) that
trades off the energy and performance optimization metrics
must be determined [9].

We denote the energy and performance optimization met-
rics for application ai executing in phase pk with cache

Fig. 1. Example Pareto-optimal set of cache configurations as presented in [9]
where points A, B, and C belong to the Pareto-optimal set. The legend denotes
tunable parameter values for each configuration.

configuration cj as e(ai, pk, cj) and u(ai, pk, cj), respec-
tively. The optimization objective is to determine a Pareto-
optimal configuration c0 ∈ C such that for application ai,
e(ai, pk, c0) ≤ e(ai, pk, cj) where with strict inequality for
some cj , and a similar condition on u(ai, pk, c0). The set of all
Pareto-optimal configurations is known as the Pareto-optimal
set [18], which includes the best configurations in terms
of both metrics [9]. At runtime, the dynamic optimization
process selects a configuration from the Pareto-optimal set
given additional constraints such as QoE [6], resulting in a
QoE-aware optimization objective.

Besides determining Pareto-optimal configurations, a sim-
pler optimization problem that is often employed in previous
work focuses on minimizing only the energy optimization
metric [5], [6], [10], [11], [12], [14], [16]. In this case, an
optimal solution is one such that e(ai, pk, c0) ≤ e(ai, pk, cj)
with strict inequality for some cj , and similarly for u(.).
An additional simplification that is sometimes used involves
determining a single configuration that is best, on average, for
an application’s complete execution (application-based cache
tuning). In this case, the dependency of the optimization
metrics on the application phase is removed (i.e., e(ai, pk, cj)
becomes e(ai, cj) and u(ai, pk, cj) becomes u(ai, cj)).

B. Optimization Metrics

Pareto-optimal-based optimization involves a trade off anal-
ysis between two or more metrics. Given N optimization
metrics, the Pareto-optimal set will always contain at least
N required configurations. As an example, Fig. 1 illustrates
this principle for a sample Pareto-optimal set for cache con-
figurations (parameter values are denoted in the legend) that
trades off total energy consumption in mJ and performance in
clock cycles. The two required configurations are the minimum
energy consumption, point A, and the best performance, point
B, configurations. Point C also belongs to the Pareto-optimal
set and represents a configuration that trades off performance
and energy consumption.

In the context of configurable cache tuning, several metrics
have been previously used. Common performance optimiza-

tion metrics (i.e., u(.)) include the CMR [9], [16], [19], or
the execution time in cycles [9]. The energy optimization
metric (i.e., e(.)) can be estimated using cache performance
statistics and modeling tools [10], [14], [15], [16] such as
CACTI [20], or a set of equations that represent an energy
model [9], [11], [21]. The estimation can be done during
runtime using cache performance hardware counters and the
energy equation model can be implemented in a custom co-
processor or dedicated hardware to provide a hardware-based
energy calculation module [5].

C. Design Space Exploration (DSE)

There are many different methods for exploring the design
space to determine the best cache configuration. Exhaustive
DSE would evaluate the optimization metrics for every cache
configuration ci ∈ C. Even though this method accurately
determines the optimal configuration, as the number of con-
figurable cache parameters, parameter values, and hierarchy
depth grows, exhaustive DSE is computationally and runtime
prohibitive given increasingly large design spaces. Several
approaches have attempted to reduce DSE complexity using
heuristics and subsetting methods that reduce the number of
configurations explored. These methods, while inexact, deter-
mine near-best configurations while avoiding a large penalty
in terms of the optimization objective [10], [6], [9], [11], [14],
[15], [16], [17].

Other approaches circumvent the complexity of DSE by
using analytical or statistical models that attempt to directly
determine the best cache configuration given application mem-
ory access patterns and characteristics [12], [22], or applica-
tion phase information [7], [13]. Since phase-based methods
provide greater benefits than application-based methods, Sec-
tions IV and V focus on phase-based approaches.

Regardless of the exploration method, DSE can be divided
into two categories. In offline DSE, the design space is stati-
cally searched before runtime using full or partial knowledge
of the applications or application domains that are expected
to run on the embedded system [6], [9], [10], [11], [14], [15],
[16], [17]. A key feature of offline exploration is that these
approaches can batch-evaluate the optimization objective for
each cache configuration in software (e.g., [11], [16]) or in
hardware (e.g., [9]) before runtime. Online DSE profiles the
applications dynamically at runtime using real input stimuli
(e.g., [5], [6], [12], [13]), thus more accurately determining
the best configuration at the expense of DSE overhead. We
further refer the reader to [23] for a complete review of the
different DSE methods. In the next two sections, we review
and discuss the progress in offline and online design space
exploration for configurable caches.

III. OFFLINE DESIGN SPACE EXPLORATION (DSE)

Offline DSE can be done either in software simulation using
trace-based methods or instruction set simulators, or using
hardware emulation methods. Regardless of the method used,
technological and system complexity advances have resulted
in an exponential growth of the design space resulting in

prohibitively large file sizes (for trace-based) and DSE time. To
reduce DSE time, methods that approximate the design space
using a subset that contains near-best solutions have been
developed to prune the design space. This section discusses
several solutions for offline DSE and design space subsetting.

A. Simulation- and Hardware-based Exploration

Given full or partial knowledge of the application(s) or the
application domains that are expected to run on the embedded
system, cycle-accurate instruction set simulators (e.g., [24],
[25]) can be used to estimate the energy and performance
associated with each possible cache configuration. Approaches
using this method were extensively reviewed in [23]. Even
though a powerful host machine can be used to run the simula-
tor and reduce the time needed to explore each configuration,
this method is only feasible for optimization problems that
involve a relatively small number of possible cache config-
urations. For larger design spaces on more complex systems
where a single configuration may take several hours or days
to simulate, this time needs to be further reduced [11], [16].

DSE time can be considerably reduced using hardware-
based emulation. Zhang et al. [9] developed a runtime re-
configurable hardware cache architecture that enabled the
cache size, line size, and associativity to be changed using
a small set of configuration registers. This architecture was
intended for prototype-oriented platforms to rapidly explore
the configuration design space for a set of known applications
to determine the Pareto-optimal set. Considering the example
Pareto-optimal set illustrated in Fig. 1, the authors imple-
mented a hardware-based heuristic that rapidly searched for
points A and B, and then searched for point C.

B. Subsetting Methods

The majority of the subsetting approaches [11], [15], [16],
[17] rely on the principle of near-optimality. The authors
observed that many cache configurations in the design space
provide approximately similar values of the optimization ob-
jective function. Therefore, at the expense of a small penalty
to the optimization objective, the design space can be reduced
from C to C ′—a smaller subset of the original design space
(i.e., |C ′| � |C|). While C ′ is not guaranteed to contain a
globally optimal configuration, the authors showed that C ′

contains many near-optimal configurations with the benefit of a
much smaller design space to explore in C ′ as compared to C.
In order to compute C ′, the authors used a clustering approach
that was originally applied to online segmentation of time
series data [26]. Some subsetting methods [10], [14], [21] were
geared toward online DSE and are discussed in Section IV. We
refer the reader to [17], where these approaches were recently
reviewed, for further details.

IV. ONLINE DESIGN SPACE EXPLORATION (DSE)

For embedded systems that are expected to run applications
that are unknown a priori, the cache configuration design space
must be explored online at runtime. This is typically the case
for consumer embedded devices [6], such as smartphones and

tablets. Online exploration in its most basic form involves the
execution of a given application on the target architecture using
different cache configurations in order to capture the values of
the optimization objective function under each configuration.
DSE is followed by selecting the best configuration that most
closely meets optimization requirements and constraints from
the configurations that were explored. Collectively, these two
steps are referred to as cache tuning [23]. This section briefly
overviews several online cache tuning methods.

A. Heuristic-based Methods
Heuristic methods selectively explore/search only a portion

of the design space by using information about the current and
past explored configurations to choose the next configuration
to explore. Zhang et al. [21] developed a greedy heuristic
search to determine the lowest energy configuration (i.e., point
A in Fig. 1). The parameters were explored in increasing order
of the parameters’ impacts on the energy consumption for
single-level caches. Gordon-Ross et al. [10], [14] extended
this approach to two-level caches and demonstrated that this
heuristic search explored only a small fraction of the origi-
nal design space without significantly compromising energy
consumption. Alsafrjalani et al. [6] proposed an online QoE-
aware approach [11] for multi-core cache configurations using
a heuristic-based search to perform online DSE that minimized
DSE-time degradation. Zhao et al. [27] analyzed the behavior
of a large pool of applications offline and used the learned
information to heuristically select a best cache configuration
online.

B. Phase-based Methods
During execution, an application’s characteristics, such as

CMR, IPC, branch misprediction rate, etc., change over the
application’s different execution phases. Prior work demon-
strated that the best cache configurations differ even within the
same application according to these application phases [4], [7].
Therefore, approaches have emerged that take phase behavior
into account during online cache tuning [13], [28], [7].

Peng et al. [13] proposed multiple state machines that
monitor the program execution to make cache reconfiguration
decisions while attempting to avoid unnecessary reconfigura-
tions. Hajimir et al. [28] proposed an intra-task dynamic cache
reconfiguration method that used a dynamic programming-
based algorithm to determine the best cache configuration,
while reducing DSE overhead. However, these methods still
required DSE whenever the cache configuration needed to
be changed. More recently, Adegbija et al. [7] proposed a
phase distance mapping method that eliminated the need for
DSE by directly estimating the best configuration for an
application phase given the phase’s performance characteris-
tics. The proposed technique employed correlations between
a known phase’s best configuration and characteristics, and a
new phases’ characteristics.

C. Analytical/Predictive Modeling Techniques
Since online DSE can often execute an application in

inferior sub-optimal cache configurations that result in severe

performance and energy consumption degradation, reducing
or eliminating DSE is an attractive solution. Phase distance
mapping, is one such solution and is considered as a predictive
modeling approach. Another predictive modeling approach
was presented in [29] where the authors constructed IPC
curves for different sets of applications that allowed the
application performance to be predicted for all level two cache
way values by observing the application’s performance for
only one level two cache way value. Such cross-configuration
prediction of application performance can significantly speed
up online DSE by examining different configurations simul-
taneously while executing a single configuration. Prior works
have shown that analytical models that rely on the application
execution trace can be successfully used [12], [22].

V. ONLINE CACHE TUNING AND CONTROL

The ultimate goal of a configurable cache system is to
realize self-tuning that is transparent to the end user and the
running applications [5], [13]. To achieve this goal, this self-
tuning cache system can be formulated as a feedback control
system that self-monitors performance and adjusts the cache
parameters in order to meet runtime-defined time-varying user-
defined QoE expectations. For the best closed-loop control per-
formance, the application phases’ characteristics, the phases’
cache requirements, and the tuning interval must be taken into
consideration.

There has been some prior work related to these goals.
Peng et al. [13] developed multiple state machines to mon-
itor application execution, detect performance changes that
accompany phase changes (i.e., tuning interval), and tune the
cache accordingly. However, determining the tuning interval
is extremely challenging. Gordon-Ross et al. [5] showed
that the tuning interval must never overshoot a change in
application phase in order to avoid severe energy penalties
that result from executing an inappropriate cache configura-
tion through an undetected application phase change. When
overshoot happens, the new application phase operates using
the cache configuration that was determined to be the best
configuration for a previous phase but may no longer be the
best configuration for the new phase, imposing tremendous
energy penalties.

A self-tuning cache system must provide the following
functionalities: 1) be capable of autonomously monitoring and
collecting information about the optimization metrics; 2) be
able to dynamically reconfigure the tunable parameter values;
3) be capable of determining when and how to change the
cache parameters in response to varying application phase
requirements without introducing severe penalties [5], [13];
and 4) adapt to user-defined QoE expectations; and limit user
experience degradation during DSE.

These requirements echo the notion that a self-tuning cache
system is a variation of a feedback control system, an example
of which was proposed in [5] and is reproduced in Fig. 2.
The purpose of that control system was to dynamically adjust
the tuning interval such that the interval matched as closely

Fig. 2. Proposed feedback control system architecture for a self-tuning
cache [5].

as possible to the application’s phase changes without over-
shooting. The CMR was used as the performance optimization
metric to determine when cache reconfiguration needed to
occur, and an energy model was implemented as an online
energy calculator to provide the energy optimization metric
that guided the closed-loop operation of the control system. In
reference to the general problem formulation in Section II, we
also note the correspondence between these two performance
and energy optimization metrics, which we denoted as u(.)
and e(.), respectively.

Adegbija et al. [7] exploited application phase information
online to directly estimate the best cache configuration using
a statistical model that correlated known and new phase
characteristics to the best known cache configuration for a
base phase. The advantage of this approach was that the model
essentially eliminated DSE by inferring a best cache configu-
ration. This approach can be classified as a statistical machine
learning-based approach where a large dataset of known
application phases and associated best cache configurations
are used offline and comprises the training dataset. A statistical
model is learned from this training dataset, and subsequently
used online to make predictions about new data [30]. Since it is
possible to summarize the statistics of a huge training dataset
using a lightweight statistical model that is later used online,
we argue that machine learning-based approaches represent a
key component in online cache tuning and control. However,
since these prediction-based methods are error-prone, online
adaptation and control must be used in order to correct for the
modeling-related errors and to update the statistical models at
runtime. Therefore, in our proposed approach, we use online
adaptation in the statistical model as presented in the next
subsection.

A. Proposed Architecture

Fig. 3 depicts our proposed architecture for closed-loop,
online cache tuning and control. Similar to a closed-loop con-
trol system, our proposed architecture comprises a controller,
which is the cache tuner module, and a plant that is to be
controlled, which is the microprocessor’s cache subsystem.

The cache tuner module determines the best cache configu-
ration for the executing application phase. This module takes
into account the dynamic user QoE expectations as part of the
optimization objective function. The cache tuner module also

Cache Tuner (the controller)

Microprocessor

(the plant)

Online

Adaptation

E
x
ec

u
ti

o
n

S
ta

ti
st

ic
s

Energy

Model

Cache

Configuration

Temporal Execution Data

Cache

Subsystem

QoE-Aware

Optimization

Objective

Phase-based

Statistical

Model

Performance/

Energy

Fig. 3. Our proposed architecture for closed-loop, online cache tuning and
control.

uses an adaptive phase-based statistical model to predict the
best cache configuration that satisfies the current optimization
objective. This statistical model assists DSE by simultaneously
predicting the performance and energy metrics’ values for
multiple cache configurations or even by directly predicting
the best cache configuration based on execution statistics.

We propose that the statistical model incorporates
linear/non-linear adaptive filters—a class of statistical models
that convolve a time series with filter weights to perform
online prediction—and can adapt the weights of this model
using an online adaptation method [31]. While prior work
used instant-by-instant phase information for statistical pre-
diction [7], we propose to consider the temporal history of the
execution characteristics at a fine-grained temporal resolution
for statistical prediction. In other words, we consider the
application execution statistics as well as the performance
and energy metrics as time series data, and collectively re-
fer to this data as temporal execution data. This machine
learning-based approach is poised to simultaneously improve
the prediction performance, and to operate at a higher temporal
resolution while providing an end-to-end prediction model
that does not explicitly require classification of the executing
application phase. Our proposed architecture makes use of
three major elements to improve upon previous approaches: 1)
considers the temporal history of the application’s execution
characteristics and the application’s phase information using
online filtering; 2) monitors the energy and performance of
the running applications’ phases and uses this information to
update and adapt the online filter; and 3) adapts to runtime-
defined time-varying user-defined QoE expectations.

B. Unexplored Challenges

One of the major challenges for online cache tuners is to
avoid user experience degradation due to DSE overheads, such
as power/energy and performance [7], [17]. To regulate these
overheads, we combine our proposed adaptive statistical model
with design space subsetting and consider the temporal execu-
tion data in order to improve the prediction performance while

minimizing the computational overhead. Another challenge is
that online cache tuners are expected to perform generally
well while executing a large variety of applications from
vastly different application domains. In the most challenging
situation, none of this information is available during design
time, thus no efforts can be made to enable more accu-
rate runtime predictions based on the particular application
or domain characteristics (e.g., data streaming applications
typically have high CMRs). In our proposed architecture,
the online adaptation module is responsible for changing
the weights of the filters in the statistical model based on
ground-truth data observed in real-time as different application
phases execute. By adapting the embedded statistical model
online, our proposed architecture can continue to improve the
prediction accuracy whenever degraded performance for some
application/phase is observed.

Predictions can also be improved by tracking best config-
urations and correlating those configurations to device sensor
readings. For example, ambient lighting conditions could be
used to regulate video frame rate, thereby reducing the frame
rate in low lighting. Predictions can also be done using time-
of-day correlations. Users likely use their devices differently
during working hours, thus QoE expectations may be lower
in general than during non-working hours. For any type of
correlation, historical data can be kept that enables direct
lookups of best configurations given different sensor value
combinations to eliminate DSE for known scenarios. This
historical data could also be mined to determine user patterns
and characteristics that can enable best configurations to be
predicted for unknown scenarios. Whereas this challenge is
not a make-or-break point for self-tuning systems, an effective
solution would greatly improve QoE.

A challenge that all online cache tuners must address is the
introduced power/energy and performance overheads during
DSE, and general area overheads due to the architectural
structures required to enable and orchestrate cache tuning. To
have the most accurate tuning interval estimation, the tuner
should frequently evaluate execution characteristics to avoid
severe penalties for missed phase changes. To address this
challenge, we construct our architecture to operate at two
different intervals. Since the statistical model uses an online
filter, this model can operate at a relatively high sampling
frequency such that the model is almost guaranteed to never
miss a phase change. The filter implementation can use a
recursive formulation such that the filter can cover a long
temporal span at a high sampling resolution while using few
filter weights. The reduced number of filter weights results
in significantly fewer computations, and, therefore, power and
area savings for the on-chip hardware filter implementation.
To further reduce the power overhead, the controller can limit
cache reconfigurations to cases where the expected optimiza-
tion metric gains are beyond a predefined threshold. In other
words, while the online statistical filter runs at a high sampling
resolution, the cache reconfiguration decisions occur at a much
lower rate that is based on statistical thresholding.

Another challenge is incorporating user feedback to identify
what the user considers a best configuration, and to ascertain
how much DSE-related degradation is tolerable. Identifying
the user-defined best configuration can be done using exist-
ing operational settings that allow the user to enter energy-
savings or performance-enhanced modes. However, this does
not provide the fine level of granularity necessary to deter-
mine Pareto-optimal best configurations for diverse operating
environments and applications. An intrusive approach would
be to periodically poll the user to swipe left or right based on
their level of satisfaction. However, given the granularity of
feedback needed to gather information during DSE and that the
system may only execute for a fraction of a second or several
seconds in each configuration, this method is infeasible. A
non-intrusive approach would be to use the device’s internal
sensors to infer user satisfaction, such as using the accelerome-
ter to detect user frustration that physically agitates their usage
of the device. However, this method does not provide detailed
enough feedback and would not work for all users. An ideal
situation will likely combine both intrusive and non-intrusive
techniques. Finding a solution to this challenge is critical to
realizing self-tuning systems.

VI. CONCLUSIONS

Efficient and effective dynamic configurable cache tuning
is critical for modern embedded systems that are required to
operate in unknown environments, and execute a myriad of
applications that are typically unknown at design time while
dynamically responding to user quality of experience (QoE)
expectations. Realizing a self-tuning cache that is transparent
to both the user and the executing applications is hindered by
many challenges. Critical challenges include limiting the user’s
experience degradation during design space exploration (DSE),
adapting to unknown application requirements, minimizing the
area and power/energy overheads introduced by the self-tuning
circuitry, and determining how to incorporate user feedback
and device sensor readings. In addition, a self-tuning cache
subsystem should ideally adapt at a fine-grained, application
phase-based level.

In this paper, we reviewed current progress in cache tuning
and provided an overview of our proposed online, adaptive,
closed-loop control system architecture for dynamic cache
tuning. Our proposed architecture attempts to address some of
the challenges by: 1) utilizing application phase information
and temporal execution data at a high sampling frequency
in order to accurately predict the best cache configuration;
2) implementing the prediction model using computationally
efficient statistical filters; 3) adapting the prediction model
online to account for changing application execution statistics;
4) using a QoE-aware optimization objective function; and
5) operating at two different sampling frequencies in order
to minimize missed application phase changes while simul-
taneously saving dynamic power/energy consumption and ar-
chitecture area. Finally, we identified numerous unexplored
challenges, many of which are critical to realizing self-tuning
systems. Our future work involves implementing the proposed

architecture in order to quantify and evaluate our architecture
and solutions’ effectiveness for dynamic cache tuning.

ACKNOWLEDGMENTS

This work was supported by the National Science Founda-
tion (CNS-0953447 and CNS-1718033). Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES

[1] A. Malik, B. Moyer, and D. Cermak, “A low power unified cache archi-
tecture providing power and performance flexibility (poster session),”
in Proceedings of the 2000 international symposium on Low power
electronics and design. ACM, 2000, pp. 241–243.

[2] S. Mittal, “A survey of architectural techniques for improving cache
power efficiency,” Sustainable Computing: Informatics and Systems,
vol. 4, no. 1, pp. 33–43, 2014.

[3] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache for low
energy embedded systems,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 4, no. 2, pp. 363–387, 2005.

[4] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Dis-
covering and exploiting program phases,” IEEE micro, vol. 23, no. 6,
pp. 84–93, 2003.

[5] A. Gordon-Ross and F. Vahid, “A self-tuning configurable cache,” in
Proceedings of the 44th annual Design Automation Conference. ACM,
2007, pp. 234–237.

[6] M. H. Alsafrjalani and A. Gordon-Ross, “Quality of service-aware,
scalable cache tuning algorithm in consumer-based embedded devices,”
in Proceedings of the 26th edition on Great Lakes Symposium on VLSI.
ACM, 2016, pp. 357–360.

[7] T. Adegbija, A. Gordon-Ross, and A. Munir, “Phase distance mapping: a
phase-based cache tuning methodology for embedded systems,” Design
Automation for Embedded Systems, vol. 18, no. 3-4, pp. 251–278, 2014.

[8] D. E. Kirk, Optimal Control Theory: An Introduction. Courier
Corporation, 2004.

[9] C. Zhang and F. Vahid, “Cache configuration exploration on prototyping
platforms,” in Rapid Systems Prototyping, 2003. Proceedings. 14th IEEE
International Workshop on. IEEE, 2003, pp. 164–170.

[10] A. Gordon-Ross, F. Vahid, and N. Dutt, “Fast configurable-cache
tuning with a unified second-level cache,” in Low Power Electronics
and Design, 2005. ISLPED’05. Proceedings of the 2005 International
Symposium on. IEEE, 2005, pp. 323–326.

[11] P. Viana, A. Gordon-Ross, E. Keogh, E. Barros, and F. Vahid, “Con-
figurable cache subsetting for fast cache tuning,” in Proceedings of the
43rd annual Design Automation Conference. ACM, 2006, pp. 695–700.

[12] A. Gordon-Ross, P. Viana, F. Vahid, W. Najjar, and E. Barros, “A one-
shot configurable-cache tuner for improved energy and performance,” in
Proceedings of the conference on Design, automation and test in Europe.
EDA Consortium, 2007, pp. 755–760.

[13] M. Peng, J. Sun, and Y. Wang, “A phase-based self-tuning algorithm
for reconfigurable cache,” in Digital Society, 2007. ICDS’07. First
International Conference on the. IEEE, 2007, pp. 27–27.

[14] A. Gordon-Ross, F. Vahid, and N. D. Dutt, “Fast configurable-cache
tuning with a unified second-level cache,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 17, no. 1, pp. 80–91, 2009.

[15] M. H. Alsafrjalani and A. G. Ross, “Dynamic scheduling for reduced
energy in configuration-subsetted heterogeneous multicore systems,”
in Embedded and Ubiquitous Computing (EUC), 2014 12th IEEE
International Conference on. IEEE, 2014, pp. 17–24.

[16] M. H. Alsafrjalani, A. G. Ross, and P. Viana, “Minimum effort design
space subsetting for configurable caches,” in Embedded and Ubiquitous
Computing (EUC), 2014 12th IEEE International Conference on. IEEE,
2014, pp. 65–72.

[17] M. H. Alsafrjalani and A. Gordon-Ross, “Low effort design space
exploration methodology for configurable caches,” Computers, vol. 7,
no. 2, p. 21, 2018.

[18] T. Givargis and F. Vahid, “Platune: a tuning framework for system-
on-a-chip platforms,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 21, no. 11, pp. 1317–1327, 2002.

[19] T. Adegbija and A. Gordon-Ross, “PhLock: A cache energy saving
technique using phase-based cache locking,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 26, no. 1, pp. 110–121,
2018.

[20] G. Reinman and N. P. Jouppi, “CACTI 2.0: An integrated cache timing
and power model,” Western Research Lab Research Report, vol. 7, 2000.

[21] C. Zhang, F. Vahid, and R. Lysecky, “A self-tuning cache architecture
for embedded systems,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 3, no. 2, pp. 407–425, 2004.

[22] A. Ghosh and T. Givargis, “Cache optimization for embedded processor
cores: An analytical approach,” ACM Transactions on Design Automa-
tion of Electronic Systems (TODAES), vol. 9, no. 4, pp. 419–440, 2004.

[23] W. Zang and A. Gordon-Ross, “A survey on cache tuning from a
power/energy perspective,” ACM Computing Surveys (CSUR), vol. 45,
no. 3, p. 32, 2013.

[24] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,”
ACM SIGARCH computer architecture news, vol. 25, no. 3, pp. 13–25,
1997.

[25] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[26] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for
segmenting time series,” in Data Mining, 2001. ICDM 2001, Proceed-
ings IEEE International Conference on. IEEE, 2001, pp. 289–296.

[27] H. Zhao, X. Luo, C. Zhu, T. Watanabe, and T. Zhu, “Behavior-
aware cache hierarchy optimization for low-power multi-core embedded
systems,” Modern Physics Letters B, vol. 31, no. 19-21, p. 1740067,
2017.

[28] H. Hajimiri and P. Mishra, “Intra-task dynamic cache reconfiguration,”
in VLSI Design (VLSID), 2012 25th International Conference on. IEEE,
2012, pp. 430–435.

[29] M. Moreto, F. J. Cazorla, A. Ramirez, and M. Valero, “Online prediction
of applications cache utility,” in Embedded Computer Systems: Architec-
tures, Modeling and Simulation, 2007. IC-SAMOS 2007. International
Conference on. IEEE, 2007, pp. 169–177.

[30] M. B. Christopher, Pattern recognition and machine learning. Springer-
Verlag New York, 2016.

[31] S. Haykin, Adaptive filter theory. Prentice-Hall, Inc., 1986.

