

Accelerating High-energy Physics Exploration with

Deep Learning

I. INTRODUCTION

very year, up to 30 petabytes of data are captured from the

large hadron collider (LHC) at CERN, the European Centre

for Nuclear Research. 1 petabyte of this data is offline-

processed everyday using 11,000 servers with 100,000

processor cores. This huge amount of data represents only a

very small fraction of the total amount of raw data generated by

sensors in the collider’s trigger system at a rate of 40 million

events per second. In order to adhere to the very strict

experimental requirements, novel and efficient algorithms are

needed to perform the required physics analytics very quickly

during runtime. For the Compact Muon Solenoid (CMS)

experiment [1], the design, construction, and processing of a

large portion of the Level-1 trigger data for muon detection will

become even more challenging with nearly 1 billion collisions

occurring per second as a result of the increased luminosity

from proposed LHC upgrades.

Recently, machine learning has gained tremendous

popularity in the research community and is used in many data-

processing-intensive applications, ranging from

recommendation engines [10, 11] and large-scale recognition

applications to sequencing and identification systems [9]. Deep

learning, which is a branch of machine learning, is based on a

set of algorithms that model high-level data abstractions. While

traditional machine learning algorithms (e.g., SVM, KNN, and

BDT) [17] require a prior pre-processing step that manually

extracts salient features from the data, deep learning obviates

the need for this pre-processing step by dynamically performing

feature extraction on the raw input data during runtime, which

makes deep learning attractive for identifying physics particles

based on raw detector readings from particle colliders [18].

 An important aspect of data processing for the trigger system

of LHC detectors is classifying collision events as signal (“an

interesting event”) or noise (“an uninteresting event”).

Interesting events are saved for later processing, and

uninteresting events are discarded. This classification must be

performed very quickly to keep up with the continuous stream

of real-time data samples. In this work, we present our approach

to using deep learning for identification of rarely produced

physics particles (such as the Higgs Boson) out of a majority of

uninteresting, background or noise-dominated data. A fast and

efficient system to eliminate uninteresting data would result in

much less data being stored, thus significantly reducing

processing time and storage requirements. In this paper, we

present a generalized preliminary version of our approach to

motivate research interest in advancing the state-of-the-art in

deep learning networks for other applications that can benefit

from learning systems.

II. BACKGROUND

A. Deep Learning

Deep Learning is a branch of artificial neural networks

(ANN) where a computational model is composed based on the

structure and behavior of biological neural networks. This

computational model is composed of multiple layers that are

interconnected to form a network. Each layer contains multiple

processing nodes (often referred to as neurons). Information is

propagated through the network via a set of non-linear

transformations called activation functions that describe the

output of a given node based on an input or set of inputs. By

observing intricate structures in large datasets, deep learning

can “learn” representations of data with multiple levels of

abstraction.

Fig. 1 depicts the two phases of deep learning: the training

and prediction phases. The training phase uses a method called

back propagation to indicate how the internal parameters

(weights) of the deep neural network should change to more

accurately reflect the representations in each layer from the

representation in the previous layer. Since there is typically

millions of training examples in which to train the deep neural

network, and thus millions of adjustable weights, the learning

phase is a lengthy process.

E

Fig 1: Phases of deep learning: The training phase (top)

uses a large set of examples to learn data representations.

The trained network is then used to determine information

about new data in the prediction phase (bottom).

Dave Ojika, Darin Acosta, Ann Gordon-Ross, Andrew Carnes, * Sergei Gleyzer
University of Florida, Gainesville FL, USA. * CERN, Geneva, Switzerland

{davido, acostad,anngordonross}@ufl.edu, acarnes@phys.ufl.edu, sergei.gleyzer@cern.ch

PEARC17, July 09-13, 2017, New Orleans, LA, USA

© 2017 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-5272-7/17/07.

http://dx.doi.org/10.1145/3093338.3093340

Once a neural network is trained, the network can be used in

the prediction phase (sometimes referred to as inference or

scoring), where the network attempts to map arbitrary input

instances of data to the learned weights, which can generate

predictions about that instance. For example, in convolutional

neural networks (a type of neural network used for image

recognition), when a dataset of cats are used in the training

phase, the neural network could then be used to predict whether

a given image does or does not contain a cat.

Deep neural networks (DNN) differ from traditional machine

learning algorithms in that deep neural networks have several

(hidden) layers. The depth of the network, often indicated by

the number of layers, generally improves the prediction

accuracy [12, 13, 14] at the cost of increased computation time.

However, in contrast to CPU-only solutions, graphics

processing units (GPUs) and other parallel architectures, such

as the Intel Xeon Phi [16] and field-programmable logic

(FPGAs) [15], can be used to speedup these computations.

III. APPROACH

In this section, we describe our computational approaches,

including the techniques, algorithms, software, models, and

data that we will evaluate (Section V) using our experimental

infrastructure (Section IV).

A. Data Collection

 We initially validate our design using a common dataset for

benchmarking Higgs classification solutions [2], which

appeared in a challenge at the Kaggel competition [19]. The

dataset, produced using Monte Carlo simulations, contains 21

low-level features for each event recorded from the particle

physics experiment, as well as 7 high-level features along with

a classification label that indicates if the event is signal or noise.

There are a total of 11 million events and all values are real

floating-point numbers, except the class label, which has a

binary value of 0 or 1 indicating if that sample is signal or noise,

respectively. We arbitrarily partition the dataset to a 9:1 ratio

for representing the training and test datasets, respectively.

B. Software Framework

We create prototype software models using Keras APIs

(application programming interfaces), which are used for

creating neural networks. As shown in Fig. 2, we use this API

to build two processing engine data paths (Data Path 1 and

Data Path 2) to interface between the user and platform levels

using TensorFlow [5] and Theano [6]. TensorFlow and Theano

represent a model’s computational structure as a computation

graph of data. The user level abstracts these processing engines

and the underlying hardware at the platform level to present a

consistent holistic system view for model design exploration,

enabling users to easily construct and evaluate different neural

network models based on different design scenarios (e.g.,

accuracy versus computational costs) (Section III-C). We note

that no source code change is required for any model at the user

level, regardless of the data path and processing engine.

C. Models

In order to evaluate different design scenarios, users can

create different system models during model design

exploration, where each model can be uniquely identified with

a number ranging from 1 to N (maximum number of models

explored). Each model can represent a different neural network

configuration or optimization technique, where aspects, such as

the number of layers and layer composition, can be varied. In

this work, we evaluate two neural network models, model1 and

model2, using different numbers of sequential (dense) layers.

Model1 has two layers and model2 has one additional layer to

represent a deeper network than model2. This additional layer

uses a higher number of neurons based on the implementation

in [7]. Both models are configured with Stochastic Gradient

Descent (SGD) as the optimizer, with a cross-entropy loss

function. Even though we present a simple two-model

evaluation, the fundamental design exploration practices are

easily extendable to any number of models to determine an

effective balance between model accuracy and computational

costs.

IV. EXPERIMENTAL INFRASTRUCTURE

We evaluate model1 and model2 using the two configurations

represented by Data Path 1 and Data Path 2, respectively, in

Fig 2. In this section, we describe the infrastructure used for

training and evaluating these models.

A. XSEDE Supercomputer

We ran our experiments on the SDSC (San Diego

Supercomputing Center) Comet cluster [4], which is a

dedicated cluster on XSEDE (Extreme Science and Engineering

Development Environment) and is capable of delivering up to

2 petaflops. XSEDE is a single virtual system consisting of

clusters of supercomputers, software tools, and shared data [8].

We used SDSC’s Oasis distributed storage system for storing

the large amount of experimental data.

B. Computation Resources

 Due to resource limitations, a single dedicated node on

Comet is used to train each model, however, multiple models

could be used trained simultaneously across multiple nodes.

This limitation increases the total computation time reported in

Section V, but does not affect the analysis. The node contains

two Intel E5-2680v3 processors, 4 NVIDIA Tesla K80 GPUs,

Fig 2: Design exploration using different DNN

configurations. Computations can be executed by default

on the CPU, or accelerated on the GPU for any given

processing engine through any of the data paths.

and 128 GB of DDR4 memory. Since TensorFlow did not

support all of Keras’s features at the time of this work, Data

Path 1 is limited to GPU resources only, whereas Data Path 2

accesses both the GPU and CPU resources.

V. RESULTS

The increase of a single layer from model1 to model2 expresses

the relative performance of both models, which can be

evaluated using two metrics: (1) the computation time during

the training phase quantified in hours, minutes, or seconds; and

(2) the achieved accuracy during the prediction phase,

quantified as an AUC (area under curve) score. A high accuracy

metric for a model is our primary objective of the evaluation,

but it can become computationally expensive to achieve a high

accuracy with respect to model complexity. While the

prediction accuracy of respective models remain the same

irrespective of data path (Data Path 1 or Data Path 2), we

explore possibilities of speeding up the training process via

each data path.
Fig. 3 depicts our experimental results for the training time

(left) and prediction accuracy (right). As shown, Data Path 2

(Theano with the CPU / GPU) is about 5X faster than Data Path

1 (TensorFlow with the GPU) as a result of the increased

number of CPU cores. The low performance of Data Path 1

may have also been contributed by the ongoing performance

improvements to TensorFlow as indicated in [5] where the

authors suggest the use of a just-in-time compiler to achieve a

number of optimizations such as loop fusion, blocking and

tiling for locality, specialization for particular tensor shapes and

sizes, etc.

For the prediction accuracy, the results show a 13%

improvement in AUC for model1 as compared to model2,

which suggests that a single-layer increment in the neural

network depth can greatly impact prediction accuracy. We are

currently performing additional benchmarking to evaluate the

performance accuracy trends to evaluate the benefits of

additional layers (up to N), and whether the improvement in

accuracy eventually plateaus. We are also evaluating the

potential consequence of implementing more advanced

optimizations, such as using AdaGrad as the network optimizer

instead of SGD.

VI. CONCLUSIONS AND DISCUSSIONS

In this work, we described our evaluation of how using a

development environment, such as XSEDE, facilitates efficient

model design exploration for deep learning. We used Comet to

explore different design options (accuracy vs training-time

tradeoff), exemplifying how users can use our methodology to

efficiently explore different model configurations and identify

configurations that meet the user’s required design goals, such

as performance and accuracy. Our methodology allows users to

identify the computational composition of models that meet

design goals.

This work presents a preliminary and generalized

methodology and evaluation, and leaves much future work. For

example, due to limited access to processing hardware, we were

unable to train deeper networks with more layers. Even though

the main contribution of this work is flexible design assistance

for exploring deep neural network models that achieve high

accuracy at minimal processing cost, we also plan to explore

how parallelizing the training phase across a large cluster of

compute nodes on Comet deduces the train phase runtime.

While applications like the ATLAS [21] and CMS

experiments require real-time performance for many

classification tasks, designing an efficient hardware

architecture requires software simulations and testing before

any actual hardware is built. Our future work aims to enable

hardware implementers and system designers with a platform

for realizing hardware versions of DNN models that meet user-

specified requirements. We also plan to conduct further studies

to quantify the computational composition of newly developed

models, which will further help in mapping models more

efficiently to hardware platforms such as FPGAs and

application-specific integrated circuits (ASICs).

ACKNOWLEDGMENT

 This work was supported by the U.S Department of Energy,

Office of Science, Basic Energy Sciences. The work also used

the Extreme Science and Engineering Discovery Environment

(XSEDE) and we thank Mahidhar Tatineni for his assistance

with setting up TensorFlow on SDSC’s Comet. We also

acknowledge the use of University of Florida’s HiperGator

supercomputer for parts of this work, and thank the Compact

Muon Solenoid (CMS) group at University of Florida and at

CERN for their support.

REFERENCES

[1] D. Acosta, N. Adams, A. Atamanchouk, R.D. Cousins,

M.I. Ferguson, V. Golovtsov, J. Hausera, A. Madorsky,

M. Matveev, J. Mumford, T. Nussbaum, P. Padley, B.

Razmyslovich, V. Sedova, W. Smith, B. Tannenbaum .,

“Development and Test of a Prototype Regional Track-

Finder for the Level-1 Trigger of the Cathode Strip

Chamber Muon System of CMS,” Nuclear Instruments

and Methods A496 (2003) 64-82

[2] http://archive.ics.uci.edu/ml/datasets/HIGGS

[3] Chollet, F keras, (2015), https://github.com/fchollet/keras

[4] SDSC Comet, https://portal.xsede.org/sdsc-comet

Fig 3: Training time (left) and prediction accuracy (right) on

a node with 4 Tesla GPUs and 24 Xeon CPU cores. Data Path

1 and Data Path 2 are configured for GPU and CPU runs

respectively. The prediction accuracy of a given model is the

same irrespective of data path.

[5] Mart´ın Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey

Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,

Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan

Man´e, Rajat Monga, Sherry Moore, Derek Murray, Chris

Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,

Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent

Vanhoucke, Vijay Vasudevan, Fernanda Vi´egas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,

Yuan Yu, and Xiaoqiang Zheng , “TensorFlow: Large-

Scale Machine Learning on Heterogeneous Distributed

Systems”, 2015

[6] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James

Bergstra, Ian Goodfellow, Arnaud Bergeron, Nicolas

Bouchard, David Warde-Farley, Yoshua Bengio,

“Theano: new features and speed improvements”. NIPS

2012 deep learning workshop

[7] Abhinav Vishnu, Charles Siegel, Jeffrey Daily,

“Distributed TensorFlow with MPI”, Cornell University

Library

[8] John Towns, Timothy Cockerill, Maytal Dahan, Ian

Foster, Kelly Gaither, Andrew Grimshaw, Victor

Hazlewood, Scott Lathrop, Dave Lifka, Gregory D.

Peterson, Ralph Roskies, J. Ray Scott, Nancy Wilkins-

Diehr "XSEDE: Accelerating Scientific Discovery",

Computing in Science & Engineering

[9] Po-Hsien Liu; Shun-Feng Su; Ming-Chang Chen; Chih-

Ching Hsiao, "Deep learning and its application to general

image classification," Informative and Cybernetics for

Computational Social Systems (ICCSS), 2015

[10] Jonathan L. Herlocker, Joseph A. Konstan, Loren G.

Terveen, and John T. Riedl. 2004. Evaluating

collaborative filtering recommender systems. ACM Trans.

Inf. Syst. 22, 1 (January 2004), 5-53

[11] Chumki Basu, Haym Hirsh, and William Cohen. 1998.

Recommendation as classification: using social and

content-based information in recommendation.

In Proceedings of the fifteenth national/tenth conference

on Artificial intelligence/Innovative applications of

artificial intelligence (AAAI '98/IAAI '98). American

Association for Artificial Intelligence, Menlo Park, CA,

USA, 714-720.

[12] Deep Residual Learning for Image Recognition. Kaiming

He. Xiangyu Zhang. Shaoqing Ren. Jian Sun. Microsoft

Research

[13] Going Deeper with Convolutions, Christian Szegedy

[14] Imagenet classification with deep convolutional neural

networks Alex Krizhevsky

[15] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie and X. Zhou,

"DLAU: A Scalable Deep Learning Accelerator Unit on

FPGA," in IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 36, no. 3, pp.

513-517, March 2017.

[16] A. Viebke and S. Pllana, "The Potential of the Intel (R)

Xeon Phi for Supervised Deep Learning," 2015 IEEE

17th International Conference on High Performance

Computing and Communications, 2015 IEEE 7th

International Symposium on Cyberspace Safety and

Security, and 2015 IEEE 12th International Conference

on Embedded Software and Systems, New York, NY,

2015, pp. 758-765.

 [17] C. Crisci, B. Ghattas, G. Perera, A review of supervised

machine learning algorithms and their applications to

ecological data, Ecological Modelling, Volume 240, 10

August 2012, Pages 113-122

[18] Searching for exotic particles in high-energy physics with

deep learning, P Baldi

[19] Kaggle Higgs Challenge.

https://www.kaggle.com/c/higgs-boson

[20] Keras. http://kera.io

[21] G. Cataldi, "Muon identification with the event filter of

the ATLAS experiment at CERN LHC's," 14th IEEE-

NPSS Real Time Conference, 2005., Stockholm, 2005

