
Run-Time FPGA Partial Reconfiguration for Image Processing Applications

Shaon Yousuf and Ann Gordon-Ross

NSF Center for High-Performance Reconfigurable Computing (CHREC)
1

ECE Department, University of Florida

{yousuf, ann}@chrec.org

The dynamic reconfigurability of SRAM-based FPGAs is advantageous to space-based systems and

applications by providing the flexibility to dynamically load and unload system functionality on demand,

thus providing benefits such as reduced payload and energy consumption. The two main types of dynamic

reconfiguration are full reconfiguration and partial reconfiguration (PR). Full reconfiguration reconfigures

the entire FPGA device and PR reconfigures only a portion of the FPGA device (a PR region or PRR). PR

is advantageous over full reconfiguration because, unlike full reconfiguration, which halts entire system

execution, PR only halts the reconfigured PRR while the remainder of the device continues executing. PR

reduces overall memory requirements (PR bitstream sizes are smaller than full bitstreams) and can

increase performance (only the reconfigured PRR is halted) as compared to full reconfiguration for

applications that do not require all functionalities at the same time (i.e. software defined radios).

PR system design is challenging, requiring specialized design flows and extensive designer expertise

in order to fully realize PR benefits. To ease some design challenges, previous work proposes two PR

design flow methodologies: a special-purpose and a multi-purpose design flow. The special-purpose

design flow creates a PR design specifically tailored for a target application, which potentially maximizes

PR benefits, but requires a priori knowledge of application dependent specifications. Alternatively, the

multi-purpose design flow creates a generic PR design flexible enough for a multitude of applications, but

due to application unknowns, can limit PR benefits.

However, even with these design flows, PR system design becomes increasingly difficult as

application size and functionality increases. One such difficulty involves application partitioning

(determining the specific functionality mapped to each PRR) under constrained system performance.

Whereas PR has the potential for increasing system performance, poor application partitioning can

decrease system performance. Alternatively, optimal application partitioning involves significant

formulation and planning, requiring an application designer to have in-depth knowledge of the

application’s inner workings as well as considerable target FPGA device knowledge.

Since optimal application partitioning requires exploration of an exponential design space, analyzing

potential PR design benefits for different application types can provide valuable insights and ease PR

design for similar typed applications. A key enabling technology for low-power and high-performance

image transmission in on-line satellite communications are image processing applications. JPEG

compression is the international standard for still color image compression and provides a basis for

various motion-capture compression techniques. Due to JPEGs high-impact, an in-depth study of PR

system design and PR benefits influences a myriad of system domains.

In this paper, we explore a special-purpose PR design flow for the JPEG compression algorithm. First,

we provide an overview of a hardware implementation of the JPEG sequential discrete cosine transform

(DCT)-based encoding process – the JPEG hardware compressor. Next, we create a PR design of this

compressor and discuss the issues and challenges faced during the PR design process. Finally, we

highlight PR benefits for the PR JPEG hardware compressor as compared to a non-PR implementation

using numerical analysis of device slice requirements on a Virtex-4 device.

1
 This work was supported in part by the I/UCRC Program of the National Science Foundation under Grant No. EEC-0642422. We also

gratefully acknowledge tools provided by Xilinx.

