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I. INTRODUCTION 

very year, up to 30 petabytes of data are captured from the 

large hadron collider (LHC) at CERN, the European Centre 

for Nuclear Research. 1 petabyte of this data is offline-

processed everyday using 11,000 servers with 100,000 

processor cores. This huge amount of data represents only a 

very small fraction of the total amount of raw data generated by 

sensors in the collider’s trigger system at a rate of 40 million 

events per second. In order to adhere to the very strict 

experimental requirements, novel and efficient algorithms are 

needed to perform the required physics analytics very quickly 

during runtime. For the Compact Muon Solenoid (CMS) 

experiment [1], the design, construction, and processing of a 

large portion of the Level-1 trigger data for muon detection will 

become even more challenging with nearly 1 billion collisions 

occurring per second as a result of the increased luminosity 

from proposed LHC upgrades. 

Recently, machine learning has gained tremendous 

popularity in the research community and is used in many data-

processing-intensive applications, ranging from 

recommendation engines [10, 11] and large-scale recognition 

applications to sequencing and identification systems [9]. Deep 

learning, which is a branch of machine learning, is based on a 

set of algorithms that model high-level data abstractions. While 

traditional machine learning algorithms (e.g., SVM, KNN, and 

BDT) [17] require a prior pre-processing step that manually 

extracts salient features from the data, deep learning obviates 

the need for this pre-processing step by dynamically performing 

feature extraction on the raw input data during runtime, which 

makes deep learning attractive for identifying physics particles 

based on raw detector readings from particle colliders [18].  

    An important aspect of data processing for the trigger system 

of LHC detectors is classifying collision events as signal (“an 

interesting event”) or noise (“an uninteresting event”).  

Interesting events are saved for later processing, and 

uninteresting events are discarded.  This classification must be 

performed very quickly to keep up with the continuous stream 

of real-time data samples. In this work, we present our approach 

to using deep learning for identification of rarely produced 

physics particles (such as the Higgs Boson) out of a majority of 

uninteresting, background or noise-dominated data. A fast and 

efficient system to eliminate uninteresting data would result in 

much less data being stored, thus significantly reducing 

processing time and storage requirements. In this paper, we 

present a generalized preliminary version of our approach to 

motivate research interest in advancing the state-of-the-art in 

deep learning networks for other applications that can benefit 

from learning systems.  

II. BACKGROUND  

A. Deep Learning  

Deep Learning is a branch of artificial neural networks 

(ANN) where a computational model is composed based on the 

structure and behavior of biological neural networks. This 

computational model is composed of multiple layers that are 

interconnected to form a network. Each layer contains multiple 

processing nodes (often referred to as neurons). Information is 

propagated through the network via a set of non-linear 

transformations called activation functions that describe the 

output of a given node based on an input or set of inputs. By 

observing intricate structures in large datasets, deep learning 

can “learn” representations of data with multiple levels of 

abstraction.  

Fig. 1 depicts the two phases of deep learning: the training 

and prediction phases. The training phase uses a method called 

back propagation to indicate how the internal parameters 

(weights) of the deep neural network should change to more 

accurately reflect the representations in each layer from the 

representation in the previous layer. Since there is typically 

millions of training examples in which to train the deep neural 

network, and thus millions of adjustable weights, the learning 

phase is a lengthy process.  
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Fig 1: Phases of deep learning: The training phase (top) 

uses a large set of examples to learn data representations. 

The trained network is then used to determine information 

about new data in the prediction phase (bottom). 
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Once a neural network is trained, the network can be used in 

the prediction phase (sometimes referred to as inference or 

scoring), where the network attempts to map arbitrary input 

instances of data to the learned weights, which can generate 

predictions about that instance. For example, in convolutional 

neural networks (a type of neural network used for image 

recognition), when a dataset of cats are used in the training 

phase, the neural network could then be used to predict whether 

a given image does or does not contain a cat.  

Deep neural networks (DNN) differ from traditional machine 

learning algorithms in that deep neural networks have several 

(hidden) layers. The depth of the network, often indicated by 

the number of layers, generally improves the prediction 

accuracy [12, 13, 14] at the cost of increased computation time. 

However, in contrast to CPU-only solutions, graphics 

processing units (GPUs) and other parallel architectures, such 

as the Intel Xeon Phi [16] and field-programmable logic 

(FPGAs) [15], can be used to speedup these computations.  

III. APPROACH 

In this section, we describe our computational approaches, 

including the techniques, algorithms, software, models, and 

data that we will evaluate (Section V) using our experimental 

infrastructure (Section IV).  

A. Data Collection  

 We initially validate our design using a common dataset for 

benchmarking Higgs classification solutions [2], which 

appeared in a challenge at the Kaggel competition [19]. The 

dataset, produced using Monte Carlo simulations, contains 21 

low-level features for each event recorded from the particle 

physics experiment, as well as 7 high-level features along with 

a classification label that indicates if the event is signal or noise. 

There are a total of 11 million events and all values are real 

floating-point numbers, except the class label, which has a 

binary value of 0 or 1 indicating if that sample is signal or noise, 

respectively. We arbitrarily partition the dataset to a 9:1 ratio 

for representing the training and test datasets, respectively.  

B. Software Framework 

We create prototype software models using Keras APIs 

(application programming interfaces), which are used for 

creating neural networks. As shown in Fig. 2, we use this API 

to build two processing engine data paths (Data Path 1 and 

Data Path 2) to interface between the user and platform levels 

using TensorFlow [5] and Theano [6]. TensorFlow and Theano 

represent a model’s computational structure as a computation 

graph of data. The user level abstracts these processing engines 

and the underlying hardware at the platform level to present a 

consistent holistic system view for model design exploration, 

enabling users to easily construct and evaluate different neural 

network models based on different design scenarios (e.g., 

accuracy versus computational costs) (Section III-C). We note 

that no source code change is required for any model at the user 

level, regardless of the data path and processing engine.  

C. Models 

In order to evaluate different design scenarios, users can 

create different system models during model design 

exploration, where each model can be uniquely identified with 

a number ranging from 1 to N (maximum number of models 

explored). Each model can represent a different neural network 

configuration or optimization technique, where aspects, such as 

the number of layers and layer composition, can be varied. In 

this work, we evaluate two neural network models, model1 and 

model2, using different numbers of sequential (dense) layers. 

Model1 has two layers and model2 has one additional layer to 

represent a deeper network than model2. This additional layer 

uses a higher number of neurons based on the implementation 

in [7]. Both models are configured with Stochastic Gradient 

Descent (SGD) as the optimizer, with a cross-entropy loss 

function. Even though we present a simple two-model 

evaluation, the fundamental design exploration practices are 

easily extendable to any number of models to determine an 

effective balance between model accuracy and computational 

costs.  

IV. EXPERIMENTAL INFRASTRUCTURE 

We evaluate model1 and model2 using the two configurations 

represented by Data Path 1 and Data Path 2, respectively, in 

Fig 2. In this section, we describe the infrastructure used for 

training and evaluating these models.  

A. XSEDE Supercomputer 

We ran our experiments on the SDSC (San Diego 

Supercomputing Center) Comet cluster [4], which is a 

dedicated cluster on XSEDE (Extreme Science and Engineering 

Development Environment) and is capable of delivering up to 

2 petaflops. XSEDE is a single virtual system consisting of 

clusters of supercomputers, software tools, and shared data [8]. 

We used SDSC’s Oasis distributed storage system for storing 

the large amount of experimental data.  

B. Computation Resources 

 Due to resource limitations, a single dedicated node on 

Comet is used to train each model, however, multiple models 

could be used trained simultaneously across multiple nodes. 

This limitation increases the total computation time reported in 

Section V, but does not affect the analysis. The node contains 

two Intel E5-2680v3 processors, 4 NVIDIA Tesla K80 GPUs, 

 
 

Fig 2: Design exploration using different DNN 

configurations. Computations can be executed by default 

on the CPU, or accelerated on the GPU for any given 

processing engine through any of the data paths. 



 

 

and 128 GB of DDR4 memory. Since TensorFlow did not 

support all of Keras’s features at the time of this work, Data 

Path 1 is limited to GPU resources only, whereas Data Path 2 

accesses both the GPU and CPU resources.  

V. RESULTS 

The increase of a single layer from model1 to model2 expresses 

the relative performance of both models, which can be 

evaluated using two metrics: (1) the computation time during 

the training phase quantified in hours, minutes, or seconds; and 

(2) the achieved accuracy during the prediction phase, 

quantified as an AUC (area under curve) score. A high accuracy 

metric for a model is our primary objective of the evaluation, 

but it can become computationally expensive to achieve a high 

accuracy with respect to model complexity. While the 

prediction accuracy of respective models remain the same 

irrespective of data path (Data Path 1 or Data Path 2), we 

explore possibilities of speeding up the training process via 

each data path. 
Fig. 3 depicts our experimental results for the training time 

(left) and prediction accuracy (right). As shown, Data Path 2 

(Theano with the CPU / GPU) is about 5X faster than Data Path 

1 (TensorFlow with the GPU) as a result of the increased 

number of CPU cores. The low performance of Data Path 1 

may have also been contributed by the ongoing performance 

improvements to TensorFlow as indicated in [5] where the 

authors suggest the use of a just-in-time compiler to achieve a 

number of optimizations such as loop fusion, blocking and 

tiling for locality, specialization for particular tensor shapes and 

sizes, etc. 

For the prediction accuracy, the results show a 13% 

improvement in AUC for model1 as compared to model2, 

which suggests that a single-layer increment in the neural 

network depth can greatly impact prediction accuracy. We are 

currently performing additional benchmarking to evaluate the 

performance accuracy trends to evaluate the benefits of 

additional layers (up to N), and whether the improvement in 

accuracy eventually plateaus. We are also evaluating the 

potential consequence of implementing more advanced 

optimizations, such as using AdaGrad as the network optimizer 

instead of SGD.  

VI. CONCLUSIONS AND DISCUSSIONS 

In this work, we described our evaluation of how using a 

development environment, such as XSEDE, facilitates efficient 

model design exploration for deep learning. We used Comet to 

explore different design options (accuracy vs training-time 

tradeoff), exemplifying how users can use our methodology to 

efficiently explore different model configurations and identify 

configurations that meet the user’s required design goals, such 

as performance and accuracy. Our methodology allows users to 

identify the computational composition of models that meet 

design goals.   

This work presents a preliminary and generalized 

methodology and evaluation, and leaves much future work. For 

example, due to limited access to processing hardware, we were 

unable to train deeper networks with more layers. Even though 

the main contribution of this work is flexible design assistance 

for exploring deep neural network models that achieve high 

accuracy at minimal processing cost, we also plan to explore 

how parallelizing the training phase across a large cluster of 

compute nodes on Comet deduces the train phase runtime.     

While applications like the ATLAS [21] and CMS 

experiments require real-time performance for many 

classification tasks, designing an efficient hardware 

architecture requires software simulations and testing before 

any actual hardware is built. Our future work aims to enable 

hardware implementers and system designers with a platform 

for realizing hardware versions of DNN models that meet user-

specified requirements. We also plan to conduct further studies 

to quantify the computational composition of newly developed 

models, which will further help in mapping models more 

efficiently to hardware platforms such as FPGAs and 

application-specific integrated circuits (ASICs). 
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