
An Automated High-level Design Framework

for Partially Reconfigurable FPGAs
Rohit Kumar and Ann Gordon-Ross

Introduction

PaRAT Methodology and Case Studies

Motivations and Challenges

Runtime
changes via
PR allow
extendable
missions

Short
modification

time allows
quick mission

changes

FPGA resource
multiplexing enables
area/ power saving

PR Application Development Case Study

 IDEA (International Data Encryption Algorithm)

 Block cipher, used in pretty good privacy (PGP) v2.0

 Experimental Setup and performance analysis

 Quantifying traditional PR app dev. time is difficult

 Fedora 17, 2GB, one Intel i7-3517U@1.9GHz core

 Execution time was averaged over 100 execution

 ~4 seconds to generate modules and per-module
source code, ~9 seconds for PR partitioning

Flowchart for CFG to PRML model conversion

PR Partitioning

Fundamental Partitioning Rules Execution results

1. Eliminate hierarchy nodes and memory nodes inside the hierarchy nodes Eliminates redundant memory nodes by flattening the PRML model.

2. Identify computation and iteration supernode(s) Reduces the number of nodes by merging interdependent nodes.

3. Identify all execution paths/cycles except symbol paths/cycles and trivial paths (i.e., L1 paths) Identifies all non-trivial input to output paths.

4. Identify distinct smaller paths (i.e., L2 paths) from the L1 paths (sequentially break the L1 paths
at choice and or-merge nodes but exclude symbol paths and trivial paths)

Identifies smaller data paths from the non-trivial
input to output paths based on control choices.

5. Identify distinct smaller paths (i.e., L3 paths) from the L2 paths (break the
L2 paths at iteration nodes and iteration supernodes but exclude trivial paths)

Identifies all computation kernels.

6. Identify all sets of static module and PRMs based on
L2 paths, L3 paths, and node’s divergent attribute value

Identifies all possible path combinations considering paths generated by
rules 3-5, divides these paths into the PRMs and the static module.

7. Assign PRMs to PRRs: (a) clone PRMs are assigned to the same PRR; (b) sibling PRMs are
assigned to different PRRs; (c) cousin PRMs can be assigned to the same or different PRRs

Calculates the number of PRRs required for each combination
generated by rule 6 and creates all possible PRM to PRR assignments.

8. Create PR architectures.
Different PR architectures are created for each PRM variant and each
PRM to PRR assignment.

Fundamental partitioning rules and brief description of the rules' execution results after the rule is applied to an application’s PRML model.

HLS compilers
hide intermediate

detail required
to leverage PR

HLS
languages
do not provide
constructs
for PR

High-level-synthesis
(HLS) languages can
reduce design time

Partial reconfiguration
(PR) enhances
reconfigurable
space systems

Floating point multiplier
application from VIVADO examples

#include "fp_mul_pow2.h"
#ifdef ABS
#undef ABS
#endif
#define ABS(n) ((n < 0) ? -n : n)
float float_mul_pow2(float x, int8_t n){
#pragma AP inline
 float_num_t x_num, prod;
 x_num.fp_num = x;
#ifndef AESL_FP_MATH_NO_BOUNDS_TESTS
 if (x_num.bexp == 0xFF || x_num.bexp == 0)
 prod.fp_num = x_num.fp_num;
 else if (n >= 0 && x_num.bexp >= 255 - n) {
 prod.sign = x_num.sign; //
 prod.bexp = 0xFF; // +/-INF
 prod.mant = 0; //
 } else if (n < 0 && x_num.bexp <= ABS(n)) {
 prod.sign = x_num.sign; //
 prod.bexp = 0; // +/-ZERO
 prod.mant = 0; //
 } else
#endif {
 prod.sign = x_num.sign;
 prod.bexp = x_num.bexp + n;
 prod.mant = x_num.mant; }
 return prod.fp_num; }

void fn2_block4(float D_1775, float x_num_fp_num,
float prod_fp_num){
D_1775 = x_num_fp_num;
prod_fp_num = D_1775; }

void fn2_block6(unsigned char D_1779, unsigned
char x_num_D_1740_bexp, int8_t n, int D_1780, int
D_1781, int D_1782){
D_1779 = x_num_D_1740_bexp;
D_1780 = (int) D_1779;
D_1781 = (int) n;
D_1782 = 255 - D_1781; }

void fn2_block7(unsigned D_1784, unsigned
x_num_D_1740_sign, unsigned prod_D_1740_sign,
unsigned char prod_D_1740_bexp, unsigned
prod_D_1740_mant){
D_1784 = x_num_D_1740_sign;
prod_D_1740_sign = D_1784;
prod_D_1740_bexp = 255;
prod_D_1740_mant = 0; }

void fn2_block10(unsigned D_1793, unsigned
x_num_D_1740_sign, unsigned prod_D_1740_sign,
unsigned char prod_D_1740_bexp, unsigned
prod_D_1740_mant){
D_1793 = x_num_D_1740_sign;
prod_D_1740_sign = D_1793;
prod_D_1740_bexp = 0;
prod_D_1740_mant = 0; }

PaRAT Methodology

 Automatically parse and analyze
application’s HLS source code in C

 Leverage gcc-python-plugin to extract control
flow graph (CFG) and data flow analysis

 Annotate CFG with data flow analysis and
CFG’s per-block synthesizable HLS source code

 PRML model generation and partitioning

 PR partitioning requires explicit control/data
dependence and PR-specific attributes

 Convert CFG to PRML model

 Partition applications based
on PR-specific partitioning rules

 Store partition and synthesis information in
portable output data structure to enable PR
design space exploration by third-party tools

 PR requires applications to be partitioned in PR architecture(s)

 PR architecture contains app’s static and runtime swappable modules

 Application partitioning is performed on application’s PRML model

 PRML allows applications to identify PR-specific attributes

PaRAT output data structure format

Synthesizable code for

multiplier app partitions

