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Motivations and Challenges 

 

Runtime  
changes via  
PR allow  
extendable  
missions 

Short  
modification  

time allows  
quick mission 

changes 

FPGA resource 
multiplexing enables 
area/ power saving 

PR Application Development Case Study 

 IDEA (International Data Encryption Algorithm) 

 Block cipher, used in pretty good privacy (PGP) v2.0  

 Experimental Setup and performance analysis 

 Quantifying traditional PR app dev. time is difficult 

 Fedora 17, 2GB, one Intel i7-3517U@1.9GHz core 

 Execution time was averaged over 100 execution 

 ~4 seconds to generate modules and per-module 
source code, ~9 seconds for PR partitioning 

Flowchart for CFG to PRML model conversion 

PR Partitioning 

Fundamental Partitioning Rules Execution results 

1. Eliminate hierarchy nodes and memory nodes inside the hierarchy nodes  Eliminates redundant memory nodes by flattening the PRML model. 

2. Identify computation and iteration supernode(s) Reduces the number of nodes by merging interdependent nodes. 

3. Identify all execution paths/cycles except symbol  paths/cycles and trivial paths (i.e., L1 paths) Identifies all non-trivial input to output paths. 

4. Identify distinct smaller paths (i.e., L2 paths) from the L1 paths (sequentially break the L1 paths 
at choice and or-merge nodes but exclude symbol paths and trivial paths)  

Identifies smaller data paths from the non-trivial  
input to output paths based on control choices. 

5. Identify distinct smaller paths (i.e., L3 paths) from the L2 paths (break the  
L2 paths at iteration nodes and iteration supernodes but exclude trivial paths) 

Identifies all computation kernels. 

6. Identify all sets of static module and PRMs based on  
L2 paths, L3 paths, and node’s divergent attribute value  

Identifies all possible path combinations considering paths generated by 
rules 3-5, divides these paths into the PRMs and the static module. 

7. Assign PRMs to PRRs:  (a) clone PRMs are assigned to the same PRR; (b) sibling PRMs are 
assigned to different PRRs; (c) cousin PRMs can be assigned to the same or different PRRs 

Calculates the number of PRRs required for each combination  
generated by rule 6 and creates all possible PRM to PRR assignments. 

8. Create PR architectures.  
Different PR architectures are created for each PRM variant and each 
PRM to PRR assignment. 

Fundamental partitioning rules and brief description of the rules' execution results after the rule is applied to an application’s PRML model. 

HLS compilers  
hide intermediate 

detail required  
to leverage PR 

HLS  
languages  
do not provide 
constructs  
for PR 

High-level-synthesis 
(HLS) languages can 
reduce design time 

Partial reconfiguration  
(PR) enhances 
reconfigurable  
space systems 

Floating point multiplier  
application from VIVADO examples 

#include "fp_mul_pow2.h" 
#ifdef ABS 
#undef ABS 
#endif 
#define ABS(n) ((n < 0) ? -n : n) 
float float_mul_pow2(float x, int8_t n){ 
#pragma AP inline 
   float_num_t x_num, prod; 
   x_num.fp_num = x; 
#ifndef AESL_FP_MATH_NO_BOUNDS_TESTS 
   if (x_num.bexp == 0xFF || x_num.bexp == 0) 
      prod.fp_num = x_num.fp_num; 
   else if (n >= 0 && x_num.bexp >= 255 - n) {  
      prod.sign = x_num.sign; // 
      prod.bexp = 0xFF;       // +/-INF 
      prod.mant = 0;          // 
   } else if (n < 0 && x_num.bexp <= ABS(n)) {  
      prod.sign = x_num.sign; // 
      prod.bexp = 0;          // +/-ZERO 
      prod.mant = 0;          // 
   } else 
#endif   { 
      prod.sign = x_num.sign; 
      prod.bexp = x_num.bexp + n; 
      prod.mant = x_num.mant;   } 
   return prod.fp_num; } 

void fn2_block4(float D_1775, float x_num_fp_num, 
float prod_fp_num){ 
D_1775 = x_num_fp_num;  
prod_fp_num = D_1775; } 

void fn2_block6(unsigned char D_1779, unsigned 
char x_num_D_1740_bexp, int8_t n, int D_1780, int 
D_1781, int D_1782){ 
D_1779 = x_num_D_1740_bexp;  
D_1780 = (int) D_1779;  
D_1781 = (int) n;  
D_1782 = 255 - D_1781; } 

void fn2_block7(unsigned D_1784, unsigned 
x_num_D_1740_sign, unsigned prod_D_1740_sign, 
unsigned char prod_D_1740_bexp, unsigned 
prod_D_1740_mant){ 
D_1784 = x_num_D_1740_sign;  
prod_D_1740_sign = D_1784;  
prod_D_1740_bexp = 255;  
prod_D_1740_mant = 0; } 

void fn2_block10(unsigned D_1793, unsigned 
x_num_D_1740_sign, unsigned prod_D_1740_sign, 
unsigned char prod_D_1740_bexp, unsigned 
prod_D_1740_mant){ 
D_1793 = x_num_D_1740_sign;  
prod_D_1740_sign = D_1793;  
prod_D_1740_bexp = 0;  
prod_D_1740_mant = 0; } 

PaRAT Methodology 

 Automatically parse and analyze 
application’s HLS source code in C 

 Leverage gcc-python-plugin to extract control 
flow graph (CFG) and data flow analysis 

 Annotate CFG with data flow analysis and 
CFG’s per-block synthesizable HLS source code 

 PRML model generation and partitioning 

 PR partitioning requires explicit control/data 
dependence and PR-specific attributes 

 Convert CFG to PRML model 

 Partition applications based  
on PR-specific partitioning rules 

 Store partition and synthesis information in 
portable output data structure to enable PR 
design space exploration by third-party tools 

 PR requires applications to be partitioned in PR architecture(s) 

 PR architecture contains app’s static and runtime swappable modules 

 Application partitioning is performed on application’s PRML model 

 PRML allows applications to identify PR-specific attributes  

PaRAT output data structure format 

Synthesizable code for 

multiplier app partitions 


