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Abstract—Partial reconfiguration (PR) on field-

programmable gate arrays (FPGAs) enables multiple PR mod-

ules (PRMs) to time multiplex partially reconfigurable regions 

(PRRs), which affords reduced reconfiguration time, area over-

head, etc., as compared to non-PR systems. However, to effective-

ly leverage PR, system designers must determine appropriate 

PRR sizes/organizations during early stages of PR system design, 

since inappropriate PRRs, given PRM requirements, can negate 

PR benefits, potentially resulting in system performance worse 

than a functionally-equivalent non-PR design. To aid in PR sys-

tem design, we present two portable, high-level cost models, 

which are based on the synthesis report results generated by 

Xilinx tools. These cost models estimate PRR size/organization 

given the PRR’s associated PRMs to maximize the PRRs’ re-

source utilizations and estimate the PRM's associated partial 

bitstream sizes based on the PRR sizes/organizations. Experi-

ments evaluate our cost models’ accuracies for different PRMs 

and required resources, which enable our models to afford en-

hanced designer productivity since these models preclude the 

lengthy PR design flow, which is typically required to attain such 

analysis. 

Keywords—FPGA, partial reconfiguration, cost model, hard-

ware multitasking. 

I. INTRODUCTION AND MOTIVATION 

Partial reconfiguration (PR) on field-programmable gate 
arrays (FPGAs) partitions the FPGA fabric into one static 
region and one or more partially reconfigurable regions 
(PRRs), which enables PRRs to time-multiplex multiple 
hardware tasks (i.e., PR modules (PRMs)). A PRR is 
reconfigured using the PRM’s partial bitstream, which contains 
the PRM’s flip-flops’ (FFs’) and memory blocks’ initial values. 
Since this partial bitstream only reconfigures one PRR, as 
compared to full reconfiguration of the entire FPGA using a 
full bitstream, PR affords faster reconfiguration time and 
smaller bitstreams. Unlike full reconfiguration that halts the 
entire FPGA’s execution, PRR reconfiguration isolates the 
reconfiguration to a single PRR without halting the static 
region’s or other PRRs’ executions.  

This isolated reconfiguration and hardware multitasking of 
PRMs provides additional PR benefits as compared to full 
reconfiguration, such as reduced FPGA area requirements and 
power consumption [3][8]. Furthermore, PRR reconfiguration 
is flexible and can be executed dynamically using either the 

internal configuration access port (ICAP) on the FPGA, or an 
external controller, such as a host PC, but using the ICAP 
offers the advantage of autonomous system reconfiguration 
after system deployment.  

However, effectively leveraging PR benefits is challenging 
for system designers. Many design decisions affect overall PR 
system performance, and if not adequately chosen, 
inappropriate decisions can result in severe adverse effects, 
potentially leading to PR system performance that is worse 
than a non-PR system. For example, even though large PRRs 
afford greater PRM time-multiplexing potential (i.e., large 
PRRs contain more computational resources than small PRRs 
and can thus accommodate a wider variety of 
functionality/PRMs), oversized PRRs impose longer routing 
delays and reconfiguration time, reduced parallelization 
potential due to fewer PRRs, and thus potentially worse 
performance than a non-PR system.  

Selecting an appropriate PRR size (total number of rows 
and columns in the PRR) and organization (specific resources 
distributed in the PRR) is a critical design decision that must be 
done early in system design, during design partitioning at the 
system and application levels, in order to increase designer 
productivity. The PRRs’ and static region’s sizes are dictated 
by which partitions (i.e., PRMs) of the application are assigned 
to these regions. When selecting PRMs to time-multiplex 
PRRs, the system designer must partition the application into 
multiple PRMs and consider the intended time-multiplexed 
PRMs’ different resource requirements (e.g., configurable logic 
blocks (CLBs), digital signal processing blocks (DSPs), and 
random access memory blocks (BRAMs)), which dictates the 
PRR’s size and organization (e.g., resource distribution). Since 
PR partitioning can range from the finest grained, where PRMs 
are defined on a per-instruction/operation basis, to the coarsest 
grained, where the entire application is defined as a single 
PRM, and each partitioning between these ranges offers design 
tradeoffs (e.g., power, parallelization potential, performance, 
device size, etc.), the PR partitioning design space is 
exponentially large and designers can only feasibly evaluate a 
subset of these designs. 

To assist in early PR partitioning design decisions, system 
designers need system/application-level analytical or simulated 
models that evaluate the impact of these decisions on the PRR 
size/organization and bitstream sizes. Without these high-level 



models to determine these impacts, for every considered PR 
partitioning, the system designer must perform complete PR 
system implementation, which includes iterative execution of 
the lengthy PR design flow (e.g., design creation and synthesis 
of all PRMs and the static region, manual PRR floorplanning, 
place and route of the static region and PRRs for the PRMs, 
generation of the full and PRMs’ partial bitstreams, etc.). Even 
though complete implementation provides highly accurate 
design analysis and PR benefits, the design time effort may be 
prohibitive since this PR design flow can take hours to days, 
depending on the system complexity, to implement a single PR 
partitioning. Therefore, designers must have high-level cost 
models that quickly evaluate design decisions early in the 
design process and provide sufficiently accurate evaluation, 
which significantly reduces design space exploration time as 
compare to full system implementation. These cost models 
evaluate the impact of PRR size/organization selection with 
respect to the maximum resource utilization for the PRRs’ 
associated PRMs, which in turn affects the PRMs’ associated 
partial bitstream sizes.  

Some prior research develops and evaluates cost models for 
PR FPGAs, but these prior works did not present a holistic 
method for evaluating the tradeoffs considering the PRR 
size/organization’s impact on partial bitstream size, 
reconfiguration time, and overall PR system performance, 
which are necessary for a complete and holistic assessment of 
PR design decisions. Thus we propose two high-level cost 
models based on the synthesis report results generated by Xil-
inx tools. These models use mathematical formulas to 
determine the PRR’s sizes/organizations and partial bitstream 
sizes considering designer-defined multitasking PRMs (i.e., our 
work is based on designer-defined PRM design decisions, since 
PRM definition is beyond the scope of this research) and the 
PRMs’ associated partial bitstream sizes.  

In this paper, we introduce the first, to the best of our 
knowledge, detailed cost model for determining partial bit-
stream sizes without executing the entire PR design flow (no 
other prior works or vendor tool documentation provide this 
analysis). We define our cost models to be generally portable 
across different Xilinx FPGA families by simply altering the 
cost model’s device-specific characteristics’ values in the cost 
models’ formulas. We show the efficacy of our PRR 
size/organization cost model using complex PRMs, and com-
pare the model’s estimated PRR sizes/organizations using syn-
thesis reports against the PRR sizes/organizations obtained by 
executing the entire PR design flow. Our cost models’ ability to 
estimate the PRR size/organization and the PRMs’ associated 
partial bitstream size without completing the entire PR design 
flow significantly decreases design exploration time and, thus 
increases designer productivity and adherence to design goals 
(e.g., performance and power constraints, etc.).   

II. RELATED WORK 

Prior works in PR cost models only provided partial 
methods for evaluating design tradeoffs. Liu et al. [4] compared 
multiple PR designs using the ICAP and proposed a direct 
memory access (DMA)-based PR design to reduce the PRR 
reconfiguration time. The authors compared the reconfiguration 
time for the different PR designs and different bitstream sizes, 

but the results did not include details about the PRRs’ 
sizes/organizations.  

Papadimitriou et al. [7] presented an extensive survey of 
PRR reconfiguration times and introduced a cost model for 
PRR reconfiguration based on the bitstream storage media type 
(e.g., compact flash, BRAM, DDR SDRAM, etc.). However, 
the cost model’s estimation had a 30% to 60% error as 
compared to the measured reconfiguration times. Claus et al. 
[1] used formulas to calculate the expected PRR 
reconfiguration time based on the ICAP’s busy-factor, which 
reflects the ICAP’s shared resource contention for PRR 
reconfiguration. However, since this approach only considered 
the ICAP’s busy-factor, the method is only valid if the ICAP is 
the limiting factor during reconfiguration. Furthermore, the 
method was only applicable to the Virtex-II FPGAs, and was 
not portable to different FPGA families.  

Duhem et al. [2] introduced FaRM, a high-speed internal 
configuration controller for Xilinx FPGAs, and presented a cost 
model to evaluate the PRR reconfiguration time, but the 
authors did not verify the cost model with measured values, 
and did not provide reconfiguration time analysis for different 
partial bitstream sizes.  

Although all of these prior works analyzed certain PR 
design decisions, none considered holistic PR design evaluation 
and exploration of the PRRs’ sizes/organizations and how the 
PRRs’ sizes/organizations affects the partial bitstream size, 
which in turn also affects the reconfiguration time and overall 
PR system performance. In prior work [5][6], we used the 
proposed cost models (only for CLBs) as part of design space 
exploration for two PR designs for fine-grain evaluation of 
PRR reconfiguration times in two hardware multitasking 
applications. Since our prior work only considered CLB 
resources, this paper presents significant cost model 
enhancements that include CLBs, DSPs, and BRAMs, and 
presents the cost models’ portability across FPGA families. 

III. COST MODELS FOR PR FPGAS 

Our proposed cost models for PR designs on Xilinx FPGAs 
assist system designers in quickly evaluating and selecting the 
PRRs’ sizes/organizations that minimize partial bitstream size 
and reconfiguration time, with respect to design goals, without 
executing the entire PR design flow, thereby increasing 
designer productivity. Since low-level device details are critical 
to cost model estimation accuracy and general understanding 
for portability to other device families, we present a brief 
description of key aspects of the Virtex-5 device family. Using 
this knowledge foundation, we establish our cost model 
formulas for PRR size/organization based on the PRMs’ 
required resources, and present the formulas for partial 
bitstream size derivation, which are based on the PRR 
size/organization. 

A. Xilinx Virtex-5 Device Layout and Resources 

The Xilinx Virtex-5 FPGA family and newer families, such 
as the Virtex-6 and -7 series and the Zynq-7000, support two-
dimensional PR, which allows PRRs to have any rectangular 
shape on the device fabric, enabling PRRs to contain a diverse 
mixture of resources based on the PRR’s fabric location. The 
FPGA’s resources are distributed into a row/column 



organization where each column contains a group of 
configuration frames and the number of configuration frames 
per column depends on the resource type (e.g., CLB, DSP, 
etc.). A frame is the minimum unit of information used to 
configure/read the FFs’ stored values and BRAMs in the 
device’s configuration memory (CM). Input/output blocks 
(IOBs) and clock (CLK) resources are not supported as part of 
the PRRs in the current versions of the Xilinx tools.  

For Virtex-5 devices, a frame contains 41 32-bit words, and 
CLB, DSP, BRAM, IOB, and CLK columns have 36, 28, 30, 
54, and 4 configuration frames, respectively. Each BRAM 
column requires 128 data frames for BRAM initialization. In 
any given row, a CLB column has 20 CLBs, a DSP column has 
8 DSPs, and a BRAM column has 4 BRAMs. Each CLB 
contains a pair of slices and each slice contains 4 look-up tables 
(LUTs) and 4 FFs.  We refer the reader to [9][10] for a 
complete description of the Virtex-5 device architecture and 
configuration.  

B. Cost Model for PRR Size/Organization 

The PRR size/organization affect the partial bitstream size. 
Since the PRR floorplanning in the PR design flow is a manual 
process executed by system designers, oversized PRRs or ill-
suited PRR resource row/column organization with respect to 
the associated PRMs’ resource requirements can increase the 
internal fragmentation (PRR resources not used in the 
associated PRM), which unnecessarily increases the PRR’s 
number of configuration frames, partial bitstream size, and 
reconfiguration time. Our cost model assists system designers 
in determining the PRR size/organization given the PRR’s 
associated PRMs in order to reduce internal fragmentation and 
without completing the entire PR design flow. 

Table I defines the parameters used in the PRR 
size/organization cost model for PRMs containing CLBs, 

DSPs, and BRAMs, where LUT_CLB, FF_CLB, CLBcol, 
DSPcol, and BRAMcol are device-family dependent. The PRM’s 
resources can be obtained from the synthesis report generated 
by synthesizing the PRM using the Xilinx Synthesis 
Technology (XST) tool to obtain the parameters LUT_FFreq, 
LUTreq, FFreq, DSPreq, and BRAMreq. These parameters are suf-
ficient to determine the PRR size/organization of the associated 
PRM. Table II summarizes the Virtex-4/-5/-6 device family’s 
specific values for CLBcol, DSPcol, BRAMcol, LUT_CLB, and 
FF_CLB, used in Table I. 

The LUT_FFreq parameter represents the PRM’s required 
number of LUTs paired with one FF within a slice, where 
LUT_FFreq includes: the LUT FF pairs with unused LUTs 
(only FFs), the LUT FF pairs with full use of the LUT FF pairs, 
and the LUT FF pairs with unused FFs (only LUTs). FFreq is 
the addition of both the LUT FF pairs with unused LUTs and 
with full use of the LUT FF pairs. LUTreq is the addition of both 
the LUT FF pairs with full use of the LUT FF pairs and with 

 

Fig. 1. Flow to obtain the PRR size/organization from the required resources 

in the synthesis report 

Table I. PARAMETERS USED IN THE PRR SIZE/ORGANIZATION COST 

MODEL 

Parameter Description 

LUT_FFreq LUT FF pairs required in PRM 

LUTreq Slice LUTs required in PRM 

LUT_CLB LUTs per CLB 

FF_CLB FFs per CLB 

CLBreq CLBs required in PRM 

FFreq FFs required in PRM 

WCLB CLB columns in PRR 

HCLB CLB rows in PRR 

CLBcol CLBs in a column (per row) 

DSPreq DSPs required in PRM 

WDSP DSP columns in PRR 

HDSP DSP rows in PRR 

DSPcol DSPs in a column (per row) 

BRAMreq BRAMs required in PRM 

WBRAM BRAM columns in PRR 

HBRAM BRAM rows in PRR 

BRAMcol BRAMs in a column (per row) 

CLBavail CLBs available in PRR 

FFavail FFs available in PRR 

DSPavail DSPs available in PRR 

BRAMavail BRAMs available in PRR 

H Number of rows in the PRR 

W Number of columns in the PRR 

PRRsize Size of PRR 

Table II. SPECIFIC VALUES FROM TABLE I FOR VIRTEX-4, -5, AND -6 

DEVICE FAMILIES 

Parameter Virtex-4 Virtex-5 Virtex-6 

CLBcol 16 20 40 

DSPcol 4 8 16 

BRAMcol 4 4 8 

LUT_CLB 8 8 8 

FF_CLB 8 8 16 



unused FFs. 

The number of CLBs required in the PRM (CLBreq) is: 

 𝐶𝐿𝐵𝑟𝑒𝑞  = ⌈𝐿𝑈𝑇_𝐹𝐹𝑟𝑒𝑞 𝐿𝑈𝑇_𝐶𝐿𝐵⁄ ⌉      (1) 

Since the LUT_FFreq/LUT_CLB may be a non-integer, we 
take the ceiling of this value to ensure sufficient CLB 
resources. The number of CLB columns in a PRR (WCLB) for 
HCLB rows in the PRR using (1) is: 

 𝑊𝐶𝐿𝐵  = ⌈𝐶𝐿𝐵𝑟𝑒𝑞 (𝐻𝐶𝐿𝐵 × 𝐶𝐿𝐵𝑐𝑜𝑙)⁄ ⌉      (2) 

The number of DSP columns in a PRR (WDSP) for HDSP 
rows in the PRR can be obtained from the number of DSPs 
required in the PRM (DSPreq) as: 

 𝑊𝐷𝑆𝑃  = ⌈𝐷𝑆𝑃𝑟𝑒𝑞 (𝐻𝐷𝑆𝑃 × 𝐷𝑆𝑃𝑐𝑜𝑙)⁄ ⌉      (3) 

We note that some Xilinx devices include only one DSP 
column in the fabric, which sets WDSP = 1 in (3). In these cases 
the number of DSP rows (HDSP) in the PRR is: 

𝐻𝐷𝑆𝑃  = ⌈𝐷𝑆𝑃𝑟𝑒𝑞 (𝑊𝐷𝑆𝑃 × 𝐷𝑆𝑃𝑐𝑜𝑙)⁄ ⌉          (4) 

The number of BRAM columns in a PRR (WBRAM) for 
HBRAM rows in the PRR is determined using the PRM’s required 
number of BRAMs (BRAMreq) as: 

𝑊𝐵𝑅𝐴𝑀  = ⌈𝐵𝑅𝐴𝑀𝑟𝑒𝑞 (𝐻𝐵𝑅𝐴𝑀 × 𝐵𝑅𝐴𝑀𝑐𝑜𝑙)⁄ ⌉           (5) 

For a rectangular PRR, HCLB = HDSP = HBRAM = H, and the 
total number of columns in the PRR (W) is: 

 𝑊 = 𝑊𝐶𝐿𝐵 + 𝑊𝐷𝑆𝑃 + 𝑊𝐵𝑅𝐴𝑀  (6) 

The PRR’s size (PRRsize) is: 

 𝑃𝑅𝑅𝑠𝑖𝑧𝑒  = 𝐻 × 𝑊       (7) 

For multiple PRMs that share the same PRR, each PRM has 
a unique H, and the largest WCLB, WDSP, and WBRAM across all of 
the PRR’s associated PRMs dictates the number of CLB, DSP, 
and BRAM columns in the PRR, respectively. 

Internal fragmentation occurs when the expressions within 
the ceiling functions of (1), (2), (3) (or (4)), and (5) are non-
integers. To reduce the internal fragmentation for CLBs, DSPs, 
and BRAMs, the expressions within the ceiling functions of 
(2), (3) (or (4)), and (5) should be as close to the next highest 
integer as possible.  

According to (7), the PRR should have H rows and W 
columns, but we need to determine if it is possible to find a 
physical area in the target device that satisfies this condition. 
Fig. 1 depicts the flow to search for and obtain the PRR 
size/organization that satisfies (1) to (7) using the parameters 

CLBreq, DSPreq, and BRAMreq from the synthesis report for the 
PRM and the selected target device. In order to produce the 
lowest internal fragmentation and lowest partial bitstream size 
for a PRM, H should start at H = 1 and verify if it is possible to 
distribute the CLBs, DSPs, and BRAMs in W contiguous 
columns (no IOB or CLK columns in the PRR) using (2) to (6) 
for the target device. The search for a PRR starts at the bottom 
of the device fabric (row = 1), where the target device has R 
rows. Internal fragmentation occurs if it is not possible to 
distribute the CLBs, DSPs, and BRAMs in W contiguous 
columns (distributing the CLB, DSP, and BRAM columns in 
any order) for a given H and for the target device.  

If it is not possible to find a PRR for the current H, H is 
incremented and WCLB, WDSP (or HDSP), and WBRAM in (2), (3) 
(or (4)), and (5), respectively, are recalculated and the search 
for the PRR starts again from the bottom of the device fabric. 
Once a PRR is found, the PRR position in the device fabric will 
be at row r and column c, where r + H - 1 ≤ R, and c is the left 
most column position of the PRR in the device fabric.  

From Table I, the CLBs, FFs, LUTs, DSPs, and BRAMs 
available in the PRR are: 

 𝐶𝐿𝐵𝑎𝑣𝑎𝑖𝑙  = 𝐻𝐶𝐿𝐵 × 𝑊𝐶𝐿𝐵 × 𝐶𝐿𝐵𝑐𝑜𝑙       (8) 

 𝐹𝐹𝑎𝑣𝑎𝑖𝑙  = 𝐶𝐿𝐵𝑎𝑣𝑎𝑖𝑙 × 𝐹𝐹_𝐶𝐿𝐵    (9) 

 𝐿𝑈𝑇𝑎𝑣𝑎𝑖𝑙  = 𝐶𝐿𝐵𝑎𝑣𝑎𝑖𝑙 × 𝐿𝑈𝑇_𝐶𝐿𝐵      (10) 

 𝐷𝑆𝑃𝑎𝑣𝑎𝑖𝑙  = 𝐻𝐷𝑆𝑃 × 𝑊𝐷𝑆𝑃 × 𝐷𝑆𝑃𝑐𝑜𝑙      (11) 

𝐵𝑅𝐴𝑀𝑎𝑣𝑎𝑖𝑙  = 𝐻𝐵𝑅𝐴𝑀 × 𝑊𝐵𝑅𝐴𝑀 × 𝐵𝑅𝐴𝑀𝑐𝑜𝑙            (12) 

Internal fragmentation is dictated by the PRR’s resource 
utilization (RU). RU is the percentage of the resources used by 

 
Fig. 2. Partial bitstream structure for Virtex-5 FPGAs 

Table III. PARAMETERS USED IN THE BITSTREAM SIZE COST MODEL 

Parameter Description 

IW Number of initial words 

FW Number of final words 

FAR_FDRI FAR/FDRI initialization words per row 

NCWrow Configuration words in a PRR row 

NDWBRAM BRAM initialization words in a PRR row 

NCFCLB CLB configuration frames in a PRR row 

NCFDSP DSP configuration frames in a PRR row 

NCFBRAM BRAM configuration frames in a PRR row 

CFCLB Configuration frames per CLB column 

CFDSP Configuration frames per DSP column 

CFBRAM Configuration frames per BRAM col. 

DFBRAM Initialization frames per BRAM col. 

FRsize Frame size in words 

Bytesword Number of bytes per word 

H Number of rows in the PRR 

Sbitstream Size of partial bitstream in bytes 



the PRR’s associated PRMs compared to the PRR’s available 
resources, wherein a high RU means a low internal 
fragmentation. RU is measured for each resource type as: 

𝑅𝑈𝐶𝐿𝐵  = (𝐶𝐿𝐵𝑟𝑒𝑞 𝐶𝐿𝐵𝑎𝑣𝑎𝑖𝑙⁄ ) × 100%        (13) 

𝑅𝑈𝐹𝐹  = (𝐹𝐹𝑟𝑒𝑞 𝐹𝐹𝑎𝑣𝑎𝑖𝑙⁄ ) × 100%      (14) 

𝑅𝑈𝐿𝑈𝑇  = (𝐿𝑈𝑇𝑟𝑒𝑞 𝐿𝑈𝑇𝑎𝑣𝑎𝑖𝑙⁄ ) × 100%        (15) 

𝑅𝑈𝐷𝑆𝑃  = (𝐷𝑆𝑃𝑟𝑒𝑞 𝐷𝑆𝑃𝑎𝑣𝑎𝑖𝑙⁄ ) × 100%        (16) 

𝑅𝑈𝐵𝑅𝐴𝑀  = (𝐵𝑅𝐴𝑀𝑟𝑒𝑞 𝐵𝑅𝐴𝑀𝑎𝑣𝑎𝑖𝑙⁄ ) × 100%         (17) 

C. Cost Model for Partial Bitstream Size 

The partial bitstream size can be calculated using the PRR 
size/organization formulas (Section III.B) and details of the 
partial bitstream organization. No prior work or technical doc-
uments from Xilinx specify how to exactly obtain the partial 
bitstream size of a PRR, and specifically without executing the 
entire PR design flow. Our proposed cost model assists system 
designers in early PR design decisions in the absence of this 
information. 

Fig. 2 depicts the Virtex-5 partial bitstream structure, which 
is similar across device families. The partial bitstream is 
composed of a set of initial words, followed by a set of 
configuration words, BRAM initialization words (if the PRR 
contains BRAMs), and a set of final words. Fig. 2 depicts a 
sample partial bitstream structure for a PRR with two rows that 
contain CLBs, DSPs, and BRAMs. From this bitstream, we 
remove the initial bytes, including the name of the native 
circuit description file (*.ncd) used to generate the partial 
bitstream and the bitstream creation date, resulting in a 32-bit 
word aligned bitstream. The initial/final words in the partial 
bitstream are used for synchronization/desynchronization of the 
bitstream with the ICAP. Synchronization alerts the device of 
upcoming configuration words, and aligns the configuration 
words with the internal configuration logic, and 
desynchronization releases the ICAP, which allows other PRRs 
to be reconfigured. We refer the reader to [9] for a detailed 
description of the partial bitstream structure for Virtex-5 
FPGAs. 

Table III depicts the parameters for partial bitstream size 
derivation where IW, FW, FAR_FDRI, CFCLB, CFDSP, CFBRAM, 
DFBRAM, and FRsize are device family dependent. We note that 
for Virtex-4/5/6 and Series 7 devices, words are 32-bit, 
however, in other devices, such as Spartan-3/6 devices, words 
are 16-bit, therefore, Bytesword must be adjusted according to 
the device family. In Table III, the FAR_FDRI specifies the 
number of words for setting the frame address register (FAR) 
and the frame data register input (FDRI) register [9]. The FAR 
specifies the first frame address in terms of a row and column 
on the device fabric for configuration words (or initialization 
words for BRAM columns, if BRAMs are used) in a given 
PRR row, and the FDRI specifies the number of configuration 
words (or initialization words for BRAM columns) for the 
given PRR row. Table IV summarizes the specific values from  
Table III for Virtex-4/5/6 device families. 

The size of the partial bitstream (Sbitstream) for a PRR with H 
rows that contains CLBs, DSPs, and BRAMs is: 

𝑆𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚  = {𝐼𝑊 + 𝐻 × (𝑁𝐶𝑊𝑟𝑜𝑤 + 𝑁𝐷𝑊𝐵𝑅𝐴𝑀) + 𝐹𝑊} ×
𝐵𝑦𝑡𝑒𝑠𝑤𝑜𝑟𝑑           (18) 

The number of configuration words in a PRR row (NCWrow) 
in (18) is: 

𝑁𝐶𝑊𝑟𝑜𝑤  = 𝐹𝐴𝑅_𝐹𝐷𝑅𝐼 + (𝑁𝐶𝐹𝐶𝐿𝐵 + 𝑁𝐶𝐹𝐷𝑆𝑃 + 𝑁𝐶𝐹𝐵𝑅𝐴𝑀 +
1) × 𝐹𝑅𝑠𝑖𝑧𝑒   (19) 

where NCFCLB, NCFDSP, and NCFBRAM are: 

 𝑁𝐶𝐹𝐶𝐿𝐵  = 𝑊𝐶𝐿𝐵 × 𝐶𝐹𝐶𝐿𝐵            (20) 

 𝑁𝐶𝐹𝐷𝑆𝑃  = 𝑊𝐷𝑆𝑃 × 𝐶𝐹𝐷𝑆𝑃            (21) 

 𝑁𝐶𝐹𝐵𝑅𝐴𝑀  = 𝑊𝐵𝑅𝐴𝑀 × 𝐶𝐹𝐵𝑅𝐴𝑀  (22) 

The number of BRAM initialization words in a PRR row 
(NDWBRAM) in (18) is: 

𝑁𝐷𝑊𝐵𝑅𝐴𝑀  = 𝐹𝐴𝑅_𝐹𝐷𝑅𝐼 + (𝑊𝐵𝑅𝐴𝑀 × 𝐷𝐹𝐵𝑅𝐴𝑀 + 1) ×
𝐹𝑅𝑠𝑖𝑧𝑒    (23) 

Table IV. SPECIFIC VALUES FROM TABLE III FOR VIRTEX-4, -5, AND -6 

DEVICE FAMILIES 

Parameter Virtex-4 Virtex-5 Virtex-6 

CFCLB 22 36 36 

CFDSP 21 28 28 

CFBRAM 20 30 28 

DFBRAM 64 128 128 

FRsize 41 41 81 

IW 12 16 20 

FW 108 114 113 

FAR_FDRI 5 5 5 

Bytesword 4 4 4 

Table V. APPLICATION OF OUR PRR SIZE/ORGANIZATION COST MODEL FOR 

VIRTEX-5 AND -6 DEVICE FAMILIES 

 Virtex-5 LX110T Virtex-6 LX75T 

Parameter FIR MIPS SDRAM FIR MIPS SDRAM 

LUT_FFreq 1300 2619 332 1466 3238 385 

DSPreq 32 4 0 27 4 0 

BRAMreq 0 6 0 0 6 0 

LUTreq 1150 1527 157 1317 2096 181 

FFreq 394 1592 292 394 1860 324 

CLBreq 163 328 42 184 405 49 

HCLB 5 1 1 1 1 1 

WCLB 2 17 3 5 11 2 

HDSP 5 1 0 1 1 0 

WDSP 1 1 0 2 1 0 

HBRAM 0 1 0 0 1 0 

WBRAM 0 2 0 0 1 0 

CLBavail 200 340 60 200 440 80 

FFavail 1600 2720 480 3200 7040 1280 

LUTavail 1600 2720 480 1600 3520 640 

DSPavail 40 8 0 32 16 0 

BRAMavail 0 8 0 0 8 0 

RUCLB 82% 97% 70% 92% 92% 61% 

RUFF 25% 59% 61% 12% 26% 25% 

RULUT 72% 56% 33% 82% 60% 28% 

RUDSP 80% 50% 0% 84% 25% 0% 

RUBRAM 0% 75% 0% 0% 75% 0% 



IV. APPLICATION OF COST MODELS 

We evaluate our cost models using two Xilinx devices 
(Virtex-5 LX110T and Virtex-6 LX75T) and three PRMs (FIR, 
MIPS, and SDRAM), formulas (1) to (17), and follow the flow 
in Fig. 1 to obtain the smallest PRRsize and the smallest partial 
bitstream size for each PRM. Our selected devices provide a 
broad generalization since these devices have disparate 
architectures (Table II and Table IV), where the Virtex-5 
LX110T has 8 rows, the Virtex-6 LX75T has 3 rows, and both 
devices have different resource distributions. We note that 
since the Virtex-5 LX110T has only one DSP column in the 
device fabric, we use (4) instead of (3). To provide a good 
comparison, the selected PRMs have similar complexity and 
resource usage (with respect to CLBs, DSPs, and BRAMs) to 
the PRMs used in prior research [2][7]. FIR implements a finite 
impulse response (FIR) filter with 32 coefficients, MIPS 
implements a 5-stage pipeline of MIPS R2000 32-bit processor, 
and SDRAM implements a 32-bit synchronous dynamic 
random access memory (SDRAM) controller. The selected 
PRMs are not intended to work together as part of a complete 
PR design, but rather are selected to evaluate the accuracy of 
our cost models, which provides adequate verification and 
evaluation. 

Results were obtained using a 1.8 GHz AMD Turion 64 
Mobile ML-32, 2 GB RAM, and the Xilinx ISE 12.4 tools. 
Table V summarizes the results of our PRR size/organization 
cost model for the PRMs, where the values of HCLB, WCLB, 
HDSP, WDSP, HBRAM, and WBRAM for each PRM produce the 
smallest PRRsize and the highest RU for each resource. 

In order to validate the accuracy of our PRR 
size/organization cost model, we specified area constraints 
(using the AREA_GROUP attribute in the user constraint file 
(*.ucf)) considering the position, size, and resource 
organization for an area on the target device (similar procedure 
as manual PRR floorplanning) where all associated PRM 

resources are used. Each PRM was considered as an entire 
design, and we used Xilinx ISE to place and route the PRM in 
the target device. All PRMs were fully placed and routed in the 
target devices, which means that the PRR size/organizations in 
Table V for each PRM were successfully placed and routed for 
the target devices. 

We show the accuracy of our PRR size/organization cost 
model by comparing the results from Table V and the results 
from executing the entire design flow for the same PRMs and 
target devices. Table VI shows the results of executing Xilinx 
ISE to place and route the PRMs on the target devices from 
Table V using the AREA_GROUP attribute, and the compari-
son of these results against the results when using our PRR 
size/organization cost model (Table V). The numbers in paren-
thesis indicate resource savings/increases with respect to Table 
V as positive/negative percentages, respectively. The PRR 
sizes/organizations in Table VI are the same as in Table V. We 
note that the Xilinx tools perform optimizations to reduce the 
PRMs’ resource requirements during place and route, resulting 
in fewer resources for the associated PRMs as compared to the 
resources included in the synthesis reports, and producing 
higher internal fragmentation (lower RU) in the PRRs, espe-
cially with LUTs and CLBs, but not with DSPs or BRAMs (0% 
change with respect to values in Table V).  

To further reduce PRR size and increase RU, we further 
tested our PRR size/organization cost model with the 
LUT_FFreq, DSPreq, and BRAMreq parameters from Table VI. 
LUT_FFreq, DSPreq, and BRAMreq parameters are used in (1)-(7) 
to derive the PRR sizes/organizations for the associated PRMs. 
The PRR size/organization did not change for SDRAM for 
both device targets, we saved two/one CLB column(s) for the 
Virtex-5/Virtex-6 for FIR, respectively, and we saved two CLB 
columns in the Virtex-5 for MIPS, while MIPS failed place and 
route on the Virtex-6. These results show using the synthesis 
report values is sufficiently accurate for early estimation of the 

Table VI. EXECUTION OF PLACE AND ROUTE OF PRMS USING THE AREA_GROUP ATTRIBUTE AND COMPARED AGAINST THE RESULTS 

IN TABLE V. THE PARENTHESIZED NUMBERS INDICATE THE RESOURCE SAVINGS/INCREASES WITH RESPECT TO TABLE V AS 

POSITIVE/NEGATIVE PERCENTAGES, RESPECTIVELY. 

 Virtex-5 LX110T Virtex-6 LX75T 

Parameter FIR MIPS SDRAM FIR MIPS SDRAM 

LUT_FFreq 1082 (16.8%) 2183 (16.6%) 324 (2.4%) 999 (31.9%) 2630 (18.8%) 370 (3.9%) 

DSPreq 32 (0%) 4 (0%) 0 (0%) 27 (0%) 4 (0%) 0 (0%) 

BRAMreq 0 (0%) 6 (0%) 0 (0%) 0 (0%) 6 (0%) 0 (0%) 

LUTreq 1015 (11.7%) 1528 (-0.1%) 191 (-21.7%) 999 (24.1%) 1932 (7.8%) 215 (-18.8%) 

FFreq 410 (-4.1%) 1592 (0%) 292 (0%) 394 (0%) 1860 (0%) 324 (0%) 

CLBreq 136 (16.6%) 273 (16.8%) 41 (2.4%) 125 (32.1%) 329 (18.8%) 47 (4.1%) 

RUCLB 68% (16.6%) 80% (16.8%) 68% (2.4%) 63% (32.1%) 75% (18.8%) 59% (4.1%) 

RUFF 26% (-4.1%) 59% (0%) 61% (0%) 12% (0%) 26% (0%) 25% (0%) 

RULUT 63% (11.7%) 56% (-0.1%) 40% (-21.7%) 62% (24.1%) 55% (7.8%) 34% (-18.8%) 

RUDSP 80% (0%) 50% (0%) 0% (0%) 84% (0%) 25% (0%) 0% (0%) 

RUBRAM 0% (0%) 75% (0%) 0% (0%) 0% (0%) 75% (0%) 0% (0%) 

 

Table VII. PARTIAL BITSTREAM SIZES (BYTES) FOR PRMS AND DEVICES 

FROM TABLE V 

 Partial bitstream size (bytes) 

PRM Virtex-5 LX110T Virtex-6 LX75T 

FIR 83440 77340 

MIPS 157672 189140 

SDRAM 18416 24204 

Table VIII. EXECUTION TIMES IN MINUTES (m) AND SECONDS (s) FOR 

SYNTHESIS AND IMPLEMENTATION OF PRMS FOR THE PRR 

SIZE/ORGANIZATION FROM TABLE V 

 Virtex-5 LX110T Virtex-6 LX75T 

Process FIR MIPS SDRAM FIR MIPS SDRAM 

Synthesis 4m 25s 4m 15s 3m 20s 4m 4m 50s 4m 23s 

Implementation 5m 35s 5m 15s 2m 55s 4m 15s 5m 50s 4m 30s 



PRR size and organization using our proposed cost model. 

We note that high RUs lead to densely packed PRRs that 
may eventually cause routing problems in the PRR, but this 
depends on the complexity of the PRR’s associated PRMs. 
Also, since the Xilinx tools allow the static region’s nets to 
cross the PRRs, routing problems may arise if nets from the 
static region try to cross a densely packed PRR. Higher RUs 
may be obtained by selecting non-rectangular PRRs (such as an 
“L” or “T” PRR shape), but chances of routing problems in the 
PRRs are increased. 

Using the values from Table IV for the PRMs and devices 
in Table V, and applying (18) to (23), we obtain the partial 
bitstream size in bytes for each PRM, which are depicted in 
Table VII. The obtained partial bitstream sizes are similar to 
those PRMs used in experiments to measure the 
reconfiguration times in prior work [2][4][7]. We note that 
there is no prior work that formulates a cost model to determine 
a partial bitstream size, or the most relevant prior work does 
not include detailed PRR resource usage information as we 
have included in our work, thus there is no direct comparison 
we can do with prior work. 

Our cost models enable system designers to estimate the 
PRRs’ sizes/organizations and associated PRMs’ partial 
bitstream sizes without executing the entire PR design flow. 
Using our proposed methodology, system designers need only 
to synthesize the PRMs, and use the formulas from our 
proposed cost models. Table VIII depicts the execution times 
for synthesizing the PRMs from Table V on the selected 
devices, which includes the summation of the time to obtain the 
PRRs’ sizes/organizations and bitstream sizes, which take less 
than 5 minutes in all cases. Table VIII also includes the 
implementation times of each PRM (using area constraints) for 
the PRR size/organizations in Table V as a reference.  

V. CONCLUSIONS 

In this work, we presented cost models for high-level, 
early-design-time estimation of partial reconfigurable region 
(PRR) size/organization and associated partial bitstream sizes 
for hardware-multitasking partially reconfigurable (PR) 
designs. Our high level approach precludes the typically 
lengthy PR design flow, and significantly aids system designers 
in PR partitioning and accelerates design space exploration. 
Our cost models are generally portable across different Xilinx 
field-programmable gate array (FPGA) families. Experimental 
results evaluated our cost models on two different Xilinx 
devices to determine the best PRR size/organization to produce 
the smallest PRR size and partial bitstream size for different 

PRMs. Our future work will use our cost models as part of the 
floorplanning stage in the PR design flow. 
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