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Abstract: Embedded systems have stringent design constraints, which has necessitated much
prior research focus on optimizing energy consumption and/or performance. Since embedded
systems typically have fewer cooling options, rising temperature, and thus temperature optimization,
is an emergent concern. Most embedded systems only dissipate heat by passive convection,
due to the absence of dedicated thermal management hardware mechanisms. The embedded
system’s temperature not only affects the system’s reliability, but can also affect the performance,
power, and cost. Thus, embedded systems require efficient thermal management techniques.
However, thermal management can conflict with other optimization objectives, such as execution
time and energy consumption. In this paper, we focus on managing the temperature using a synergy
of cache optimization and dynamic frequency scaling, while also optimizing the execution time
and energy consumption. This paper provides new insights on the impact of cache parameters on
efficient temperature-aware cache tuning heuristics. In addition, we present temperature-aware
phase-based tuning, TaPT, which determines Pareto optimal clock frequency and cache configurations
for fine-grained execution time, energy, and temperature tradeoffs. TaPT enables autonomous
system optimization and also allows designers to specify temperature constraints and optimization
priorities. Experiments show that TaPT can effectively reduce execution time, energy, and temperature,
while imposing minimal hardware overhead.

Keywords: dynamic thermal management; low-power embedded systems; phase-based tuning;
temperature-aware tuning; energy savings; dynamic optimization; configurable caches; dynamic
voltage and frequency scaling

1. Introduction

Embedded systems have become ubiquitous over the past few years, and with the emergence
and growth of the Internet of Things, embedded systems are expected to become even more
pervasive. Researchers have focused on effective optimization techniques for optimizing embedded
systems’ energy consumption, since these systems typically have stringent resource and design
constraints. These constraints include form factor, battery capacity, cost, real-time deadlines, etc.,
and pose significant challenges to embedded system optimization. The optimization challenges are
exacerbated by the increase in high-demand (compute/memory intensive) applications that must
be executed within these resource constraints. Since most embedded systems are battery operated,
much research efforts have focused on reducing energy consumption without significantly degrading
system performance. However, temperature is also a growing issue in embedded systems optimization
research since most embedded systems have fewer cooling options as compared to general purpose
computers due to area/size, cost, and energy constraints. Most embedded systems lack traditional
cooling mechanisms, such as active cooling fan, water cooling, heat pipes/sinks, etc., and only dissipate
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heat by passive convection. These constraints necessitate efficient thermal management techniques
that impose minimal hardware overhead.

An embedded system’s temperature affects several optimization goals, such as performance,
reliability, power, and system cost. Increased chip temperature in an embedded system can increase
cooling costs, and reduce performance, mean time to failure (MTTF), and reliability. In addition,
increased temperature can lead to thermal emergencies, which can result in an exponential increase
in leakage power and thermal runaway, leading to permanent chip damage. To address these issues,
several dynamic thermal management (DTM) techniques have been proposed for managing chip
temperature. Most of these techniques leverage clock gating [1], dynamic voltage scaling (DVS),
dynamic frequency scaling (DFS), or dynamic voltage and frequency scaling (DVFS) [2], and/or task
migration [3].

In our work, we use DFS as part of a broader technique for thermal management in embedded
systems. DFS is an effective dynamic thermal optimization technique that adjusts a microprocessor’s
frequency to changing application resource requirements, thereby reducing the microprocessor’s
power consumption and/or heat dissipation. DFS is commonly implemented in modern day
microprocessors [4], especially in battery-operated/resource-constrained devices, such as smartphones.
The frequency at which the circuit is clocked determines the voltage required for stable operation,
therefore, the voltage can be reduced as the frequency is reduced. Thus, DFS is commonly used in
conjunction with DVS, and is sometimes referred to as DVFS. While we explicitly utilize DFS in our
work, the work presented herein is also applicable to DVS or DVFS.

One of the potential drawbacks of DTM techniques is that optimizing the temperature in
isolation can significantly degrade other optimization goals, such as execution time and/or energy
consumption [5]. In addition, the applications’ execution characteristics (e.g., cache misses, instruction
per cycle (IPC), branch mispredictions, etc.) can also affect the temperature [6]. Since applications
typically have dynamically varying execution characteristics, we show that the temperature can
be further optimized by considering intra-application characteristic variations. Some previous
DTM techniques (e.g., [7]) consider inter-application characteristic variations, however, in this work,
we optimize the system at a finer granularity than most previous works by considering intra-application
characteristic variations.

To increase optimization potential by specializing system resources to varying application
characteristics, we leverage phase-based tuning [8] as a complementary approach to DFS. A phase
is a length of execution during which an application’s characteristics remain relatively stable.
During a phase, the best system configurations or specific parameter values (e.g., cache size,
associativity, line size, clock frequency, etc.) that satisfy design constraints also typically remain
relatively stable. Phase-based tuning requires configurable hardware with tunable parameters, whose
values can be specified/changed during runtime. Phase-based tuning also requires a mechanism to
evaluate the application’s characteristics in order to determine the best system configurations that
satisfy each phase’s resource requirements. Previous work showed that phase-based tuning significantly
reduced energy consumption in embedded systems [8]. For example, Gordon-Ross et al. [9] showed
that phase-based cache tuning reduced the cache’s memory access energy by up to 62%. However, few
studies have addressed the combination of phase-based-tuning and DTM.

In order to maximize the benefits of phase-based tuning and DTM, the tuned system components
must be carefully selected. In this work, we focus on the cache for phase-based tuning, and the clock
frequency for DTM, using DFS. On-chip caches are well known to account for a significant portion of
a microprocessor’s total energy consumption [10,11]. In addition, cache could also be a performance
bottleneck, since they are used to bridge the processor-memory performance gap. However, even though
previous work has shown that caches may contribute to a chip’s temperature [12,13], the thermal
impacts of cache configurations have not been thoroughly investigated.

In this paper, we thoroughly investigate and analyze the thermal impacts of cache configurations
and use the insight from this analysis to develop a low-overhead and flexible optimization heuristic
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that optimizes the temperature without degrading the execution time and/or energy. For the first
time, to the best of our knowledge, we establish the impact order of cache parameters on the system
temperature. This impact order will drive future advances in efficient temperature-aware cache
tuning heuristics/algorithms.

We present a dynamic optimization heuristic—temperature-aware phase-based tuning (TaPT).
TaPT dynamically determines the Pareto optimal system configurations, and trades off execution
time, energy, or temperature design objectives, depending on user-specified priorities. TaPT leverages
the strength Pareto evolutionary algorithm II (SPEA2) [14], which is a well-known and effective
evolutionary algorithm for solving multi-objective optimization problems. TaPT features priority
settings that offer designers the flexibility to choose which design objective to prioritize during
optimization. TaPT’s runtime automation enables systems to adhere to resource constraints with
minimal design time effort. TaPT also leverages previously proposed configurable hardware, in order
to minimize hardware overhead with respect to prior optimization techniques. Experimental results
show that compared to using the same system configuration throughout an applicatio’s execution,
TaPT reduces average execution time, energy consumption, and temperature by to 5%, 30%, and 25%,
while adhering to designer-specified design constraints. Additionally, we compare TaPT to DFS and
cache tuning in isolation, and quantitatively illustrate the benefits and tradeoffs of TaPT over DFS
and cache tuning. Finally, we show that TaPT can be easily implemented, requires minimal design
time effort, and constitutes minimal hardware overhead with respect to state-of-the-art embedded
system microprocessors.

2. Background and Related Work

Much previous work focused on phase-based tuning [8,15,16] and DTM [1–3,17]. Since we
leverage both phase-based tuning and DTM, we present related work and background in these two
areas. We also present background and key concepts from SPEA2 that we leveraged for TaPT.

2.1. Phase-Based Tuning and DTM

To facilitate phase-based tuning, hardware- or software-based phase classification partitions
an application’s execution into intervals, measured by the number of instructions executed.
Intervals showing similar characteristics can be clustered into phases. Sherwood et al. [18] studied
applications’ time varying behaviors using SPEC 95 benchmarks, and showed that applications
have periodic patterns and exhibit phase-based behavior with respect to several execution statistics
(e.g., cache miss rates, branch mispredicts, IPC, etc.) Balasubramonian et al. [19] used cache miss
rates, cycles per instruction (CPI), and branch frequency characteristics to detect changes in application
characteristics for cache tuning, and found that these characteristics were effective for phase classification.
Dhodapkar et al. [20] found a relationship between phases and the phases’ working sets, and concluded
that phase changes could be detected by detecting changes in the working set. In this work, we use
execution statistics obtained from the microprocessor’s hardware performance counters for phase
classification [21]. Since we use cache tuning in this work, for brevity, we limit our review to phase-based
cache tuning.

A major challenge in phase-based cache tuning is tuning the configurable hardware to
determine the best cache configuration for each phase without incurring significant tuning overhead.
Zhang et al. 2003 [11] proposed a cache tuning heuristic that traded off energy consumption and
performance to determine the Pareto optimal cache configurations. The heuristic searched the
cache parameters in order of the parameters’ impact on the energy consumption. The heuristic
first determined the best cache size, which has the largest impact on energy, followed by the best line
size, and finally the best associativity. However, this method executed several inferior, non-optimal
configurations, thus incurring tuning overhead. Gordon-Ross et al. [8] presented phase-based cache
design space exploration heuristics that achieved up to 39% energy savings on average, as compared
to non-phase-based tuning (i.e., using a single configuration for the entire application). To find the
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best cache configuration for applications’ distinct phases, Hajimir et al. [16] presented a dynamic
programming-based cache assignment algorithm that reduced the time complexity of design space
exploration, and also determined optimal cache configurations. However, these methods only focused
on energy savings and did not consider thermal issues.

Huang et al. [22] showed that the cache contributes significantly to the overall chip temperature,
and necessitates optimization techniques that target cache thermal management. Homayoun et al. [12]
showed that the memory cell peripherals’ power dissipation is significantly higher than the actual
memory cell’s power dissipation. This difference in power dissipation results in thermal variations
within the cache, and is caused by the difference in activity factors between peripheral logic and
memory cells. Peripheral logic includes global and local address routing drivers, global data in/out
drivers, row predecoder drivers, and wordline drivers. Additionally, the different types of transistors
used for the peripheral logic and memory cell also contribute to the cache’s thermal variation.
Since the peripheral logic and memory cells interplay with the cache configurations differently,
these observations motivate our study of the cache configurations’ impact on temperature dissipation.

To reduce chip temperature dissipation, several DTM techniques have been proposed.
Brooks et al. [1] investigated clock gating, which turns off the clock signals during thermal emergencies.
Heo et al. [3] proposed task migration, which migrated tasks from a hot core to a cooler core to
avoid a thermal emergency. More recently, Liu et al. [23] proposed a DTM technique that used task
migration to reduce temperature variations across the chip, while considering transient thermal effects.
Kong et al. [24] presented a survey of recent thermal management techniques for microprocessors,
focusing on the techniques that affect or rely on the microarchitecture. The authors showed that
most DTM techniques have the potential to degrade performance due to longer execution times.
Additionally, these works did not explicitly consider the tradeoffs between energy, temperature,
and execution time. As a result, there was a much higher possibility of significantly degrading one
design objective while optimizing other competing objectives. Furthermore, these methods were not
phase-based and did not consider intra-application/intra-task variations.

This paper is based on the fact that prior work has established that phase-based cache tuning can
substantially reduce energy consumption and execution time, and DTM techniques can significantly
impact temperature, energy consumption, and execution time. Thus, we combine phase-based cache
tuning and DFS for fine-grained and efficient temperature, energy, and execution time optimization.
However, since optimizing one design objective may adversely affect other competing objectives,
combining phase-based cache tuning and DFS presents a multi-objective optimization problem.
The solution to a multi-objective optimization problem is the Pareto optimal configuration set,
which enables designers to choose system configurations that best meet design constraints.

Our work improves the robustness of thermal management and explores the synergies between
different optimization techniques. We combine phase-based cache tuning and DFS to determine
Pareto optimal configurations that trade off execution time, energy, and temperature, thus increasing
optimization potential and achieving fine-grained multi-objective optimization.

2.2. Configurable Hardware

Phase-based tuning can leverage any configurable cache architecture (e.g., [11]) and tuning
method to search the configuration design space, which consists of all the different system
configurations/combinations of tunable parameter values. Motorola’s M*CORE processor [25]
provided per-way configuration using way management, which allowed ways to be shut down
or designated as instruction only, data only, or unified. For our work, we assume highly configurable,
private, separate level one (L1) instruction and data caches, however our methods can be extended
to consider additional levels of cache. Figure 1 depicts our configurable cache architecture, which
is based on the configurable cache proposed by Zhang et al. [11]. This configurable cache provides
runtime-configurable total cache size, associativity, and line size using a small, hardware-settable
bit-width configuration register. Configurable associativity is achieved by logically concatenating
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ways, configurable size is achieved by shutting down ways, and configurable line size is achieved by
fetching additional physical cache lines for larger, logical line sizes. We elaborate on the achievable
design space given this configurability in Section 4.1.

Way shutdown

Way concatenation

Line size {

Figure 1. Configurable cache architecture.

2.3. SPEA2 Algorithm

Evolutionary algorithms use biological evolutionary concepts—such as population, reproduction,
mutation, selection, etc.—to efficiently determine Pareto optimal solutions to multi-objective
optimization problems. The algorithm features a solution space that contains all of the possible
solutions to the optimization problem. A subset of the solution space is referred to as a population;
and a population’s solutions are referred to as individuals. A solution’s fitness represents the solution’s
quality and how well the solution satisfies design constraints. Evolution iterates over successive
generations of populations. Each evolution evaluates the fitness of individuals within the populations,
and replaces the least fit individuals with new solutions from the solution space. To create the
successive generation, random solutions are interjected from the solution space.

We leverage the SPEA2 since it has been shown to be a highly efficient evolutionary algorithm
for solving multi-objective optimization problems [14]. SPEA2 uses the notion of elitism, which an
archive comprising of an external set of non-dominated solutions. A non-dominated (or Pareto optimal)
solution is a solution in which none of the design objectives can be improved without degrading
another design objective. For example, given two configurations Cx and Cy, Cx dominates Cy (written
as Cx � Cy) if and only if:

∀i ∈ {1, 2, ..., k} : fi(Cx) ≥ fi(Cy)∃j ∈ {1, 2, ..., k} : f j(Cx) > f j(Cy) (1)

where k is the number of objectives, fk represents the design objective functions, and fk(Cx) represents
how well Cx satisfies the design objectives.

SPEA2 takes the solution space as input, and outputs the Pareto optimal solution set.
SPEA2 generates an initial population, creates an empty archive, and populates the first generation’s
archive with the non-dominated individuals in the initial population. For subsequent generations,
SPEA2 calculates the fitness of each individual within each population and archive, and populates
the next generation’s archive with the non-dominated individuals from the population and archive.
When the maximum number of generations has been reached and/or number of solutions that satisfy
the design objectives have been determined, the current archive contains the Pareto optimal set.
We refer the reader to [14] for additional details on the SPEA2 algorithm.

3. Temperature-Aware Phase-based Tuning (TaPT)

Previous research [24] on power and thermal management techniques have showed an intersection
between power and thermal management hardware mechanisms. Most hardware mechanisms for
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power management can be leveraged for thermal management, since power reduction can also lead to
temperature reduction. Thus, thermal management need not be a complex or high-overhead process,
since the microprocessor designers typically do not need to adopt additional hardware specifically
for thermal management. Since hardware mechanisms that can be leveraged for power management
are commonly available in modern-day microprocessors, these mechanisms can also be leveraged
for thermal management with new algorithms and management policies. However, thermal/power
management techniques must consider and limit incurred performance degradations and/or increases
in energy consumption.

TaPT leverages several fundamental assumptions based on mechanisms that have been widely
studied and implemented in embedded systems [11,26]. Figure 2 depicts TaPT’s synergistic interactions
with different system components to dynamically optimize the system. We assume that DFS is enabled,
and the system features a configurable cache with tunable size, associativity, and line size. We also
assume that the system has temperature sensors that can be read by a continuous system telemetry
mechanism for collecting and analyzing sensor data. Most current microprocessors contain hardware
performance counters that generate execution statistics, such as cache miss rates, instructions per
cycle, etc. These statistics are used in combination with low-overhead analytical models to estimate
the power/energy consumption and performance [26], which are used by the TaPT characterization
algorithm for determining the best configurations.

TaPT
Temperature 

sensor

System hardware 

configurations 

(DFS/cache)

Hardware 

performance counters

Power/performance 

estimations
Execution 

statistics

Power consumption Performance

Freq/cache configs

Phase execution

Design space

Figure 2. TaPT interactions with other system components and functions.

TaPT can be implemented as a software subroutine using the system’s microprocessor,
which enables easy system integration with state-of-the-art microprocessors. However, a software
implementation can affect the system cache and applications’ runtime behaviors due to context
switching. These effects can cause TaPT to choose non-optimal, inferior configurations. Alternatively,
TaPT can be implemented using non-intrusive, low-overhead custom hardware, with minimal negative
impact on the system’s area, energy, and performance. Due to the advantages of the hardware
implementation, we assume the hardware approach for implementing TaPT. In this section, we present
an overview of TaPT and details of the TaPT architecture and algorithm.

3.1. TaPT Overview

Figure 3 depicts an overview of TaPT. When an application is executed, TaPT determines
whether or not the application has been previously characterized (i.e., the best configurations for the
application’s phases have been determined). If the application is new, TaPT classifies the application’s
phases. TaPT classifies the phases by montoring application execution on the base configuration,
during which the application execution statistics (e.g., IPC, instruction and data cache miss rates, etc.)
are gathered at tuning intervals from the microprocessor’s hardware performance counters. The tuning
interval can be measured in number of executed instructions (e.g., 1 million instructions) or in time.
For our experiments, we used tuning intervals of 10 ms, which we empirically determined to be
sufficient to gather stable execution statistics. Execution lengths with similar execution characteristics
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are clustered [27] to form phases, and these phases’ characteristics are then used in the rest of the
algorithm to determine the phases’ best configurations.

Phase 

characteristics

New phase?
Get config, CPi from phase 

history table

Search phase history table for 

Pi

No

Yes

TaPT 

characterization 

Algorithm

Pi configuration, 

CPi

Add Pi to phase history tableExecute phase Pi with CPi

Phase Pi encountered

Phase classification

Application Ai executed

New application?
Yes

No

Figure 3. TaPT overview.

To minimize tuning overhead, TaPT only tunes distinct phases and uses the determined
configurations for re-occurrences of that phase. To store information about previously executed
phases, including their best configurations, TaPT features a low-overhead phase history table. When a
phase Pi is executed, if Pi is in the phase history table, Pi has been previously executed—Pi is a not
new phase—and the system is reconfigured to the stored best configuration CPi, which is then used to
execute Pi. Otherwise, if there is no entry for Pi in the phase history table—i.e., Pi is a new phase—TaPT
determines Pi’s best system configuration CPi using the characterization algorithm (Section 3.3). CPi is
then stored in the phase history table for subsequent executions of Pi, and Pi is executed using CPi.

3.2. TaPT Architecture

Figure 4 depicts the TaPT architecture for a sample dual-core system, which can be extended to
any n-core system. The on-chip components include processing cores that are connected to the L1
caches and the TaPT module. Without loss of generalization, we assume that the L1 caches are directly
connected to off-chip main memory, and since this hierarchy implies that there is no dependence
between the caches, the caches can be tuned independently. We note that this is a viable assumption
with respect to current state-of-the-art microprocessors [4].
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Figure 4. TaPT overview.

The TaPT module includes a cache tuner, a DFS controller, a phase classification module,
and a phase history table. The cache tuner [15] and DFS controller [28] interface with the caches
and processing cores to set cache configurations and clock frequencies, respectively, as determined
by the TaPT algorithm (Section 3.3). The phase classification module uses execution statistics from
the cores’ hardware counters to classify an application’s execution into phases at runtime, and the
phase history table stores cache configurations and clock frequencies of previously executed phases for
subsequent execution of those phases. We discuss details of the hardware overheads in Section 3.4.

3.3. TaPT Characterization Algorithm

The characterization algorithm determines each phase’s best configuration that emphasizes
designer-specified optimization priorities. Alternatively, when no priority is specified, the algorithm
determines Pareto optimal configurations that automatically emphasize the energy delay product
(EDP), to account for both energy consumption and execution time, while also reducing the temperature
and/or preventing significant temperature increase.

TaPT allows the designer to prioritize optimization of execution time, energy, and temperature
through priority settings X, N, and T, respectively. When a priority setting is selected, TaPT efficiently
determines the best system configuration CPi for a phase Pi while adhering to designer-specified
constraints. The priority settings trade off the non-prioritized design objective in favor of the prioritized
design objective. For example, N, which prioritizes energy optimization, trades off increased execution
time and increased temperature for minimized energy. Alternatively, X trades off energy consumption
and temperature to prioritize execution time. If the designer does not specify a priority, the priority
setting defaults to S, which prioritizes the EDP. To increase optimization flexibility, TaPT also allows
the designer to associate a peak temperature threshold with each priority setting. Thus, when the
designer specifies a temperature threshold, TaPT determines Pareto optimal configurations that do not
exceed the threshold while optimizing other optimization goals.

To ensure equal probability of selection for all configurations when generating the population,
TaPT uses random uniform distribution. On system startup, since there are no previously executed
phases, the initial archive is an empty set. TaPT generates Pi’s archive from Pi’s population’s and
archive’s non-dominated configurations (Equation (1)) using the configurations’ fitness and stores
Pi’s final archive in the phase history table. A configuration Ci’s fitness is the sum of Ci’s dominators’
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strengths, and a configuration’s Ci’s strength S(Ci) is the number of configurations dominated by that
configuration such that:

S(Ci) = |{Cj|Cj ∈ P ∪ A∀Ci � Cj}| (2)

where P and A are Pi’s population and archive, respectively. Ci’s fitness R(Ci) is:

R(Ci) = ∑ S(Ci)∀Cj ∈ P ∪ A, Cj � Ci (3)

where R(Ci) = 0 indicates that Ci is non-dominated.
To implement phase-based tuning, TaPT calculates the phase distances [29] between the currently

executing phase Pi and all of the previously executed phases Pi1, Pi2, ..., Pin. The phase distance is the
difference between two phases’ characteristics. In previous work, where we used phase distances for
tuning cache configurations, we used the normalized difference between two phases’ cache miss rates to
calculate the phase distance between those phases. Using a single execution characteristic (e.g., cache
miss rates) to calculate phase distances suffices when only one hardware parameter (e.g., cache
configurations) is being tuned. However, when multiple hardware parameters that affect multiple
execution characteristics are tuned, the phase distance must be computed using a multidimentional
distance metric for accurate representation.

Since TaPT tunes multiple hardware parameters (instruction and data cache configurations,
and clock frequency), TaPT calculates the phase distance using the Euclidean distance between the
instruction cache miss rate (iMR), data cache miss rate (dMR), and the instruction per cycle (IPC).
The phase distance D between two phases Pi and Pj is:

D =
√
(iMRPi − iMRPj)2 + (dMRPi − dMRPj)2 + (IPCPi − IPCPj)2 (4)

TaPT uses the most similar phase’s archive as the currently executing phase Pi’s initial archive.
The most similar phase is the phase with the minimum distance D from Pi. Our premise for
using the most similar phase’s archive as Pi’s initial archive is based on the fact that phases with
stable characteristics require similar configurations. Thus, rather than starting with an archive from
a randomly generated initial population, Pi’s initial archive starts the TaPT algorithm with solutions
that are presumably closer to Pi’s Pareto optimal solutions.

Algorithm 1 depicts the TaPT algorithm, which executes for each new phase Pi. The inputs to
the algorithm are the number of previously executed phases n, a designer-specified population size s,
archive size Asize, number of generations G, and priority setting Q. The algorithm’s output is Pi’s best
system configuration. The maximum number of configurations explored during tuning is defined as
the product of s and G; Asize specifies the archive size, and ensures that only the most fit configurations
(Equations (2) and (3)) are stored in the archive.

Due to the nature of evolutionary algorithms, the archive may not necessarily contain the actual
Pareto optimal solutions. In general, larger s and G values determine solutions that are closer to the
Pareto optimal solutions, at the expense of increased tuning overhead. Alternatively, smaller s and G
values reduce tuning overhead, at the expense of less accurate configurations that are farther from the
Pareto optimal solutions. We extensively analyzed different values of s, G, and Asize, and observed
that s and G values that explored 4% of the design space and Asize = 5 yielded an efficient balance
between determining Pareto optimal solutions and reduced tuning overhead.

As shown in Algorithm 1, TaPT first generates an initial population from the configuration space,
after which it calculates the phase distance D between the currently executing phase and all of the
previously executed phases (lines 2–8). After determining the most similar phase (i.e., the phase with
the minimum distance D from Pi), TaPT initializes Pi’s archive to the most similar phase’s archive,
Amsp (line 9). At system startup (n = 0), there are no previously executed phases (D = null), and
the archive is initialized to an empty set (lines 10–11). For each generation, TaPT uses the previous
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generation’s Pareto optimal set as the current generation’s initial archive (line 15). TaPT calculates the
fitness of the configurations in each population and archive using Equations (2) and (3), and updates
the current generation’s archive with the non-dominated configurations (lines 17–21). To maintain the
size of Pi’s archive at Asize, TaPT discards the least fit configurations or adds the most fit configurations
from the population (line 22).

Algorithm 1 TaPT Algorithm
Input: n, s, Asize, G, Q

Output: Pi’s best configuration

1: t← 0
2: for i← 1 to s do
3: Ci ← rand()/s + 1
4: end for
5: population is C1, C2, ..., Cs
6: for j← 1 to n do
7: Dj ← d(Pi, Pj)
8: end for
9: Amsp ← archive(Pj)|D =min(Dj)

10: if n == 0&&t == 0 then
11: archive← ∅
12: else if k > 0&&t == 0 then
13: archive← Amsp
14: else
15: archive← archive(t− 1)
16: end if
17: U← population + archive
18: for (Ci ∈ U) do
19: fit(Ci)← calculateFitness(Ci)
20: end for
21: archive← getNonDominated(U)
22: size(archive)← Asize
23: if t == (G− 1) then
24: bestConfiguration(Pi)← min( f (Q))
25: else
26: t ++
27: go to line 2
28: end if

When the final generation is reached, TaPT selects the best configuration from the archive that
optimizes the designer-specified priority setting (line 24). Finally, TaPT stores CPi in the phase history
table (Figure 4) for Pi’s subsequent executions.

3.4. Computational Complexity and Hardware Overhead

TaPT calculates S(Ci) and R(Ci) with worst-case time complexity O(m2), where m is the sum of
the population and archive sizes. TaPT calculates D with worst-case time complexity O(n), where n is
the number of previously executed phases. Since these calculations dominate TaPT, TaPT results in
minimal computation overhead. Furthermore, TaPT utilizes previously proposed and implemented
hardware, such as the phase history table [30] and the DFS controller [28], which have been shown to
incur insignificant hardware overhead with respect to the microprocessors. To further evaluate TaPT’s
hardware overhead, we also designed a scalable and efficient cache tuner using synthesizeable VHDL
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and synthesized with Synopsys Design Compiler [31]. Our cache tuner constitutes an average area
overhead of 4.73% with respect to a MIPS32 M4K microprocessor [32] and less than 1% with respect to
the ARM Cortex-A15.

4. Experiments

4.1. Experimental Setup

We evaluated TaPT’s execution time, energy, EDP, and temperature savings by comparing
the results obtained using TaPT’s configuration to those obtained by a base with a fixed system
configuration. The base system had 32 Kbyte, 4-way private level one (L1) instruction and data caches
with 64 byte line sizes, and a 2 GHz operating core frequency. This configuration provides a good
base comparison to commercial off-the-shelf (COTS) system, due to its similarity to current embedded
systems [4].

We modeled an embedded processor architecture consisting of a 4-width out-of-order issue
processor with 8 pipeline stages. Our experiments represent state-of-the-art embedded systems,
and our results and analyses extend to future and/or more complex systems (e.g., n-core
processors, heterogeneous systems, etc.) because TaPT is independent of these system characteristics.
The processor’s configurable instruction and data caches featured 8 to 32 Kbyte sizes, 16 to 64 byte line
sizes, and 1- to 4-way set associativity, all in power-of-two increments. The processor offered seven
clock frequencies ranging from 800 MHz to 2 GHz in 200 MHz increments. Given these parameter
values, the design space contains 1701 configurations.

We used GEM5 [33] to model the processor and generate execution statistics (e.g., cache miss rates,
execution cycles, etc.), which we used to calculate the execution time. We used McPAT [34] to calculate
the system’s total energy consumption and EDP based on the execution statistics obtained from GEM5.
We modeled the system temperature using Hotspot 5.0 [2], a popular thermal modeling tool. Using this
tool, we measured the average temperature using a floorplan and silicon chip area similar to the ARM
Cortex A9 processor [4]. We ran thermal simulations and sampled the application’s power consumption
at 10 ms intervals, similar to modern operating systems (e.g., Linux) [35]. Previous work showed that
this fine-grained sampling accurately depicted the application’s temperature characteristics during
execution [35]. To model an embedded system without cooling mechanisms, such as a heat sink and/or
spreader, we set the convection resistance to 4K/W and the heat sink and spreader thickness to 1 mm
and 0.1 mm, respectively; these values are considered negligible in Hotspot.

To represent a variety of real-world embedded system applications, we used seventeen
benchmarks: twelve EEMBC Automotive benchmarks [36] and five MiBench benchmarks [37] selected
to represent different application domains. The benchmarks were specific compute kernels performing
specific tasks in different application domains, such as networking, image processing, security, etc.
To implement phase classification, we ran execution trace simulations on each benchmark using GEM5
to generate cache miss rates and IPC statistics, and grouped intervals with similar characteristics
as phases using variable-length intervals, which previous work found to be effective for phase
classification [38]. Since the benchmarks were specific compute kernels, our experiments revealed that
the benchmarks’ characteristics were relatively stable throughout execution. Without loss of generality,
this stability enabled us to consider each kernel/benchmark as a different execution phase.

4.2. Temperature Impact of Cache Configurations

To evaluate the impact of variable cache configurations on the system’s temperature,
we extensively analyzed the temperature variations over exhaustive executions of the cache
configurations in our design space (Section 4.1). We executed all seventeen benchmarks for
240 possible cache configurations. For brevity, we only present results for exhaustive executions
from one benchmark each from the EEMBC and MiBench benchmark suites—a2time01 and sha,
respectively. The benchmarks represent variations of compute intensity, where a2time01 and sha
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represent applications with low and high compute intensity, respectively. We observed similar trends
across the other benchmarks.

Figure 5 depicts the temperature variations over all the cache configurations in the design space
for a2time01 and sha with the clock frequency set at 2 GHz. In general, the peak temperatures ranged
from 69 ◦C to 90 ◦C, with a standard deviation of 5. As expected, the base configuration, with the
largest cache configuration had the highest temperature. Since the impact order of cache parameters
on energy consumption has been widely used for developing cache tuning heuristics for energy
consumption [11,39], we also analyzed the trend in temperature changes as the cache configurations
changed. We observed that the temperature changes did not follow the same trend as energy changes.
This observation implies that previous knowledge of the impact order of cache parameters on energy
consumption does not apply to temperature optimization.

(a) (b)

Figure 5. Temperature variations for cache configurations in the design space. (a) a2time01; (b) sha.

Thus, we explored how changes in cache parameter values (cache size, line size, and associativity)
affected the temperature with respect to the base configuration. To provide a clearer picture of the
impact of each cache parameter value, we varied each parameter value while keeping the others
constant. Figure 6 shows the temperatures when the cache parameter values were changed from the
base configuration. Surprisingly, reducing the cache size from 32 KB to 16 KB and 8 KB only marginally
reduced the temperature by 1.1 ◦C (1% reduction) and 2 ◦C (1.7% reduction), respectively. While these
apparently insignificant reductions may be impactful over a long period of time, the small change was
unexpected, especially since the cache size usually has the largest impact on other optimization goals,
such as energy and execution time.

Figure 6. Impacts of cache parameter values on temperature.
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Unlike the cache size, the associativity and line size had much larger impacts on the temperature.
Reducing the associativity from 4-way to 2-way and 1-way (with all other parameters at the base
values) reduced the temperature by 15.7 ◦C (18% reduction) and 15.8 ◦C (18% reduction), respectively.
Reducing the line size from 64B to 32B and 16B reduced the temperature by 16.9 ◦C (19% reduction) and
17.5 ◦C (20% reduction), respectively. Reducing the associativity and line size from 2-way to 1-way and
from 32B to 16B yielded marginal temperature reductions in both cases (less than 1 ◦C). Our results reveal
that the cache line size has the largest impact on temperature, followed by the associativity, and then the
cache size. The parameter with the largest impact would likely be the best to tune first. Furthermore,
this insight can inform the tradeoffs involved in developing heuristics that tune multiple parameters.

4.3. TaPT Parameters

To determine appropriate values for s, G, and Asize, we conducted a sensitivity study to quantify
the impacts of different values of s, G, and Asize on optimization efficiency. We explored a design space
comprised of s ranging from 10 to 100 in increments of 10, and G and Asize ranging from 3 to 6 in
increments of 1, resulting in a total of 160 possible combinations. To represent optimization efficiency,
we used the average energy delay product (EDP) achieved by the TaPT parameters while executing all
our experimental benchmarks.

Figure 7a,b illustrates the relationships between the TaPT parameters, and the tuning overhead
and EDP, respectively. The x axes represent the TaPT parameters, denoted as “sx_Ay_Gz”, where x, y,
and z represent the population size, number of generations, and archive size, respectively. For brevity,
not all the TaPT parameters are shown on the figures, however, the shown parameters are representative
of all the TaPT parameters. Figure 7a shows that the tuning overhead increased steadily for the TaPT
parameters, ranging from 2% to 35% tuning overhead. However, Figure 7b shows that an increase in
tuning overhead did not necessarily result in EDP reduction. The EDP achieved by different TaPT
parameters did not change significantly as the design space increased. Thus, we performed additional
analysis to identify TaPT parameters that achieved sufficient tradeoffs between tuning overhead and
optimization efficiency.

(a) (b)

Figure 7. (a) Tuning overhead incurred and (b) average EDP achieved by different TaPT parameters.

Our analysis revealed that s = 20, G = 3, and Asize = 5 provided a good balance between Pareto
optimal solutions and tuning overhead by exploring less than 4% of the design space. Larger values
increased the tuning overhead without any substantial improvements to the Pareto optimal solutions.
On the other hand, smaller values reduced tuning overhead, but achieved less accurate solutions.
s and G are system dependent and can be scaled appropriately for different design spaces.

To explore several diverse design objectives, we modeled all of TaPT’s priority settings using s = 20,
G = 3, and Asize = 5. To evaluate the impact of designer-specified temperature thresholds lower than
the base configuration’s average peak temperature of 89 ◦C (determined by simulation), we evaluated
empirically-determined high and low temperature thresholds set at 82 ◦C and 65 ◦C, based on the
range of temperatures observed during simulation. The high 82 ◦C threshold represents a system



Computers 2018, 7, 3 14 of 19

where the primary concern is for the temperature to be maintained below 82 ◦C to prevent damage
from overheating; the low 65 ◦C threshold represents a system with strict temperature constraints,
and illustrate how maintaining a low temperature impacts the other objective functions.

4.4. TaPT Optimization Results

Figures 8 and 9 depict the execution time, energy, EDP, and temperature of the best configurations
as determined by TaPT normalized to the base system configuration for a single execution of each
benchmark/phase for the different priority settings. Figure 8a illustrates the optimization benefits from
TaPT’s default setting of S (EDP prioritization), which represents a system with no designer-specified
priority or temperature threshold. On average over all the phases, the EDP, energy, execution time,
and temperature reduced by 31%, 30%, 2%, and 21%, respectively. In the best cases, the EDP, energy,
execution time, and temperature reduced by 48%, 35%, 19%, and 5%, respectively. For some phases,
prioritizing EDP minimization only slightly reduced the temperature. For example, candr01’s EDP,
energy, and execution time reduced by 40%, 27% and 18%, respectively, while reducing the temperature
by only 8%. However, prioritizing EDP minimization increased the execution time for other phases
by up to 6%, but significantly reduced the energy and temperature. For example, mad’s EDP, energy,
and temperature reduced by 23%, 26%, and 21%, respectively, while increasing the execution time
by 4%. In general, priority setting S minimized the EDP, and reduced the energy consumption and
temperature for all phases, with only minor increases in execution time for some phases.

(a) (b)

Figure 8. Execution time, energy, EDP, and temperature normalized to the base configuration for
priority settings (a) S and (b) N.

(a) (b)

Figure 9. Execution time, energy, EDP, and temperature normalized to the base configuration for
priority settings (a) T and (b) X.

Figure 8b depicts the average execution time, energy, EDP, and temperature savings for a priority
setting N (energy prioritization) and an 82 ◦C temperature threshold. The execution time, energy,
EDP, and temperature reduced by 4%, 31%, 34%, and 20%, respectively. We also evaluated TaPT’s
optimization behavior within a temperature specified temperature constraint. We evaluated this
behavior using an 82 ◦C temperature threshold, indicating that energy is minimized as long as the
temperature does not exceed the threshold. Figure 10 depicts the phases’ peak temperatures with
respect to the threshold temperature of 82 ◦C. TaPT maintained the temperature at or below 82 ◦C
for all the phases, but did not minimize the temperature. The 82 ◦C threshold allowed for greater
execution time, energy, and EDP reduction than a system that prioritized the temperature or one with
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a lower temperature threshold. This option is suitable for situations where the temperature constraints
are known and can be specified by the designer.

Figure 10. Peak temperatures with respect to a temperature threshold of 82 ◦C (broken horizontal lines).

To illustrate TaPT’s optimization capabilities with a low temperature threshold and priority
setting T (prioritize temperature), Figure 9a depicts the execution time, energy, EDP, and temperature
savings with a 65 ◦C temperature threshold and priority setting T. On average, over all the phases,
the energy and temperature decreased by 13% and 25%, respectively. However, as a result of the low
temperature threshold, the execution time and EDP significantly increased by 39% and 22%, respectively.
TaPT maintained the peak temperature within 65 to 68 ◦C for all the phases. However, TaPT traded off
execution time and energy consumption in order to maintain this low peak temperature. Increasing the
temperature threshold to 70 ◦C (results omitted for brevity) decreased the energy, EDP, and temperature
by 27%, 26%, and 21%, respectively, while the execution time only increased by 2%. These results
illustrate TaPT’s ability to trade off optimization goals in order to adhere to design constraints.
The results also illustrate the potential conflict between different optimization goals; some optimization
goals may be adversely affected in a multi-objective optimization scenario where one of the objective
functions is significantly constrained.

Figure 9b shows that when using priority setting X (execution time prioritization) with no
temperature threshold, TaPT reduced the execution time, energy, EDP, and temperature by 5%, 26%,
29%, and 16%, respectively. For some phases, the reductions were more significant. For example,
TaPT significantly reduced tblook01’s execution time, energy, EDP and temperature by 24%, 47%, 60%,
and 22%, respectively. However, for some phases the execution time did not reduce. For example,
mad’s execution time increased by 5% while the energy, EDP, and temperature decreased by 36%,
32%, and 27%, respectively. We observed that even though TaPT achieved significant execution time
improvement for some phases, the base configuration was the best for execution time optimization for
most phases. Thus, TaPT attempted to reduce energy and temperature without significantly degrading
the execution time. Overall, TaPT succeeded in trading off optimization goals, where necessary,
in order to satisfy designer specified optimization priorities, without significantly degrading the other
optimization goals.

4.5. Comparison to Prior Work

To further evaluate TaPT’s effectiveness, we compared TaPT to prior work using DFS or cache
tuning in isolation. For both DFS and cache tuning, we used exhaustive search to determine the best
configurations for each benchmark to represent the optimal configurations (i.e., best-case optimization
scenarios). Similar to the previous experiments, we assumed priority settings, S, N, T, and X, where the
prioritized setting was the optimal for both DFS and cache tuning.

Figure 11a depicts the average execution time, energy, EDP, and temperature of the best
configurations as determined by TaPT normalized to the best DFS configurations (best frequency),
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using the base cache configuration for priority settings S, N, T, and X. With the default priority
setting S, TaPT reduced the average EDP, energy, execution time, and temperature by 41%, 39%, 38%,
and 46%, respectively, as compared to DFS. With priority setting N, TaPT reduced the average EDP,
energy, execution time, and temperature by 34%, 32%, 29%, and 24%, respectively, as compared to
DFS. With priority setting T, TaPT reduced the average EDP, energy, and execution time by 19%, 16%,
and 14%, respectively, as compared to DFS. However, TaPT increased the average temperature by
3% as compared to DFS. This temperature increase was due to TaPT’s optimization of other design
objectives while prioritizing the temperature. DFS achieved lower temperature than TaPT because of
the significant impact of the clock frequency on temperature. Finally, with priority setting X, TaPT
reduced the average EDP, energy, execution time, and temperature by 11%, 11%, 14%, and 31%,
respectively, as compared to DFS. These results illustrate TaPT’s ability to optimize multiple objectives
while prioritizing the designer’s selected priority setting.

(a) (b)

Figure 11. Average execution time, energy, EDP, and temperature normalized to (a) DFS and (b) Cache
tuning, for priority settings S, N, T, and N.

Figure 11b depicts the average execution time, energy, EDP, and temperature of the best
configurations as determined by TaPT normalized to the best cache configurations as determined by
exhaustive search, using the base clock frequency for priority settings S, N, T, and X. Unlike when
comparing to DFS, cache tuning outperformed TaPT in all priority settings for all optimizations
except temperature optimization. We note that this result was expected since we used exhaustive
search to determine the best configurations from the complete design space afforded by cache tuning.
These configurations represent the best-case scenarios and do not reflect a real-world multi-objective
optimization scenario. With priority setting S, TaPT increased the average EDP, energy, and execution
time by 16%, 7%, and 12%, respectively, and reduced the temperature by 3%, as compared to
cache tuning. With priority setting N, TaPT increased the average EDP, energy, and execution time
by 18%, 10%, and 10%, respectively, and did not change the temperature, as compared to cache
tuning. With priority setting T, TaPT increased the average EDP, energy, and execution time by
24%, 12%, and 14%, respectively, and reduced the temperature by 1%, as compared to cache tuning.
Finally, with priority setting X, TaPT increased the average EDP, energy, and execution time by 20%, 8%,
and 16%, respectively, and reduced the temperature by 4%, as compared to cache tuning. Thus, TaPT
determined relatively similar configurations as the optimal cache tuning configurations while exploring
only 4% of the design space.

4.6. Tuning Overhead

TaPT’s tuning overhead comprises of the time it takes to determine the best cache configuration
and clock frequency, and the time it takes to switch to the determined configurations. Specifically,
we computed the tuning overhead in terms of the total cache tuning time, the cache configuration
overhead, frequency tuning time, and the DFS transition delay overhead, which is the time it takes
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to switch from one frequency level to another. We assumed an average transition delay overhead of
18.24 µs, similar to that of the ARM Cortex A9 [40]. On average over all the benchmarks, TaPT’s tuning
overhead was 0.145 s. Due to the brief duration of most of the benchmarks, and our 10 ms tuning
interval, TaPT required multiple iterations to determine the Pareto optimal configurations for most of
the benchmarks. However, in embedded systems with persistent applications that execute multiple
times throughout the systems’ lifetime, this tuning overhead amortizes very rapidly.

To put TaPT’s tuning overhead in perspective, we also compared TaPT’s tuning overhead with
how much time was required to determine the benchmarks’ Pareto optimal configurations using
exhaustive search of the design space. On average over all the benchmarks, TaPT reduced the tuning
overhead from 3.62 s to 0.145 s, representing an average reduction of 96% or a 25× tuning speedup.

5. Conclusions

Phase-based tuning specializes a system’s tunable parameters to the varying runtime requirements
of an application’s different execution phases in order to meet optimization goals, which typically
involve minimizing energy consumption and/or maximizing performance. However, due to embedded
systems’ resource constraints, and the absence of dedicated cooling mechanisms, temperature is
a growing issue in these systems. Several dynamic thermal management techniques, such as dynamic
frequency scaling (DFS), task migration, etc., have been used for managing embedded systems’
temperature. However, these techniques could adversely affect other optimization objectives, such as
energy consumption and/or performance.

In this paper, we extensively analyzed the impacts of different cache configurations on system
temperature, and showed that the cache parameters’ impacts on temperature differs from the impacts
on other optimization goals (e.g., energy and execution time). Our analysis revealed that the line
size has the largest impact on temperature, followed by the associativity, and then the cache size.
We also presented temperature-aware phase-based tuning, TaPT, which combines phase-based cache
tuning and dynamic frequency scaling (DFS) to determine Pareto optimal configurations for different
execution phases. We show TaPT’s effectiveness in determining Pareto optimal configurations that
significantly reduce execution time, energy, EDP, and temperature, with minimal computational
complexity and low hardware overhead, while adhering to specified design constraints. Results reveal
that TaPT reduces execution time, energy consumption, and temperature by up to 5%, 30%, and 25%,
respectively. We also show that TaPT is easy to implement, constitutes minimal hardware overhead,
and can be seamlessly incorporated in resource-constrained embedded systems.

For future work, we plan to evaluate and verify TaPT’s scalability to more complex systems
with much larger design spaces (e.g., heterogeneous multi-/many core systems). We also intend to
develop additional low-overhead heuristics that leverage the insights developed in this work for
multi-objective optimization.
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