
1 Introduction and Related Work
In order to meet high performance demands, modern
processor architectures exploit varieties of dynamic
branch prediction topologies ([4]-[6] provide an
excellent introduction and research coverage) to increase
instruction-level parallelism (ILP).

Dynamic branch predictors use run-time branch
execution history to predict branch direction. Most
previous techniques use a branch pattern history table
(known as PHTs, BHTs, or BPHTs) to record past
branch behavior (e.g., global and/or local) and these
tables are indexed using a function/subset of the branch
address. Nearly all dynamic branch predictors explored
in the last 10 years have been based on tables containing
2-bit saturating counters [7][8]. Extensive simulations of
branch predictors reveal that the 2-bit saturating counter
performs the best on average [9][10], and thus are used
in modern commercial processors.

In recent years, research has explored more advanced
branch prediction techniques such as neural networks
[11][12] and other forms of machine learning. Despite

their impressive simulation accuracy, to the best of our
knowledge no commercial efforts have publicly
announced incorporating such branch predictors because
these branch predictors are commonly known to exhibit
high prediction latency and long training periods with
increased area and energy per prediction [13].

In order to provide increased branch prediction
accuracy with low area and power overheads, in this
paper we propose a novel adaptive learning machine-
based shadow dynamic finite state machine (SDFSM).
The SDFSM learns/predicts an application’s unique
branching pattern using the prediction values (taken/not
taken) stored in each state. Upon branch execution, state
transition is input independent and the value of the target
state predicts the branch outcome. Each state has a
corresponding shadow state, which contains the alternate
branch prediction value. In the event of a mispredicted
branch, the SDFSM performs self-modification by
swapping the current state with the current state’s
shadow state, which contains the correctly predicted
branch outcome. This method of state swapping
dynamically records unique branch patterns, thus
specializing the branch predictor to the needs of an
application. Extensive experimental results compare the
SDFSM prediction accuracy to the commonly used
bimodal [1][2] counter-based predictor and reveal that,
for a subset of benchmarks, an SDFSM with six shadow
states provides more accurate predictions than counter-
base predictors with one-to-one prediction latency.

The remainder of this paper is organized as follows.
Section 2 describes the proposed SDFSM as an
alternative replacement for 2-bit saturating counters and
presents the SDFSM architecture. Section 3 and Section
4 present our simulation methodology setup and branch

Figure 1: The proposed shadow dynamic finite state
machine (SDFSM) using four states

A Shadow Dynamic Finite State Machine for Branch Prediction:
An alternative for the 2-bit Saturating Counter

Saleh Abdel-Hafeez1, Ann Gordon-Ross2*, Asem Albosul1, Ahmad shatnawi1 and Shadi Harb2
1Department of Computer Engineering,
Jordan University of Science & Technology
Irbid, Jordan 21110
sabdel@just.edu.jo
2Department of Electrical & Computer Engineering
University of Florida, Gainesville, FL 32611, USA
ann@ece.ufl.edu
*Also with the NSF Center for High Performance Reconfigurable Computing (CHREC) at UF

Keywords: Branch Predictor, Bimodal, Finite State Machine, SDFSM, SPEC2000, Saturated Counter,
SimpleScalar

Received: July 2009

We propose an adaptive learning machine-based branch predictor – the shadow dynamic finite state machine
(SDFSM) – that enables more accurate branch predictions by learning unique branching patterns through a self-
modifying technique. SDFSM states represent branch pattern bits. If a state mispredicts a branch, the state is
swapped with its shadow state, which represents the correct branching pattern bit. Therefore, the prediction
accuracy can reach 100% if the number of states matches a branch’s pattern length. When compared to a 2-bit
saturating counter using bimodal branch predictors, the SDFSM decreases average misprediction rates by 18.3%,
with individual decreases as high as 55%.

predictor analysis, respectively. Section 5 compares
counter-based predictors and SDFSM-based predictors.
Section 6 presents a performance analysis and finally,
section 7 gives conclusions and suggested future
dynamic branch prediction development.

2 Shadow Dynamic Finite State
Machine (SDFSM) Branch
Prediction

In this section, we present our shadow dynamic finite
state machine (SDFSM) branch prediction technique for
learning/predicting an application’s unique branching
patterns.

2.1 SDFSM Operation
Figure 1 depicts the SDFSM using a 4-state SDFSM
automaton (larger SDFSMs are similarly represented
using more states). SDFSM state values record/predict
branch outcomes. SDFSM operation consists of two
phases: the training phase and the operational phase.
During the training phase, SDFSM states are
manipulated such that they learn the application’s
branching pattern. SDFSM state transition is
deterministic upon each branch execution and the next
state’s value corresponds to the predicted branch
outcome. In other words, branch prediction is
determined by the branch history pattern and not by the
input condition leading to the next state. If a state’s
prediction value is correct, no change is made to the
SDFSM. If a state’s prediction value is incorrect, the
SDFSM self-modifies to adapt to the branching pattern.

In order to learn branching patterns, each state has a
corresponding shadow state (positioned adjacent to the
state), and the shadow state contains the opposite
prediction value. Thus, if a state’s value does not
correspond to the branching pattern, the state is swapped
with its shadow state in order to swap the state’s branch
prediction value. During the training phase, the states
record the observed pattern and during the operational
phase, the states predict taken/not taken. This implies
that the SDFSM learns a distinct pattern on-the-fly and
then predicts this pattern perfectly. Furthermore, the
training and operational phases are not necessarily
mutually exclusive as the SDFSM transitions to the
training phase anytime there is a misprediction.

Figure 2 illustrates the 4-state SDFSM using a
repeated pattern of 1010, which is commonly known to
produce poor prediction rates for saturating counter
techniques [14]. All state values are initialized to 0.

Upon first execution of the branch, the SDFSM enters
the initial state (step 1), whose state value is 0 and
predicts the branch as not taken. After branch resolution,
if the state mispredicted the branch outcome, the state is
swapped with its shadow state and the state’s predicted
value becomes 1. On the next execution of the branch,
the SDFSM transitions to the next state (step 2), which
correctly predicts the branch as not taken. On the next
execution of the branch, the SDFSM transitions to the
next state (step 3), which predicts the branch as not
taken. Again, branch resolution determines that the
branch was mispredicted and the shadow state is
swapped in. On the next execution of the branch, the
SDFSM transitions to the next state (step 4), which
correctly predicts the branch as not taken. On the next
execution of the branch, the SDFSM transitions back to
the initial state, which ends the training phase and begins
the operational phase. The SDFSM now correctly
predicts the branch outcome on every branch execution.

Perfect branch pattern prediction only occurs if the
pattern repeats itself with a repetition cycle equal to (or a
divisor of) the number of states. A 4-state SDFSM can
perfectly predict any 2- or 4-entry branch pattern. This
restriction can be generalized to any x-entry pattern,
which would require an SDFSM with x states or any
multiple of x states. In Section 4, we provide an in-depth
analysis of numerous SDFSM sizes.

During context switching, in addition to traditional
branch predictor state saving techniques, SDFSM
operational state can be quickly saved and restored using
special hardware to read and save state on a single clock
cycle. State saving area overhead would be small, as

Figure 2: The SDFSM updates state predictions by

swapping states with shadow states based on the
observed pattern

Figure 3: SDFSM predictor hardware structure

only one n-bit counter is required for each context.
Currently, SDFSM operation is not pipelined, thus

mispredicted branches and branch overlap are not
accounted for. However, these operational enhancements
could be easily incorporated into the SDFSM by adding
additional steering logic and mispredicted rollback
capabilities. These additions would be straightforward
and could be done such that the prediction accuracy
would be unaffected, and are a focus of our future work.

2.2 SDFSM Architecture
Figure 3 depicts the generalized SDFSM architecture
(with N states) consisting of an array of N prediction
states and a shift register to selectively enable the
appropriate prediction state. Prediction state architectural
components include a single D-type flip-flop (DFF) to
store the state’s predicted value, a two input multiplexor
to swap the predicted value (effectively implementing a
swap with the shadow state), and several gate level
components. Prediction state inputs are similar to those
used for 2-bit saturating counters, which are initialize
(IN), prediction input pattern (PIP), enable (Z), and the
clock (CLK) signal. Prediction states have a single
output, which is the predicted value. The outputs of all
prediction states are connected to a common output
(Prediction Output Value) using tri-state buffers. The
shift register is composed of N DFFs, whose outputs Q
(also denoted as Z) are connected to the adjacent DFFs
inputs D and selectively enable the prediction states. The
shift register is clocked using the BRANCH signal,
which is asserted each time the branch associated with
this predictor is fetched.

At system startup, IN is asserted to reset the system.
IN is connected to each DFF’s reset (RES) port,
effectively setting all register values to 0, except for the
last DFF in the shift register. IN is connected to the set
(SET) port of this DFF in order to set this DFF’s value to
1. The shift register is responsible for selectively
enabling a single prediction state, thus only one bit in the
shift register should ever have a value of 1. Each time
the BRANCH signal is asserted, the shift register updates
its values, which enables the next sequential prediction
state via the Z signal.

SDFSM prediction states consist of two operational
phases: the predict operation and correct operation. The
predict operation provides the branch prediction value
while the correct operation swaps the branch prediction
value with the shadow state value if the branch is
mispredicted. During the predict operation, the enabled
prediction state’s output drives the Prediction Output
Value using Z’s assertion to enable the tri-state buffer.
During this time, the PIP input value should correspond

to the Prediction Output Value (not shown in Figure 3)
so that the DFF value does not change.

If a branch is mispredicted, the PIP value will change
to the branch outcome value and the prediction state
enters the correct operational phase. During this phase,
simple logic gates controlling the multiplexor’s inputs
and select line swap the DFF’s stored value with the
shadow value. Thus, in order to swap the DFF’s stored
value, the PIP must be different than the currently stored
value and Z must be asserted.

The SDFSM has been architecturally designed to
complete in one fast clock cycle. Assuming the DFFs are
constructed using two levels of 3-input NAND gates and
the multiplexor is constructed using standard two level
logic gates, the longest register-register delay is seven
gates (since DFF updating for the shift registers and
prediction states is mutually exclusive, no phase flows
through both DFFs). This situation occurs during the
correct operational phase.

Table 1 depicts hardware area estimates in number of
hardware components based on the number of prediction
states N, where total hardware area grows at a rate of
O(N). To minimize the output steering logic, prediction
state outputs share a common output wire using tri-state
buffers. In addition, to minimize active power, the DFFs
in each prediction state are only activated on a
misprediction. Overall, the SDFSM architecture is
highly cost-effective in terms of performance, area, and
power.

3 Simulation Methodology and
Evaluation Metrics

In order to perform an in depth analysis of the SDFSM,
we exhaustively simulated the SPEC2000 benchmark
suite [16] (we simulated each application in its entirety
for all provided input stimuli) using the SimpleScalar
PISA processor simulator version 4 [15]. We modified
sim-bpred to implement the SDFSM and simulated the
SDFSM with 2, 3, 4, 6, 8, 10, and 12 states. Our
comparison framework focused on comparing the
SDFSM to a popular branch prediction technique
(bimodal) using 2-bit saturating counters with branch
prediction table sizes ranging from 256k- to 16k-entries.
We compare with the bimodal predictor because the
bimodal predictor is a branch predictor cornerstone and
allows us to establish the fundamental contribution of
our SDFSM. Table 2 summarizes the base system’s
architectural parameters, which represent common
modern system parameters, yet are conservative with
respect to future technologies.

Each branch prediction table entry contains an FSM,

Table 1: Total number of hardware components
based on the number of SDFSM prediction states (N).

Table 2: Architectural parameters

Component Type Number of components
D-Type Flip-Flop (DFF) 2N
Two-input Multiplexer N

AND gate logic N
XOR gate logic N

Tri-state gate logic N

Parameter Configuration
BTB, assoc, cache line size 128KB, 4-way, 32B

L2 unified size, assoc, cache line size 256KB, 4-way, 64B
L1 data size, assoc, cache line size 8KB, 4-way, 32B

L1 instruction size, assoc, cache line size 8KB, 4-way, 32B
Branch predictor techniques Bimodal

Reorder buffer size 512
L3 unified size, assoc, cache line size 4 MB, 2-way, 64B

Pipeline depth 40

which can be either the SDFSM or a 2-bit saturating
counter. Hence, the predictor storage budget (PSB) in
bits is determined by:

where N is the number of index bits used for the branch
prediction table. In the conventional bimodal branch
predictor, the low-order J bits of the branch address
index into a branch history table (BHT) of size 2J entries.
The BHT entries can either be 2-bit saturating counters
or can be replaced with SDFSMs of any size. Since it is
difficult to precisely compare predictors with exactly the
same hardware budgets, we compare predictors based on
number of table entries, which provides a fair
performance comparison because these tables account
for the majority of the hardware budget.

Cumulative prediction rate accuracies are computed
and analyzed using the arithmetic mean for averaging
prediction rates, over all benchmarks, based on predictor
storage budget. In addition, individual branch prediction
accuracies for every benchmark and every branch
prediction technique studied were measured for
increasing hardware budgets, reflecting branch predictor
sizes available in commercial microprocessors.

Improving processor performance, measured in

number of instructions executed per cycle (IPC), is
considered the key motivation for combining improved
branch prediction accuracy with low latency branch
prediction. High prediction latency nullifies any
prediction accuracy advantages due to decreased IPC.
For a 2-bit saturating counter, since each up-down
counter only requires 2 bits to record the branch
behavior, the technique requires simple hardware and
little storage space. In addition, the 2-bit saturating
counter’s inherent simplicity results in simple single-
cycle prediction computation, thus guaranteeing low
prediction latency. In contrast, perceptron-based
predictors require comparatively complicated
computation using adder components. The prediction
latency of the original perceptron predictor was more
than 4 cycles [13], which required heavy pipelining to
hide such latencies. This pipelining led to problems
similar as those encountered when designing modern
hyperpipelined execution cores [12]. Thus, since the
SDFSM has the same access delay (single-cycle) as the
2-bit saturating counter, the key evaluation metric is
SDFSM prediction accuracy compared to 2-bit
saturating counters with a fixed hardware budget.

4 Experimental Results
Figure 4 shows the prediction accuracy for all
benchmarks for the bimodal branch predictor with a 2-

Figure 4: Prediction accuracy for each benchmark using a 4k-entry BHT for the bimodal branch predictor
using a 2-bit saturating counter (counter) and SDFSMs with 2, 3, 4, 6, 8, 10, and 12 states (SDFSM-X)

Figure 5: Prediction accuracy for the six advantageous benchmarks using a 4k-entry BHT for the bimodal
branch predictor using a 2-bit saturating counter (counter) and SDFSMs with 2, 3, 4, 6, 8, 10, and 12 states

(SDFSM-X)

bit saturating counter (counter) and SDFSMs with 2, 3,
4, 6, 8, 10, and 12 states (SDFSM-X) using a 4k-entry
BHT. On average over all benchmarks, the 2-bit
saturating counter outperforms all SDFSMs. However,
we reiterate that branch predictors behave differently for
all applications, and there is no one branch predictor that
outperforms all other branch predictors for all
applications.

Figure 5 subsets the results and depicts the six
applications where the SDFSM shows improved
prediction accuracy over the 2-bit saturating counter. On
average, the 6-state SDFSM provides the largest
prediction accuracy improvements with an average
misprediction rate decrease of 18.3%, with individual
decreases ranging from 6.3% to 55%. Figure 5 also
reveals that for each benchmark, the optimal sized
SDFSM is quite different. The optimal SDFSM sizes for
ammp, equake, gzip_graphic, mcf, mesa, and
perlbmk_makerand are the 6-state, 12-state, 8-state, 2-
state, 12-state, and 6-state SDFSMs, respectively.

Figure 6 (a) depicts the arithmetic mean of the
prediction accuracy for all benchmarks for the bimodal
branch predictor with a 2-bit saturating counter (counter)
and SDFSMs with 2, 3, 4, 6, 8, 10, and 12 states
(SDFSM-X) for BHT sizes ranging from 256 to 128k-
entries. The prediction accuracy increases as BHT size
increases and saturates asymptotically. On average, the
2-bit saturating counter still outperforms all SDFSMs,
with the 2-bit predictors prediction accuracy saturating
at 92.3% and the next accurate predictor (6-state
SDFSM) saturating at 91%. On average, the 2-bit
saturating counter with 16k-entries (a practical hardware
budget) provides 1.7% more accuracy than the next most
accurate predictor.

Figure 6 (b) subsets the results from Figure 6 (a) and
averages the six applications where the SDFSM shows
improved prediction accuracy over the 2-bit saturating
counter. For these benchmarks, the 6-state SDFSM is
1.2% more accurate than the 2-bit saturating counter,
saturating asymptotically at 93.5%. This figure also
shows that both the 6- and 12-state SDFSMs outperform
the 2-bit saturating counter.

Overall, results reveal that our SDFSM has the
potential to further enhance the accuracy of 2-bit
saturating counters. Since literature shows that the most

advanced branch prediction methods adopt neural or
saturating elements, the SDFM has the potential to
improve on these methods as a replacement for the
saturating elements. The SDFSM is intended to enhance
branch prediction for certain applications that exhibit
particular behaviors such as aliasing, damping, and other
irregularities such as those found in artificial intelligence
and gaming applications (see Section 5 for details).

5 Comparison Analysis
In this section, we analyze the exhaustive results
presented in Section 4 and discuss comparative
advantages and disadvantages of the 2-bit and SDFSM
branch predictors considering aliasing interference,
damping, adaptability, training time, and latency.

5.1 Aliasing Interference and Damping
Since the BHT size is generally much less than the total
number of branches in an application, the bimodal
branch predictor uses the low-order J bits to index into
the BHT. Therefore, if two conditional branches have
the same low-order J bits, their branch streams will be
intermingled and sent to the same predictor. We define
this situation as aliasing interference. Due to aliasing
interference, and because we use the bimodal branch
predictor, both the 2-bit saturating counter and our
SDFSM-based predictor generally result in lower
prediction accuracy in the presence of significant
aliasing interference. Aliasing interference can be
alleviated through two methods. Simply increasing the
BHT size can significantly reduce aliasing interference.
Additionally, using other branch prediction techniques
such as per-address branch predictors (PAs) can reduce
aliasing interference by using a two level indexing
method [14]. The first level is indexed using a subset of
H bits of the branch address to index into a pattern
history table of size 2H, which stores the unique local
branch history pattern of that branch. This pattern is then
used to index into the second level, which contains either
global pattern histories (PAg) or per-address pattern
histories (PAp) [3].

In general, aliasing interference does not directly
imply prediction accuracy penalties. For example, if two
branches alias to the same BHT entry but their
executions are mutually exclusive, (the first branch

Figure 6: Arithmetic mean of the prediction accuracy for (a) all benchmarks and (b) for the six advantageous
benchmarks for the bimodal branch predictor with a 2-bit saturating counter (Counter) and SDFSMs with 2, 3, 4,

6, 8, 10, and 12 states (SDFSM-X) for BHT sizes ranging from 256 to 128k entries

(a) (b)

executes 1000 times followed by 1000 executions of the second branch) the prediction accuracy lost due to
aliasing interference is negligible. However, if two
branch executions are not mutually exclusive (the worst
case being that the two branches alternate executions),
then aliasing interference may lead to a significant
decrease in prediction accuracy. To analyze the effects
of aliasing interference in the case of two interfering
branches, we define the most frequently executing
branch as the majority branch and the least frequently
executing branch as the minority branch. We further
define a majority run as consecutive majority branch
executions with no intervening minority branch
executions. Minority runs are similarly defined.

Smith [1] observed that 2-bit saturating counters
implicitly provided an appropriate amount of damping
(or hysteresis) which alleviated some of the aliasing
interference. The damping mechanism in 2-bit saturating
counters requires two consecutive mispredictions before
the prediction value changes, thus ignoring minority runs
of length one. Damping trades off adaptability for
vulnerability to short minority runs. In addition,
damping also allows loop branches to incur just one
misprediction per loop iteration, instead of two
mispredictions (one on loop exit and one on loop entry).

On the other hand, the SDFSM’s implicit damping
mechanism is quite different than the 2-bit saturating
counter. The SDFSM simply learns the branching
pattern that maps to a particular BHT entry. Therefore,
as long as the combined patterns of the interfering
branches produce a learnable pattern, the SDFSM will
learn that pattern. However, since these combined
patterns are likely longer than individual branching
patterns, this implies that SDFSMs with more states
provide increased damping. The SDFSM predictor
actually provides high/perfect prediction accuracy for
applications with short minority runs as well as long
minority/majority runs, by minimizing or even
eliminating aliasing interference. On the contrary, in the
presence of aliasing interference, damping in saturating
counters only works well for long minority runs.

Literature shows that the bimodal predictor is widely
known to have a significant amount of aliasing
interference even as the hardware budget increases
[2][4]. In our experiments, since both the 2-bit saturating
counter and the SDFSMs use a bimodal predictor, large
amounts of aliasing interference will favor the counter-

based predictor since the counter based predictor can
better tolerate aliasing interference. Figure 4 shows that
on average the 2-bit saturating counter can reduce the
misprediction rate by 14.3% over the best SDFSM
predictor (SDFSM-6). On the other hand, for the six
benchmarks where SDFSMs are advantageous, short
minority runs (which are considered a limitation of
counter-based predictors) favor the SDFSM predictor.
For these six benchmarks, Figure 5 shows that the
SDFSM can decrease misprediction rates by 18.3% on
average.

5.2 Recurring Patterns
Researchers have shown that aliasing in the pattern
history tables can significantly degrade the performance
of bimodal branch predictors. [3][4][21][23] showed that
a repeating pattern of length one (i.e., “1111…1” or
“0000…0”) was detected for approximately 50% of the
branches, indicating that a significant amount of branch
inference may occur if the PHTs are updated for these
branches. For these situations, a simple predictor such as
a bimodal predictor would typically outperform the
SDFSM predictor, which would incur every interference
update.

In addition, research showed bimodal predictors
could accurately predict branches with short repeating
patterns, while branches with a repeating pattern of
length six tended to have higher mispredication rates
[21][22][23], as is show in Figure 7 from [23]. Since
Section 4 revealed that the 6-state SDFSM was the best
performing number of states on average, the 6-steate
may provide improved performance for these branching
patterns of length 6. In addition, our results
demonstrated that SDFSMs with a smaller number of
states suffered less branch interference penalty as
compared to SDFMs with a larger number of states,
which could explain why the 6-state SDFSM
outperformed the 12-state SDFSM (or for any SDFSM
with a multiple of 6 states).

5.3 Adaptability and Training Time
Branches typically exhibit high biasing (usually 70%
[4]) towards one outcome (taken or not taken). This bell
distribution (bell peaks at 70%) is key to a counter-based
predictor’s high prediction accuracy and explains why
the 2-bit saturating counter outperforms the SDFSM for
the majority of the benchmarks. To provide better
prediction accuracy for low biasing applications,
previous work shows [3][5] that applications with
branches that show low biasing require dynamic
adaptability in order to achieve high prediction
accuracies. This dynamic adaptability enables the
predictor to specialize itself to a branch’s biasing during
application execution. Dynamic adaptability provides the
added benefits of not requiring any static profiling or
branch predictor training during system/application
design time. The 2-bit saturating counter lacks dynamic
adaptability. On the other hand, our N-state SDFSM-
based predictor can dynamically adapt to any branch
pattern of length equal to (or a divisor of) N. The larger

Figure 7: Bimodal predictor misprediction rates for

various pattern lengths.

the number of states, the more flexibility the SDFSM has
for adapting to different pattern lengths.

However, SDFSMs with a large number of states can
negatively impact the prediction accuracy due to longer
training times. Figure 5 exemplifies this impact with the
6- and 12-state SDFSMs. Ammp, gzip_graphic, mcf, and
perlbmk_makerand show increased prediction accuracy
for a 6-state SDFSM even though the 12-state SDFSM
captures the same branching pattern. On the other hand,
equake and mesa show decreased prediction accuracy
for the 6-state SDFSM because these benchmarks likely
have longer branch patterns, thus requiring more
SDFSM states. On average, the 6- and 12-state SDFSMs
decrease misprediction rates by 18.3% and 15.4%
compared to the 2-bit saturating counter, respectively.
The 6-state SDFSM decreases misprediction rates by 4%
compared to the 2-bit saturating counter. This overhead
is due to the 12-state SDFSM’s increased training time.
Similar trends are evident when comparing 2- and 6-
state SDFSMs, as well as any other SDFSM with
common divisors.
5.4 Latency
Few hardware resources are required to implement both
the 2-bit saturating counter and the SDFSM predictors
and thus these techniques require only modest storage
space. In addition, this inherent simplicity results in
simple predictions and computations, which guarantees
low prediction latency (a critical component for high
performance in processors). The SDFSM-based
predictor requires only a single cycle for training and
prediction, while 2-bit saturating counter-based
predictors require two cycles for training and predicting.
Thus, the overall prediction latency of the SDFSM-based
predictor is 50% less than that of the 2-bit saturating
counter-based predictor, resulting in a higher instruction-
per-cycle (IPC).

6 Performance Evaluation
Figure 6 (a) showed that the counter-based predictor was
more accurate on average than the SDFSM with respect
to the arithmetic mean. However, the counter-based
predictor’s misprediction latency cycles is twice that of
the SDFSM, as was described in Section 5.4. The
additional misprediction cycle adversely affects overall
processor performance due to stalls while waiting for the
training and subsequent prediction. Therefore, in order
to more fairly compare complete predictor performance,
we must consider the mispenalty latency in conjunction
with the misprediction rate.
 We evaluate the SDFSM and counter-based bimodal
type predictors with respect to the misprediction per
cycle (MPC) and the prediction accuracy rates (PAs) as
determined by simulation. In order to provide an
analysis that is independent of the processor clock speed,
the misprediction rate is normally measured in cycles
rather than in seconds, such that:

and:

Figure 8 shows the MPCs with respect to hardware
budget in number of entries and Figure 9 subsets these
results as in Figure 6 (a) (i.e., those where the SDFSM
showed improvement over the counter-based predictor
with respect to misprediction rates), Similarly to the
misprediction rates for these subsetted benchmarks, the
MPCs for all SDFSMs improves with respect to counter
predictor, with an average overall performance increase
of 37%. However, on average over all benchmarks the
counter-based predictor still had the lowest
misprediction rate.

Figure 8: Mispredictions per cycle per benchmark with a hardware budget of 4KB.

Branch predictor performance can also be evaluated
using the misprediction speedup, as derived in [17], such
that:

Figure 10 shows the misprediction speedup verses
hardware budget in number of entries for various
SDFSM sizes compared to the counter-based predictor.
These speedups are in line with speedups obtained for
other recent innovations in branch predictors [18]-[20].

7 Conclusion and Future Work
This paper proposes the shadow dynamic finite state
machine (SDFSM), a new branch predictor where the
FSM states are dynamically trained during rum-time to
learn unique branch pattern behaviors. Whereas the
SDFSM can be generalized to any arbitrary number of
states, we explored several SDFSM sizes and compared
extensive simulation results on the SPEC2000
benchmark suite with 2-bit saturating counters using a
conventional bimodal-based branch predictor. Results
revealed that the SDFSM decreases average
misprediction rate for six benchmarks, which have
irregular branching tendencies (i.e. those seen in
artificial intelligence and gaming applications).
Furthermore, in the situations where the SDFSM was
slightly less accurate than the 2-bit predictor, this
reduced accuracy was due to the nature of the bimodal
predictor architecture (and not a failure of the SDFSM),
which inhibits a large percentage of aliasing phenomena
that severely affects the performance of our SDFSM
automaton on prediction accuracy. The SDFSM will
likely show marked improvements when coupled with
predictors that are less affected by aliasing such as PAs
and GAs.

In addition, the SDFSM uses a simple hardware
structure, which provides single cycle training and
prediction latency; in contrast, the 2-bit counter predicts
and corrects in two cycles. This single cycle advantage
for the SDFSM offsets the accuracy advantage of the 2-
bit counter by trading off performance with respect to
the instructions-per-cycle (IPC) rate.

Finally, we explored and analyzed the number of
SDFSM states in the scope of adaptability, training,

damping, and aliasing in order to determine their affect
on prediction accuracy. Results show that a 6-state
SDFSM is a good average configuration for optimal
length for bimodal predictor topology. Thus, our results
encourage researchers to explore the SDFSM combined
with more advanced predictor methods, thus improving
the accuracy of those predictors.

Our future work is motivated by the per-application
variation in optimal SDFSM size as shown in Figure 5.
Consequently, choosing the best number of states is a
key design decision since the SDFSM structure does not
dynamically alter its number of states based on pattern
entries. Therefore, our future work includes architecting
an adaptive SDFSM capable of dynamically altering its
number of states based on actual branch pattern length.

8 References
[1] J. Smith, “A Study of Branch Prediction

Strategies,” International Symposium on Computer
architecture (ISCA), pp. 135-148, June 1981.

[2] C. –C. Lee, C. C. Chen, and T. N. Mudge, “The Bi-
mode Branch Predictor,” International Symposium
on Microarchitecture (MICRO 30), pp. 4-13,
December 1997.

[3] T. Yeh and Y. Patt, “A Comparison of Dynamic
Branch Predictors that use Two Levels of Branch
History,” International Symposium on Computer
architecture (ISCA), pp. 257-266, June 1993.

[4] C. Young, N. Gloy, and M. D. Smith, “A
Comparative Analysis of Schemes for Correlated
Branch Prediction,” International Symposium on
Computer architecture (ISCA), pp. 276-286, July
1995.

[5] A. Seznec, “Analysis of the O-Geometric History
Length Branch Predictor,” International
Symposium on Computer Architecture (ISCA), pp.
394-405, June 2005.

[6] P. Biggar, N. Nash, K. Williams and D. Gregg,
“An Experimental Study of Sorting and Branch
Prediction,” Journal of Experimental Algorithmic
(JEA), Volume 12, Article 1.8, June 2008.

[7] Y. Ma, Hongliang Gao, and Huiayang Zhou,
“Using Indexing Functions to Reduce Conflict
Aliasing in Branch Prediction Tables,” IEEE

Figure 9: Average mispredictions per cycle verses

hardware budget in number of entries

Figure 10: Misprediction speedup verses hardware

budget in number of entries for various SDFSM state
sizes compared to the counter-based predictor.

 Transactions on Computers, Vol. 55, No. 8, pp.
1057-1061, August 2006.

 [8] C. Y. Ho, K. F. Chong, C. H. Yau, and A. S. S.
Fong, “A Study of Dynamic Branch Predictors:
Counter versus Perceptron,” International
Conference on Information Technology
(ITNG’07), pp. 528-536, April 2007.

[9] R. Nair, “Optimal 2-bit Branch Predictors,” IEEE
Transactions on Computers, Vol. 44 (5), pp. 698-
702, Issue 5, May 1995.

[10] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A quantitative Approach, Morgan
Kaufman Publishers, 3rd Edition, 2003.

[11] D. A. Jimenez and C. Lin, “Dynamic Branch
Prediction with Perceptron,” International
Symposium on High-Performance Computer
Architecture, (HPCA), pp. 197-206, January 2001.

[12] A. S. Fong and C. Y. Ho, “Global/Local Hashed
Perceptron Branch Prediction,” International
Conference on Information Technology: New
Generations ITNG '08, pp. 247-252, April 2008.

[13] D. A. Jimenez, “Improved Latency and Accuracy
for Neural Branch Prediction,” Transactions on
Computer Systems (TOCS), Volume 23 Issue 2,
pp. 197-218, May 2005.

[14] K. C. Breen and D. G. Elliott, “Aliasing and Anti-
Aliasing in Branch History Table Prediction,”
Computer Architecture News, Vol. 31, No. 5, pp.
1-4, December 2003.

[15] T. Austin, D. Ernst, E. Larson, C. Weaver, R. N.
Raj Desikan, J. Huh, B. Yoder, D. Burger, and S.
Keckler, SimpleScalar Tutorial 2001 (for release
4.0).

[16] SPEC 2000, The SPEC 2000 Benchmark Report,
Waterside Associates, Fremont, CA., January 1990.

[17] M. Burtscher and B. G. Zorn, ”Prediction Outcome
History-based Confidence Estimation for Load

Value Prediction,” Journal of Instruction-Level
Parallelism, Vol 1, May 1999.

[18] T. H. Heil, Z. Smith, and J. E. Smith, “Improving
Branch Predictors by Correlating on Data Values,”
32nd Annual international symposium on
Microarchitecture (MICRO-32), pp. 28-37, Nov.
1999.

[19] R. Thomas, M. Franklin, C. Wilkerson, J. Stark,
“Improving Branch Prediction by Dynamic
Dataflow-based Identification of Correlated
Barnches from a large Global History,” 30th Annual
International symposium on Computer
Architecture, pp. 314-323, June 2003.

[20] R. Sendag, J. J. Yi, P. Chuang, and D. J.
Lilja,”Low Power/Area Branch Prediction Using
Complementary Branch Predictors,” IEEE
International Symposium on Parallel and
Distributed Processing (IPDPS 2008), pp. 1-12,
June 2008.

[21] P. Chang, M. Evers, and Y. N. Patt, “Improving
Branch Prediction Accuracy by Reducing Pattern
History Table Interference,” Proceedings of the
1996 Conference on Parallel architecture and
Compilation Techniques, PACT ’96, pp. 48-57,
Oct. 1996.

[22] A. R. Talcott, M. Nemirovsky, and R. C. Wood,
“The influence of branch prediction table
interference on branch prediction scheme
performance,” International Conference on Parallel
Architectures and Compilation Techniques, pp. 89-
98, June1995.

[23] J. Stark, M. Evers, and Y. N. Patt, “Variable
Length Path Branch Prediction,” International
Conference on Architectural Support for
Programming Languages and Operating systems
(ASPLOS), pp. 170-179, Dec 1998.

