
1 Introduction and Related Work  
In order to meet high performance demands, modern 
processor architectures exploit varieties of dynamic 
branch prediction topologies ([4]-[6] provide an 
excellent introduction and research coverage) to increase 
instruction-level parallelism (ILP).  

Dynamic branch predictors use run-time branch 
execution history to predict branch direction. Most 
previous techniques use a branch pattern history table 
(known as PHTs, BHTs, or BPHTs) to record past 
branch behavior (e.g., global and/or local) and these 
tables are indexed using a function/subset of the branch 
address. Nearly all dynamic branch predictors explored 
in the last 10 years have been based on tables containing 
2-bit saturating counters [7][8]. Extensive simulations of 
branch predictors reveal that the 2-bit saturating counter 
performs the best on average [9][10], and thus are used 
in modern commercial processors.   

In recent years, research has explored more advanced 
branch prediction techniques such as neural networks 
[11][12] and other forms of machine learning. Despite 

their impressive simulation accuracy, to the best of our 
knowledge no commercial efforts have publicly 
announced incorporating such branch predictors because 
these branch predictors are commonly known to exhibit 
high prediction latency and long training periods with 
increased area and energy per prediction [13].  

In order to provide increased branch prediction 
accuracy with low area and power overheads, in this 
paper we propose a novel adaptive learning machine-
based shadow dynamic finite state machine (SDFSM). 
The SDFSM learns/predicts an application’s unique 
branching pattern using the prediction values (taken/not 
taken) stored in each state. Upon branch execution, state 
transition is input independent and the value of the target 
state predicts the branch outcome. Each state has a 
corresponding shadow state, which contains the alternate 
branch prediction value. In the event of a mispredicted 
branch, the SDFSM performs self-modification by 
swapping the current state with the current state’s 
shadow state, which contains the correctly predicted 
branch outcome. This method of state swapping 
dynamically records unique branch patterns, thus 
specializing the branch predictor to the needs of an 
application. Extensive experimental results compare the 
SDFSM prediction accuracy to the commonly used 
bimodal [1][2] counter-based predictor and reveal that, 
for a subset of benchmarks, an SDFSM with six shadow 
states provides more accurate predictions than counter-
base predictors with one-to-one prediction latency. 

The remainder of this paper is organized as follows. 
Section 2 describes the proposed SDFSM as an 
alternative replacement for 2-bit saturating counters and 
presents the SDFSM architecture. Section 3 and Section 
4 present our simulation methodology setup and branch 

 
 
 
 
 
 
 
 
 
 

Figure 1: The proposed shadow dynamic finite state 
machine (SDFSM) using four states 
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predictor analysis, respectively. Section 5 compares 
counter-based predictors and SDFSM-based predictors. 
Section 6 presents a performance analysis and finally, 
section 7 gives conclusions and suggested future 
dynamic branch prediction development.  

2 Shadow Dynamic Finite State 
Machine (SDFSM) Branch 
Prediction 

In this section, we present our shadow dynamic finite 
state machine (SDFSM) branch prediction technique for 
learning/predicting an application’s unique branching 
patterns.  

2.1    SDFSM Operation 
Figure 1 depicts the SDFSM using a 4-state SDFSM 
automaton (larger SDFSMs are similarly represented 
using more states). SDFSM state values record/predict 
branch outcomes. SDFSM operation consists of two 
phases: the training phase and the operational phase. 
During the training phase, SDFSM states are 
manipulated such that they learn the application’s 
branching pattern. SDFSM state transition is 
deterministic upon each branch execution and the next 
state’s value corresponds to the predicted branch 
outcome. In other words, branch prediction is 
determined by the branch history pattern and not by the 
input condition leading to the next state. If a state’s 
prediction value is correct, no change is made to the 
SDFSM. If a state’s prediction value is incorrect, the 
SDFSM self-modifies to adapt to the branching pattern.  

In order to learn branching patterns, each state has a 
corresponding shadow state (positioned adjacent to the 
state), and the shadow state contains the opposite 
prediction value. Thus, if a state’s value does not 
correspond to the branching pattern, the state is swapped 
with its shadow state in order to swap the state’s branch 
prediction value. During the training phase, the states 
record the observed pattern and during the operational 
phase, the states predict taken/not taken. This implies 
that the SDFSM learns a distinct pattern on-the-fly and 
then predicts this pattern perfectly. Furthermore, the 
training and operational phases are not necessarily 
mutually exclusive as the SDFSM transitions to the 
training phase anytime there is a misprediction. 

Figure 2 illustrates the 4-state SDFSM using a 
repeated pattern of 1010, which is commonly known to 
produce poor prediction rates for saturating counter 
techniques [14]. All state values are initialized to 0. 

Upon first execution of the branch, the SDFSM enters 
the initial state (step 1), whose state value is 0 and 
predicts the branch as not taken. After branch resolution, 
if the state mispredicted the branch outcome, the state is 
swapped with its shadow state and the state’s predicted 
value becomes 1. On the next execution of the branch, 
the SDFSM transitions to the next state (step 2), which 
correctly predicts the branch as not taken. On the next 
execution of the branch, the SDFSM transitions to the 
next state (step 3), which predicts the branch as not 
taken. Again, branch resolution determines that the 
branch was mispredicted and the shadow state is 
swapped in. On the next execution of the branch, the 
SDFSM transitions to the next state (step 4), which 
correctly predicts the branch as not taken. On the next 
execution of the branch, the SDFSM transitions back to 
the initial state, which ends the training phase and begins 
the operational phase. The SDFSM now correctly 
predicts the branch outcome on every branch execution. 

Perfect branch pattern prediction only occurs if the 
pattern repeats itself with a repetition cycle equal to (or a 
divisor of) the number of states. A 4-state SDFSM can 
perfectly predict any 2- or 4-entry branch pattern. This 
restriction can be generalized to any x-entry pattern, 
which would require an SDFSM with x states or any 
multiple of x states. In Section 4, we provide an in-depth 
analysis of numerous SDFSM sizes. 

During context switching, in addition to traditional 
branch predictor state saving techniques, SDFSM 
operational state can be quickly saved and restored using 
special hardware to read and save state on a single clock 
cycle. State saving area overhead would be small, as 

 
Figure 2: The SDFSM updates state predictions by 

swapping states with shadow states based on the 
observed pattern 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: SDFSM predictor hardware structure 

 



only one n-bit counter is required for each context. 
Currently, SDFSM operation is not pipelined, thus 

mispredicted branches and branch overlap are not 
accounted for. However, these operational enhancements 
could be easily incorporated into the SDFSM by adding 
additional steering logic and mispredicted rollback 
capabilities. These additions would be straightforward 
and could be done such that the prediction accuracy 
would be unaffected, and are a focus of our future work. 

2.2     SDFSM Architecture 
Figure 3 depicts the generalized SDFSM architecture 
(with N states) consisting of an array of N prediction 
states and a shift register to selectively enable the 
appropriate prediction state. Prediction state architectural 
components include a single D-type flip-flop (DFF) to 
store the state’s predicted value, a two input multiplexor 
to swap the predicted value (effectively implementing a 
swap with the shadow state), and several gate level 
components. Prediction state inputs are similar to those 
used for 2-bit saturating counters, which are initialize 
(IN), prediction input pattern (PIP), enable (Z), and the 
clock (CLK) signal. Prediction states have a single 
output, which is the predicted value. The outputs of all 
prediction states are connected to a common output 
(Prediction Output Value) using tri-state buffers. The 
shift register is composed of N DFFs, whose outputs Q 
(also denoted as Z) are connected to the adjacent DFFs 
inputs D and selectively enable the prediction states. The 
shift register is clocked using the BRANCH signal, 
which is asserted each time the branch associated with 
this predictor is fetched. 

At system startup, IN is asserted to reset the system. 
IN is connected to each DFF’s reset (RES) port, 
effectively setting all register values to 0, except for the 
last DFF in the shift register. IN is connected to the set 
(SET) port of this DFF in order to set this DFF’s value to 
1. The shift register is responsible for selectively 
enabling a single prediction state, thus only one bit in the 
shift register should ever have a value of 1. Each time 
the BRANCH signal is asserted, the shift register updates 
its values, which enables the next sequential prediction 
state via the Z signal. 

SDFSM prediction states consist of two operational 
phases: the predict operation and correct operation. The 
predict operation provides the branch prediction value 
while the correct operation swaps the branch prediction 
value with the shadow state value if the branch is 
mispredicted. During the predict operation, the enabled 
prediction state’s output drives the Prediction Output 
Value using Z’s assertion to enable the tri-state buffer. 
During this time, the PIP input value should correspond 

to the Prediction Output Value (not shown in Figure 3) 
so that the DFF value does not change. 

If a branch is mispredicted, the PIP value will change 
to the branch outcome value and the prediction state 
enters the correct operational phase. During this phase, 
simple logic gates controlling the multiplexor’s inputs 
and select line swap the DFF’s stored value with the 
shadow value. Thus, in order to swap the DFF’s stored 
value, the PIP must be different than the currently stored 
value and Z must be asserted.  

The SDFSM has been architecturally designed to 
complete in one fast clock cycle. Assuming the DFFs are 
constructed using two levels of 3-input NAND gates and 
the multiplexor is constructed using standard two level 
logic gates, the longest register-register delay is seven 
gates (since DFF updating for the shift registers and 
prediction states is mutually exclusive, no phase flows 
through both DFFs). This situation occurs during the 
correct operational phase.  

Table 1 depicts hardware area estimates in number of 
hardware components based on the number of prediction 
states N, where total hardware area grows at a rate of 
O(N). To minimize the output steering logic, prediction 
state outputs share a common output wire using tri-state 
buffers. In addition, to minimize active power, the DFFs 
in each prediction state are only activated on a 
misprediction. Overall, the SDFSM architecture is 
highly cost-effective in terms of performance, area, and 
power. 

3 Simulation Methodology and 
Evaluation Metrics 

In order to perform an in depth analysis of the SDFSM, 
we exhaustively simulated the SPEC2000 benchmark 
suite [16] (we simulated each application in its entirety 
for all provided input stimuli) using the SimpleScalar 
PISA processor simulator version 4 [15]. We modified 
sim-bpred to implement the SDFSM and simulated the 
SDFSM with 2, 3, 4, 6, 8, 10, and 12 states. Our 
comparison framework focused on comparing the 
SDFSM to a popular branch prediction technique 
(bimodal) using 2-bit saturating counters with branch 
prediction table sizes ranging from 256k- to 16k-entries. 
We compare with the bimodal predictor because the 
bimodal predictor is a branch predictor cornerstone and 
allows us to establish the fundamental contribution of 
our SDFSM. Table 2 summarizes the base system’s 
architectural parameters, which represent common 
modern system parameters, yet are conservative with 
respect to future technologies. 

Each branch prediction table entry contains an FSM, 

 
 
 
 
 
 

Table 1: Total number of hardware components 
based on the number of SDFSM prediction states (N). 

 
 
 
 
 
 
 
 
 

Table 2: Architectural parameters 

Component Type Number of components 
D-Type Flip-Flop (DFF) 2N 
Two-input Multiplexer N 

AND gate logic N 
XOR gate logic N 

Tri-state gate logic N 

 

Parameter Configuration 
BTB, assoc, cache line size 128KB, 4-way, 32B 

L2 unified size, assoc, cache line size 256KB, 4-way, 64B 
L1 data size, assoc, cache line size 8KB, 4-way, 32B 

L1 instruction size, assoc, cache line size 8KB, 4-way, 32B 
Branch predictor techniques Bimodal  

Reorder buffer size 512 
L3 unified size, assoc, cache line size 4 MB, 2-way, 64B 

Pipeline depth 40 

 



which can be either the SDFSM or a 2-bit saturating 
counter.  Hence, the predictor storage budget (PSB) in 
bits is determined by: 

 
 

 
where N is the number of index bits used for the branch 
prediction table. In the conventional bimodal branch 
predictor, the low-order J bits of the branch address 
index into a branch history table (BHT) of size 2J entries. 
The BHT entries can either be 2-bit saturating counters 
or can be replaced with SDFSMs of any size. Since it is 
difficult to precisely compare predictors with exactly the 
same hardware budgets, we compare predictors based on 
number of table entries, which provides a fair 
performance comparison because these tables account 
for the majority of the hardware budget. 

Cumulative prediction rate accuracies are computed 
and analyzed using the arithmetic mean for averaging 
prediction rates, over all benchmarks, based on predictor 
storage budget. In addition, individual branch prediction 
accuracies for every benchmark and every branch 
prediction technique studied were measured for 
increasing hardware budgets, reflecting branch predictor 
sizes available in commercial microprocessors.  

Improving processor performance, measured in 

number of instructions executed per cycle (IPC), is 
considered the key motivation for combining improved 
branch prediction accuracy with low latency branch 
prediction. High prediction latency nullifies any 
prediction accuracy advantages due to decreased IPC. 
For a 2-bit saturating counter, since each up-down 
counter only requires 2 bits to record the branch 
behavior, the technique requires simple hardware and 
little storage space. In addition, the 2-bit saturating 
counter’s inherent simplicity results in simple single-
cycle prediction computation, thus guaranteeing low 
prediction latency. In contrast, perceptron-based 
predictors require comparatively complicated 
computation using adder components. The prediction 
latency of the original perceptron predictor was more 
than 4 cycles [13], which required heavy pipelining to 
hide such latencies. This pipelining led to problems 
similar as those encountered when designing modern 
hyperpipelined execution cores [12]. Thus, since the 
SDFSM has the same access delay (single-cycle) as the 
2-bit saturating counter, the key evaluation metric is 
SDFSM prediction accuracy compared to 2-bit 
saturating counters with a fixed hardware budget. 

4 Experimental Results 
Figure 4 shows the prediction accuracy for all 
benchmarks for the bimodal branch predictor with a 2-

Figure 4: Prediction accuracy for each benchmark using a 4k-entry BHT for the bimodal branch predictor 
using a 2-bit saturating counter (counter) and SDFSMs with 2, 3, 4, 6, 8, 10, and 12 states (SDFSM-X) 

 

 
Figure 5: Prediction accuracy for the six advantageous benchmarks using a 4k-entry BHT for the bimodal 
branch predictor using a 2-bit saturating counter (counter) and SDFSMs with 2, 3, 4, 6, 8, 10, and 12 states 

(SDFSM-X) 
 
 



bit saturating counter (counter) and SDFSMs with 2, 3, 
4, 6, 8, 10, and 12 states (SDFSM-X) using a 4k-entry 
BHT. On average over all benchmarks, the 2-bit 
saturating counter outperforms all SDFSMs. However, 
we reiterate that branch predictors behave differently for 
all applications, and there is no one branch predictor that 
outperforms all other branch predictors for all 
applications.  

Figure 5 subsets the results and depicts the six 
applications where the SDFSM shows improved 
prediction accuracy over the 2-bit saturating counter. On 
average, the 6-state SDFSM provides the largest 
prediction accuracy improvements with an average 
misprediction rate decrease of 18.3%, with individual 
decreases ranging from 6.3% to 55%. Figure 5 also 
reveals that for each benchmark, the optimal sized 
SDFSM is quite different. The optimal SDFSM sizes for 
ammp, equake, gzip_graphic, mcf, mesa, and 
perlbmk_makerand are the 6-state, 12-state, 8-state, 2-
state, 12-state, and 6-state SDFSMs, respectively.  

Figure 6 (a) depicts the arithmetic mean of the 
prediction accuracy for all benchmarks for the bimodal 
branch predictor with a 2-bit saturating counter (counter) 
and SDFSMs with 2, 3, 4, 6, 8, 10, and 12 states 
(SDFSM-X) for BHT sizes ranging from 256 to 128k-
entries. The prediction accuracy increases as BHT size 
increases and saturates asymptotically. On average, the 
2-bit saturating counter still outperforms all SDFSMs, 
with the 2-bit predictors prediction accuracy saturating 
at 92.3% and the next accurate predictor (6-state 
SDFSM) saturating at 91%. On average, the 2-bit 
saturating counter with 16k-entries (a practical hardware 
budget) provides 1.7% more accuracy than the next most 
accurate predictor. 

Figure 6 (b) subsets the results from Figure 6 (a) and 
averages the six applications where the SDFSM shows 
improved prediction accuracy over the 2-bit saturating 
counter. For these benchmarks, the 6-state SDFSM is 
1.2% more accurate than the 2-bit saturating counter, 
saturating asymptotically at 93.5%. This figure also 
shows that both the 6- and 12-state SDFSMs outperform 
the 2-bit saturating counter. 

Overall, results reveal that our SDFSM has the 
potential to further enhance the accuracy of 2-bit 
saturating counters. Since literature shows that the most 

advanced branch prediction methods adopt neural or 
saturating elements, the SDFM has the potential to 
improve on these methods as a replacement for the 
saturating elements. The SDFSM is intended to enhance 
branch prediction for certain applications that exhibit 
particular behaviors such as aliasing, damping, and other 
irregularities such as those found in artificial intelligence 
and gaming applications (see Section 5 for details).  

5 Comparison Analysis  
In this section, we analyze the exhaustive results 
presented in Section 4 and discuss comparative 
advantages and disadvantages of the 2-bit and SDFSM 
branch predictors considering aliasing interference, 
damping, adaptability, training time, and latency. 

5.1 Aliasing Interference and Damping 
Since the BHT size is generally much less than the total 
number of branches in an application, the bimodal 
branch predictor uses the low-order J bits to index into 
the BHT. Therefore, if two conditional branches have 
the same low-order J bits, their branch streams will be 
intermingled and sent to the same predictor. We define 
this situation as aliasing interference. Due to aliasing 
interference, and because we use the bimodal branch 
predictor, both the 2-bit saturating counter and our 
SDFSM-based predictor generally result in lower 
prediction accuracy in the presence of significant 
aliasing interference. Aliasing interference can be 
alleviated through two methods. Simply increasing the 
BHT size can significantly reduce aliasing interference. 
Additionally, using other branch prediction techniques 
such as per-address branch predictors (PAs) can reduce 
aliasing interference by using a two level indexing 
method [14]. The first level is indexed using a subset of 
H bits of the branch address to index into a pattern 
history table of size 2H, which stores the unique local 
branch history pattern of that branch. This pattern is then 
used to index into the second level, which contains either 
global pattern histories (PAg) or per-address pattern 
histories (PAp) [3].  

In general, aliasing interference does not directly 
imply prediction accuracy penalties. For example, if two 
branches alias to the same BHT entry but their 
executions are mutually exclusive, (the first branch 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Arithmetic mean of the prediction accuracy for (a) all benchmarks and (b) for the six advantageous 
benchmarks for the bimodal branch predictor with a 2-bit saturating counter (Counter) and SDFSMs with 2, 3, 4, 

6, 8, 10, and 12 states (SDFSM-X) for BHT sizes ranging from 256 to 128k entries 

  
(a) (b) 



executes 1000 times followed by 1000 executions of the second branch) the prediction accuracy lost due to 
aliasing interference is negligible. However, if two 
branch executions are not mutually exclusive (the worst 
case being that the two branches alternate executions), 
then aliasing interference may lead to a significant 
decrease in prediction accuracy. To analyze the effects 
of aliasing interference in the case of two interfering 
branches, we define the most frequently executing 
branch as the majority branch and the least frequently 
executing branch as the minority branch. We further 
define a majority run as consecutive majority branch 
executions with no intervening minority branch 
executions. Minority runs are similarly defined. 

Smith [1] observed that 2-bit saturating counters 
implicitly provided an appropriate amount of damping 
(or hysteresis) which alleviated some of the aliasing 
interference. The damping mechanism in 2-bit saturating 
counters requires two consecutive mispredictions before 
the prediction value changes, thus ignoring minority runs 
of length one. Damping trades off adaptability for 
vulnerability to short minority runs. In addition, 
damping also allows loop branches to incur just one 
misprediction per loop iteration, instead of two 
mispredictions (one on loop exit and one on loop entry).  

On the other hand, the SDFSM’s implicit damping 
mechanism is quite different than the 2-bit saturating 
counter. The SDFSM simply learns the branching 
pattern that maps to a particular BHT entry. Therefore, 
as long as the combined patterns of the interfering 
branches produce a learnable pattern, the SDFSM will 
learn that pattern. However, since these combined 
patterns are likely longer than individual branching 
patterns, this implies that SDFSMs with more states 
provide increased damping. The SDFSM predictor 
actually provides high/perfect prediction accuracy for 
applications with short minority runs as well as long 
minority/majority runs, by minimizing or even 
eliminating aliasing interference. On the contrary, in the 
presence of aliasing interference, damping in saturating 
counters only works well for long minority runs.  

Literature shows that the bimodal predictor is widely 
known to have a significant amount of aliasing 
interference even as the hardware budget increases 
[2][4]. In our experiments, since both the 2-bit saturating 
counter and the SDFSMs use a bimodal predictor, large 
amounts of aliasing interference will favor the counter-

based predictor since the counter based predictor can 
better tolerate aliasing interference. Figure 4 shows that 
on average the 2-bit saturating counter can reduce the 
misprediction rate by 14.3% over the best SDFSM 
predictor (SDFSM-6). On the other hand, for the six 
benchmarks where SDFSMs are advantageous, short 
minority runs (which are considered a limitation of 
counter-based predictors) favor the SDFSM predictor. 
For these six benchmarks, Figure 5 shows that the 
SDFSM can decrease misprediction rates by 18.3% on 
average.  

5.2     Recurring Patterns 
Researchers have shown that aliasing in the pattern 
history tables can significantly degrade the performance 
of bimodal branch predictors. [3][4][21][23] showed that 
a repeating pattern of length one (i.e., “1111…1” or 
“0000…0”) was detected for approximately 50% of the 
branches, indicating that a significant amount of branch 
inference may occur if the PHTs are updated for these 
branches. For these situations, a simple predictor such as 
a bimodal predictor would typically outperform the 
SDFSM predictor, which would incur every interference 
update.   

In addition, research showed bimodal predictors 
could accurately predict branches with short repeating 
patterns, while branches with a repeating pattern of 
length six tended to have higher mispredication rates 
[21][22][23], as is show in Figure 7 from [23]. Since 
Section 4 revealed that the 6-state SDFSM was the best 
performing number of states on average, the 6-steate 
may provide improved performance for these branching 
patterns of length 6. In addition, our results 
demonstrated that SDFSMs with a smaller number of 
states suffered less branch interference penalty as 
compared to SDFMs with a larger number of states, 
which could explain why the 6-state SDFSM 
outperformed the 12-state SDFSM (or for any SDFSM 
with a multiple of 6 states).  

5.3  Adaptability and Training Time 
Branches typically exhibit high biasing (usually 70% 
[4]) towards one outcome (taken or not taken). This bell 
distribution (bell peaks at 70%) is key to a counter-based 
predictor’s high prediction accuracy and explains why 
the 2-bit saturating counter outperforms the SDFSM for 
the majority of the benchmarks. To provide better 
prediction accuracy for low biasing applications, 
previous work shows [3][5] that applications with 
branches that show low biasing require dynamic 
adaptability in order to achieve high prediction 
accuracies. This dynamic adaptability enables the 
predictor to specialize itself to a branch’s biasing during 
application execution. Dynamic adaptability provides the 
added benefits of not requiring any static profiling or 
branch predictor training during system/application 
design time. The 2-bit saturating counter lacks dynamic 
adaptability. On the other hand, our N-state SDFSM-
based predictor can dynamically adapt to any branch 
pattern of length equal to (or a divisor of) N. The larger  

 
Figure 7: Bimodal predictor misprediction rates for 

various pattern lengths. 



 
the number of states, the more flexibility the SDFSM has 
for adapting to different pattern lengths. 

However, SDFSMs with a large number of states can 
negatively impact the prediction accuracy due to longer 
training times. Figure 5 exemplifies this impact with the 
6- and 12-state SDFSMs. Ammp, gzip_graphic, mcf, and 
perlbmk_makerand show increased prediction accuracy 
for a 6-state SDFSM even though the 12-state SDFSM 
captures the same branching pattern. On the other hand, 
equake and mesa show decreased prediction accuracy 
for the 6-state SDFSM because these benchmarks likely 
have longer branch patterns, thus requiring more 
SDFSM states. On average, the 6- and 12-state SDFSMs 
decrease misprediction rates by 18.3% and 15.4% 
compared to the 2-bit saturating counter, respectively. 
The 6-state SDFSM decreases misprediction rates by 4% 
compared to the 2-bit saturating counter. This overhead 
is due to the 12-state SDFSM’s increased training time. 
Similar trends are evident when comparing 2- and 6-
state SDFSMs, as well as any other SDFSM with 
common divisors. 
5.4    Latency 
Few hardware resources are required to implement both 
the 2-bit saturating counter and the SDFSM predictors 
and thus these techniques require only modest storage 
space. In addition, this inherent simplicity results in 
simple predictions and computations, which guarantees 
low prediction latency (a critical component for high 
performance in processors). The SDFSM-based 
predictor requires only a single cycle for training and 
prediction, while 2-bit saturating counter-based 
predictors require two cycles for training and predicting. 
Thus, the overall prediction latency of the SDFSM-based 
predictor is 50% less than that of the 2-bit saturating 
counter-based predictor, resulting in a higher instruction-
per-cycle (IPC). 
 

 

6 Performance Evaluation 
Figure 6 (a) showed that the counter-based predictor was 
more accurate on average than the SDFSM with respect 
to the arithmetic mean. However, the counter-based 
predictor’s misprediction latency cycles is twice that of 
the SDFSM, as was described in Section 5.4. The 
additional misprediction cycle adversely affects overall 
processor performance due to stalls while waiting for the 
training and subsequent prediction. Therefore, in order 
to more fairly compare complete predictor performance, 
we must consider the mispenalty latency in conjunction 
with the misprediction rate. 
 We evaluate the SDFSM and counter-based bimodal 
type predictors with respect to the misprediction per 
cycle (MPC) and the prediction accuracy rates (PAs) as 
determined by simulation. In order to provide an 
analysis that is independent of the processor clock speed, 
the misprediction rate is normally measured in cycles 
rather than in seconds, such that: 
 

 
and: 

 
 

Figure 8 shows the MPCs with respect to hardware 
budget in number of entries and Figure 9 subsets these 
results as in Figure 6 (a) (i.e., those where the SDFSM 
showed improvement over the counter-based predictor 
with respect to misprediction rates), Similarly to the 
misprediction rates for these subsetted benchmarks, the 
MPCs for all SDFSMs improves with respect to counter 
predictor, with an average overall performance increase 
of 37%. However, on average over all benchmarks the 
counter-based predictor still had the lowest 
misprediction rate.  

 
Figure 8: Mispredictions per cycle per benchmark with a hardware budget of 4KB. 

 



Branch predictor performance can also be evaluated 
using the misprediction speedup, as derived in [17], such 
that: 

 

 
Figure 10 shows the misprediction speedup verses 
hardware budget in number of entries for various 
SDFSM sizes compared to the counter-based predictor. 
These speedups are in line with speedups obtained for 
other recent innovations in branch predictors [18]-[20].   

7 Conclusion and Future Work 
This paper proposes the shadow dynamic finite state 
machine (SDFSM), a new branch predictor where the 
FSM states are dynamically trained during rum-time to 
learn unique branch pattern behaviors. Whereas the 
SDFSM can be generalized to any arbitrary number of 
states, we explored several SDFSM sizes and compared 
extensive simulation results on the SPEC2000 
benchmark suite with 2-bit saturating counters using a 
conventional bimodal-based branch predictor. Results 
revealed that the SDFSM decreases average 
misprediction rate for six benchmarks, which have 
irregular branching tendencies (i.e. those seen in 
artificial intelligence and gaming applications). 
Furthermore, in the situations where the SDFSM was 
slightly less accurate than the 2-bit predictor, this 
reduced accuracy was due to the nature of the bimodal 
predictor architecture (and not a failure of the SDFSM), 
which inhibits a large percentage of aliasing phenomena 
that severely affects the performance of our SDFSM 
automaton on prediction accuracy. The SDFSM will 
likely show marked improvements when coupled with 
predictors that are less affected by aliasing such as PAs 
and GAs. 

In addition, the SDFSM uses a simple hardware 
structure, which provides single cycle training and 
prediction latency; in contrast, the 2-bit counter predicts 
and corrects in two cycles. This single cycle advantage 
for the SDFSM offsets the accuracy advantage of the 2-
bit counter by trading off performance with respect to 
the instructions-per-cycle (IPC) rate.  

Finally, we explored and analyzed the number of 
SDFSM states in the scope of adaptability, training, 

damping, and aliasing in order to determine their affect 
on prediction accuracy. Results show that a 6-state 
SDFSM is a good average configuration for optimal 
length for bimodal predictor topology. Thus, our results 
encourage researchers to explore the SDFSM combined 
with more advanced predictor methods, thus improving 
the accuracy of those predictors. 

Our future work is motivated by the per-application 
variation in optimal SDFSM size as shown in Figure 5. 
Consequently, choosing the best number of states is a 
key design decision since the SDFSM structure does not 
dynamically alter its number of states based on pattern 
entries. Therefore, our future work includes architecting 
an adaptive SDFSM capable of dynamically altering its 
number of states based on actual branch pattern length.  
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