
Partial Region and Bitstream Cost Models for

Hardware Multitasking on Partially Reconfigurable

FPGAs

Aurelio Morales-Villanueva and Ann Gordon-Ross

NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering, University of Florida

Gainesville, Florida, USA

E-mail: {morales, ann}@chrec.org

Abstract—Partial reconfiguration (PR) on field-

programmable gate arrays (FPGAs) enables multiple PR mod-

ules (PRMs) to time multiplex partially reconfigurable regions

(PRRs), which affords reduced reconfiguration time, area over-

head, etc., as compared to non-PR systems. However, to effective-

ly leverage PR, system designers must determine appropriate

PRR sizes/organizations during early stages of PR system design,

since inappropriate PRRs, given PRM requirements, can negate

PR benefits, potentially resulting in system performance worse

than a functionally-equivalent non-PR design. To aid in PR sys-

tem design, we present two portable, high-level cost models,

which are based on the synthesis report results generated by

Xilinx tools. These cost models estimate PRR size/organization

given the PRR’s associated PRMs to maximize the PRRs’ re-

source utilizations and estimate the PRM's associated partial

bitstream sizes based on the PRR sizes/organizations. Experi-

ments evaluate our cost models’ accuracies for different PRMs

and required resources, which enable our models to afford en-

hanced designer productivity since these models preclude the

lengthy PR design flow, which is typically required to attain such

analysis.

Keywords—FPGA, partial reconfiguration, cost model, hard-

ware multitasking.

I. INTRODUCTION AND MOTIVATION

Partial reconfiguration (PR) on field-programmable gate
arrays (FPGAs) partitions the FPGA fabric into one static
region and one or more partially reconfigurable regions
(PRRs), which enables PRRs to time-multiplex multiple
hardware tasks (i.e., PR modules (PRMs)). A PRR is
reconfigured using the PRM’s partial bitstream, which contains
the PRM’s flip-flops’ (FFs’) and memory blocks’ initial values.
Since this partial bitstream only reconfigures one PRR, as
compared to full reconfiguration of the entire FPGA using a
full bitstream, PR affords faster reconfiguration time and
smaller bitstreams. Unlike full reconfiguration that halts the
entire FPGA’s execution, PRR reconfiguration isolates the
reconfiguration to a single PRR without halting the static
region’s or other PRRs’ executions.

This isolated reconfiguration and hardware multitasking of
PRMs provides additional PR benefits as compared to full
reconfiguration, such as reduced FPGA area requirements and
power consumption [3][8]. Furthermore, PRR reconfiguration
is flexible and can be executed dynamically using either the

internal configuration access port (ICAP) on the FPGA, or an
external controller, such as a host PC, but using the ICAP
offers the advantage of autonomous system reconfiguration
after system deployment.

However, effectively leveraging PR benefits is challenging
for system designers. Many design decisions affect overall PR
system performance, and if not adequately chosen,
inappropriate decisions can result in severe adverse effects,
potentially leading to PR system performance that is worse
than a non-PR system. For example, even though large PRRs
afford greater PRM time-multiplexing potential (i.e., large
PRRs contain more computational resources than small PRRs
and can thus accommodate a wider variety of
functionality/PRMs), oversized PRRs impose longer routing
delays and reconfiguration time, reduced parallelization
potential due to fewer PRRs, and thus potentially worse
performance than a non-PR system.

Selecting an appropriate PRR size (total number of rows
and columns in the PRR) and organization (specific resources
distributed in the PRR) is a critical design decision that must be
done early in system design, during design partitioning at the
system and application levels, in order to increase designer
productivity. The PRRs’ and static region’s sizes are dictated
by which partitions (i.e., PRMs) of the application are assigned
to these regions. When selecting PRMs to time-multiplex
PRRs, the system designer must partition the application into
multiple PRMs and consider the intended time-multiplexed
PRMs’ different resource requirements (e.g., configurable logic
blocks (CLBs), digital signal processing blocks (DSPs), and
random access memory blocks (BRAMs)), which dictates the
PRR’s size and organization (e.g., resource distribution). Since
PR partitioning can range from the finest grained, where PRMs
are defined on a per-instruction/operation basis, to the coarsest
grained, where the entire application is defined as a single
PRM, and each partitioning between these ranges offers design
tradeoffs (e.g., power, parallelization potential, performance,
device size, etc.), the PR partitioning design space is
exponentially large and designers can only feasibly evaluate a
subset of these designs.

To assist in early PR partitioning design decisions, system
designers need system/application-level analytical or simulated
models that evaluate the impact of these decisions on the PRR
size/organization and bitstream sizes. Without these high-level

models to determine these impacts, for every considered PR
partitioning, the system designer must perform complete PR
system implementation, which includes iterative execution of
the lengthy PR design flow (e.g., design creation and synthesis
of all PRMs and the static region, manual PRR floorplanning,
place and route of the static region and PRRs for the PRMs,
generation of the full and PRMs’ partial bitstreams, etc.). Even
though complete implementation provides highly accurate
design analysis and PR benefits, the design time effort may be
prohibitive since this PR design flow can take hours to days,
depending on the system complexity, to implement a single PR
partitioning. Therefore, designers must have high-level cost
models that quickly evaluate design decisions early in the
design process and provide sufficiently accurate evaluation,
which significantly reduces design space exploration time as
compare to full system implementation. These cost models
evaluate the impact of PRR size/organization selection with
respect to the maximum resource utilization for the PRRs’
associated PRMs, which in turn affects the PRMs’ associated
partial bitstream sizes.

Some prior research develops and evaluates cost models for
PR FPGAs, but these prior works did not present a holistic
method for evaluating the tradeoffs considering the PRR
size/organization’s impact on partial bitstream size,
reconfiguration time, and overall PR system performance,
which are necessary for a complete and holistic assessment of
PR design decisions. Thus we propose two high-level cost
models based on the synthesis report results generated by Xil-
inx tools. These models use mathematical formulas to
determine the PRR’s sizes/organizations and partial bitstream
sizes considering designer-defined multitasking PRMs (i.e., our
work is based on designer-defined PRM design decisions, since
PRM definition is beyond the scope of this research) and the
PRMs’ associated partial bitstream sizes.

In this paper, we introduce the first, to the best of our
knowledge, detailed cost model for determining partial bit-
stream sizes without executing the entire PR design flow (no
other prior works or vendor tool documentation provide this
analysis). We define our cost models to be generally portable
across different Xilinx FPGA families by simply altering the
cost model’s device-specific characteristics’ values in the cost
models’ formulas. We show the efficacy of our PRR
size/organization cost model using complex PRMs, and com-
pare the model’s estimated PRR sizes/organizations using syn-
thesis reports against the PRR sizes/organizations obtained by
executing the entire PR design flow. Our cost models’ ability to
estimate the PRR size/organization and the PRMs’ associated
partial bitstream size without completing the entire PR design
flow significantly decreases design exploration time and, thus
increases designer productivity and adherence to design goals
(e.g., performance and power constraints, etc.).

II. RELATED WORK

Prior works in PR cost models only provided partial
methods for evaluating design tradeoffs. Liu et al. [4] compared
multiple PR designs using the ICAP and proposed a direct
memory access (DMA)-based PR design to reduce the PRR
reconfiguration time. The authors compared the reconfiguration
time for the different PR designs and different bitstream sizes,

but the results did not include details about the PRRs’
sizes/organizations.

Papadimitriou et al. [7] presented an extensive survey of
PRR reconfiguration times and introduced a cost model for
PRR reconfiguration based on the bitstream storage media type
(e.g., compact flash, BRAM, DDR SDRAM, etc.). However,
the cost model’s estimation had a 30% to 60% error as
compared to the measured reconfiguration times. Claus et al.
[1] used formulas to calculate the expected PRR
reconfiguration time based on the ICAP’s busy-factor, which
reflects the ICAP’s shared resource contention for PRR
reconfiguration. However, since this approach only considered
the ICAP’s busy-factor, the method is only valid if the ICAP is
the limiting factor during reconfiguration. Furthermore, the
method was only applicable to the Virtex-II FPGAs, and was
not portable to different FPGA families.

Duhem et al. [2] introduced FaRM, a high-speed internal
configuration controller for Xilinx FPGAs, and presented a cost
model to evaluate the PRR reconfiguration time, but the
authors did not verify the cost model with measured values,
and did not provide reconfiguration time analysis for different
partial bitstream sizes.

Although all of these prior works analyzed certain PR
design decisions, none considered holistic PR design evaluation
and exploration of the PRRs’ sizes/organizations and how the
PRRs’ sizes/organizations affects the partial bitstream size,
which in turn also affects the reconfiguration time and overall
PR system performance. In prior work [5][6], we used the
proposed cost models (only for CLBs) as part of design space
exploration for two PR designs for fine-grain evaluation of
PRR reconfiguration times in two hardware multitasking
applications. Since our prior work only considered CLB
resources, this paper presents significant cost model
enhancements that include CLBs, DSPs, and BRAMs, and
presents the cost models’ portability across FPGA families.

III. COST MODELS FOR PR FPGAS

Our proposed cost models for PR designs on Xilinx FPGAs
assist system designers in quickly evaluating and selecting the
PRRs’ sizes/organizations that minimize partial bitstream size
and reconfiguration time, with respect to design goals, without
executing the entire PR design flow, thereby increasing
designer productivity. Since low-level device details are critical
to cost model estimation accuracy and general understanding
for portability to other device families, we present a brief
description of key aspects of the Virtex-5 device family. Using
this knowledge foundation, we establish our cost model
formulas for PRR size/organization based on the PRMs’
required resources, and present the formulas for partial
bitstream size derivation, which are based on the PRR
size/organization.

A. Xilinx Virtex-5 Device Layout and Resources

The Xilinx Virtex-5 FPGA family and newer families, such
as the Virtex-6 and -7 series and the Zynq-7000, support two-
dimensional PR, which allows PRRs to have any rectangular
shape on the device fabric, enabling PRRs to contain a diverse
mixture of resources based on the PRR’s fabric location. The
FPGA’s resources are distributed into a row/column

organization where each column contains a group of
configuration frames and the number of configuration frames
per column depends on the resource type (e.g., CLB, DSP,
etc.). A frame is the minimum unit of information used to
configure/read the FFs’ stored values and BRAMs in the
device’s configuration memory (CM). Input/output blocks
(IOBs) and clock (CLK) resources are not supported as part of
the PRRs in the current versions of the Xilinx tools.

For Virtex-5 devices, a frame contains 41 32-bit words, and
CLB, DSP, BRAM, IOB, and CLK columns have 36, 28, 30,
54, and 4 configuration frames, respectively. Each BRAM
column requires 128 data frames for BRAM initialization. In
any given row, a CLB column has 20 CLBs, a DSP column has
8 DSPs, and a BRAM column has 4 BRAMs. Each CLB
contains a pair of slices and each slice contains 4 look-up tables
(LUTs) and 4 FFs. We refer the reader to [9][10] for a
complete description of the Virtex-5 device architecture and
configuration.

B. Cost Model for PRR Size/Organization

The PRR size/organization affect the partial bitstream size.
Since the PRR floorplanning in the PR design flow is a manual
process executed by system designers, oversized PRRs or ill-
suited PRR resource row/column organization with respect to
the associated PRMs’ resource requirements can increase the
internal fragmentation (PRR resources not used in the
associated PRM), which unnecessarily increases the PRR’s
number of configuration frames, partial bitstream size, and
reconfiguration time. Our cost model assists system designers
in determining the PRR size/organization given the PRR’s
associated PRMs in order to reduce internal fragmentation and
without completing the entire PR design flow.

Table I defines the parameters used in the PRR
size/organization cost model for PRMs containing CLBs,

DSPs, and BRAMs, where LUT_CLB, FF_CLB, CLBcol,
DSPcol, and BRAMcol are device-family dependent. The PRM’s
resources can be obtained from the synthesis report generated
by synthesizing the PRM using the Xilinx Synthesis
Technology (XST) tool to obtain the parameters LUT_FFreq,
LUTreq, FFreq, DSPreq, and BRAMreq. These parameters are suf-
ficient to determine the PRR size/organization of the associated
PRM. Table II summarizes the Virtex-4/-5/-6 device family’s
specific values for CLBcol, DSPcol, BRAMcol, LUT_CLB, and
FF_CLB, used in Table I.

The LUT_FFreq parameter represents the PRM’s required
number of LUTs paired with one FF within a slice, where
LUT_FFreq includes: the LUT FF pairs with unused LUTs
(only FFs), the LUT FF pairs with full use of the LUT FF pairs,
and the LUT FF pairs with unused FFs (only LUTs). FFreq is
the addition of both the LUT FF pairs with unused LUTs and
with full use of the LUT FF pairs. LUTreq is the addition of both
the LUT FF pairs with full use of the LUT FF pairs and with

Fig. 1. Flow to obtain the PRR size/organization from the required resources

in the synthesis report

Table I. PARAMETERS USED IN THE PRR SIZE/ORGANIZATION COST

MODEL

Parameter Description

LUT_FFreq LUT FF pairs required in PRM

LUTreq Slice LUTs required in PRM

LUT_CLB LUTs per CLB

FF_CLB FFs per CLB

CLBreq CLBs required in PRM

FFreq FFs required in PRM

WCLB CLB columns in PRR

HCLB CLB rows in PRR

CLBcol CLBs in a column (per row)

DSPreq DSPs required in PRM

WDSP DSP columns in PRR

HDSP DSP rows in PRR

DSPcol DSPs in a column (per row)

BRAMreq BRAMs required in PRM

WBRAM BRAM columns in PRR

HBRAM BRAM rows in PRR

BRAMcol BRAMs in a column (per row)

CLBavail CLBs available in PRR

FFavail FFs available in PRR

DSPavail DSPs available in PRR

BRAMavail BRAMs available in PRR

H Number of rows in the PRR

W Number of columns in the PRR

PRRsize Size of PRR

Table II. SPECIFIC VALUES FROM TABLE I FOR VIRTEX-4, -5, AND -6

DEVICE FAMILIES

Parameter Virtex-4 Virtex-5 Virtex-6

CLBcol 16 20 40

DSPcol 4 8 16

BRAMcol 4 4 8

LUT_CLB 8 8 8

FF_CLB 8 8 16

unused FFs.

The number of CLBs required in the PRM (CLBreq) is:

 𝐶𝐿𝐵𝑟𝑒𝑞 = ⌈𝐿𝑈𝑇_𝐹𝐹𝑟𝑒𝑞 𝐿𝑈𝑇_𝐶𝐿𝐵⁄ ⌉ (1)

Since the LUT_FFreq/LUT_CLB may be a non-integer, we
take the ceiling of this value to ensure sufficient CLB
resources. The number of CLB columns in a PRR (WCLB) for
HCLB rows in the PRR using (1) is:

 𝑊𝐶𝐿𝐵 = ⌈𝐶𝐿𝐵𝑟𝑒𝑞 (𝐻𝐶𝐿𝐵 × 𝐶𝐿𝐵𝑐𝑜𝑙)⁄ ⌉ (2)

The number of DSP columns in a PRR (WDSP) for HDSP
rows in the PRR can be obtained from the number of DSPs
required in the PRM (DSPreq) as:

 𝑊𝐷𝑆𝑃 = ⌈𝐷𝑆𝑃𝑟𝑒𝑞 (𝐻𝐷𝑆𝑃 × 𝐷𝑆𝑃𝑐𝑜𝑙)⁄ ⌉ (3)

We note that some Xilinx devices include only one DSP
column in the fabric, which sets WDSP = 1 in (3). In these cases
the number of DSP rows (HDSP) in the PRR is:

𝐻𝐷𝑆𝑃 = ⌈𝐷𝑆𝑃𝑟𝑒𝑞 (𝑊𝐷𝑆𝑃 × 𝐷𝑆𝑃𝑐𝑜𝑙)⁄ ⌉ (4)

The number of BRAM columns in a PRR (WBRAM) for
HBRAM rows in the PRR is determined using the PRM’s required
number of BRAMs (BRAMreq) as:

𝑊𝐵𝑅𝐴𝑀 = ⌈𝐵𝑅𝐴𝑀𝑟𝑒𝑞 (𝐻𝐵𝑅𝐴𝑀 × 𝐵𝑅𝐴𝑀𝑐𝑜𝑙)⁄ ⌉ (5)

For a rectangular PRR, HCLB = HDSP = HBRAM = H, and the
total number of columns in the PRR (W) is:

 𝑊 = 𝑊𝐶𝐿𝐵 + 𝑊𝐷𝑆𝑃 + 𝑊𝐵𝑅𝐴𝑀 (6)

The PRR’s size (PRRsize) is:

 𝑃𝑅𝑅𝑠𝑖𝑧𝑒 = 𝐻 × 𝑊 (7)

For multiple PRMs that share the same PRR, each PRM has
a unique H, and the largest WCLB, WDSP, and WBRAM across all of
the PRR’s associated PRMs dictates the number of CLB, DSP,
and BRAM columns in the PRR, respectively.

Internal fragmentation occurs when the expressions within
the ceiling functions of (1), (2), (3) (or (4)), and (5) are non-
integers. To reduce the internal fragmentation for CLBs, DSPs,
and BRAMs, the expressions within the ceiling functions of
(2), (3) (or (4)), and (5) should be as close to the next highest
integer as possible.

According to (7), the PRR should have H rows and W
columns, but we need to determine if it is possible to find a
physical area in the target device that satisfies this condition.
Fig. 1 depicts the flow to search for and obtain the PRR
size/organization that satisfies (1) to (7) using the parameters

CLBreq, DSPreq, and BRAMreq from the synthesis report for the
PRM and the selected target device. In order to produce the
lowest internal fragmentation and lowest partial bitstream size
for a PRM, H should start at H = 1 and verify if it is possible to
distribute the CLBs, DSPs, and BRAMs in W contiguous
columns (no IOB or CLK columns in the PRR) using (2) to (6)
for the target device. The search for a PRR starts at the bottom
of the device fabric (row = 1), where the target device has R
rows. Internal fragmentation occurs if it is not possible to
distribute the CLBs, DSPs, and BRAMs in W contiguous
columns (distributing the CLB, DSP, and BRAM columns in
any order) for a given H and for the target device.

If it is not possible to find a PRR for the current H, H is
incremented and WCLB, WDSP (or HDSP), and WBRAM in (2), (3)
(or (4)), and (5), respectively, are recalculated and the search
for the PRR starts again from the bottom of the device fabric.
Once a PRR is found, the PRR position in the device fabric will
be at row r and column c, where r + H - 1 ≤ R, and c is the left
most column position of the PRR in the device fabric.

From Table I, the CLBs, FFs, LUTs, DSPs, and BRAMs
available in the PRR are:

 𝐶𝐿𝐵𝑎𝑣𝑎𝑖𝑙 = 𝐻𝐶𝐿𝐵 × 𝑊𝐶𝐿𝐵 × 𝐶𝐿𝐵𝑐𝑜𝑙 (8)

 𝐹𝐹𝑎𝑣𝑎𝑖𝑙 = 𝐶𝐿𝐵𝑎𝑣𝑎𝑖𝑙 × 𝐹𝐹_𝐶𝐿𝐵 (9)

 𝐿𝑈𝑇𝑎𝑣𝑎𝑖𝑙 = 𝐶𝐿𝐵𝑎𝑣𝑎𝑖𝑙 × 𝐿𝑈𝑇_𝐶𝐿𝐵 (10)

 𝐷𝑆𝑃𝑎𝑣𝑎𝑖𝑙 = 𝐻𝐷𝑆𝑃 × 𝑊𝐷𝑆𝑃 × 𝐷𝑆𝑃𝑐𝑜𝑙 (11)

𝐵𝑅𝐴𝑀𝑎𝑣𝑎𝑖𝑙 = 𝐻𝐵𝑅𝐴𝑀 × 𝑊𝐵𝑅𝐴𝑀 × 𝐵𝑅𝐴𝑀𝑐𝑜𝑙 (12)

Internal fragmentation is dictated by the PRR’s resource
utilization (RU). RU is the percentage of the resources used by

Fig. 2. Partial bitstream structure for Virtex-5 FPGAs

Table III. PARAMETERS USED IN THE BITSTREAM SIZE COST MODEL

Parameter Description

IW Number of initial words

FW Number of final words

FAR_FDRI FAR/FDRI initialization words per row

NCWrow Configuration words in a PRR row

NDWBRAM BRAM initialization words in a PRR row

NCFCLB CLB configuration frames in a PRR row

NCFDSP DSP configuration frames in a PRR row

NCFBRAM BRAM configuration frames in a PRR row

CFCLB Configuration frames per CLB column

CFDSP Configuration frames per DSP column

CFBRAM Configuration frames per BRAM col.

DFBRAM Initialization frames per BRAM col.

FRsize Frame size in words

Bytesword Number of bytes per word

H Number of rows in the PRR

Sbitstream Size of partial bitstream in bytes

the PRR’s associated PRMs compared to the PRR’s available
resources, wherein a high RU means a low internal
fragmentation. RU is measured for each resource type as:

𝑅𝑈𝐶𝐿𝐵 = (𝐶𝐿𝐵𝑟𝑒𝑞 𝐶𝐿𝐵𝑎𝑣𝑎𝑖𝑙⁄) × 100% (13)

𝑅𝑈𝐹𝐹 = (𝐹𝐹𝑟𝑒𝑞 𝐹𝐹𝑎𝑣𝑎𝑖𝑙⁄) × 100% (14)

𝑅𝑈𝐿𝑈𝑇 = (𝐿𝑈𝑇𝑟𝑒𝑞 𝐿𝑈𝑇𝑎𝑣𝑎𝑖𝑙⁄) × 100% (15)

𝑅𝑈𝐷𝑆𝑃 = (𝐷𝑆𝑃𝑟𝑒𝑞 𝐷𝑆𝑃𝑎𝑣𝑎𝑖𝑙⁄) × 100% (16)

𝑅𝑈𝐵𝑅𝐴𝑀 = (𝐵𝑅𝐴𝑀𝑟𝑒𝑞 𝐵𝑅𝐴𝑀𝑎𝑣𝑎𝑖𝑙⁄) × 100% (17)

C. Cost Model for Partial Bitstream Size

The partial bitstream size can be calculated using the PRR
size/organization formulas (Section III.B) and details of the
partial bitstream organization. No prior work or technical doc-
uments from Xilinx specify how to exactly obtain the partial
bitstream size of a PRR, and specifically without executing the
entire PR design flow. Our proposed cost model assists system
designers in early PR design decisions in the absence of this
information.

Fig. 2 depicts the Virtex-5 partial bitstream structure, which
is similar across device families. The partial bitstream is
composed of a set of initial words, followed by a set of
configuration words, BRAM initialization words (if the PRR
contains BRAMs), and a set of final words. Fig. 2 depicts a
sample partial bitstream structure for a PRR with two rows that
contain CLBs, DSPs, and BRAMs. From this bitstream, we
remove the initial bytes, including the name of the native
circuit description file (*.ncd) used to generate the partial
bitstream and the bitstream creation date, resulting in a 32-bit
word aligned bitstream. The initial/final words in the partial
bitstream are used for synchronization/desynchronization of the
bitstream with the ICAP. Synchronization alerts the device of
upcoming configuration words, and aligns the configuration
words with the internal configuration logic, and
desynchronization releases the ICAP, which allows other PRRs
to be reconfigured. We refer the reader to [9] for a detailed
description of the partial bitstream structure for Virtex-5
FPGAs.

Table III depicts the parameters for partial bitstream size
derivation where IW, FW, FAR_FDRI, CFCLB, CFDSP, CFBRAM,
DFBRAM, and FRsize are device family dependent. We note that
for Virtex-4/5/6 and Series 7 devices, words are 32-bit,
however, in other devices, such as Spartan-3/6 devices, words
are 16-bit, therefore, Bytesword must be adjusted according to
the device family. In Table III, the FAR_FDRI specifies the
number of words for setting the frame address register (FAR)
and the frame data register input (FDRI) register [9]. The FAR
specifies the first frame address in terms of a row and column
on the device fabric for configuration words (or initialization
words for BRAM columns, if BRAMs are used) in a given
PRR row, and the FDRI specifies the number of configuration
words (or initialization words for BRAM columns) for the
given PRR row. Table IV summarizes the specific values from
Table III for Virtex-4/5/6 device families.

The size of the partial bitstream (Sbitstream) for a PRR with H
rows that contains CLBs, DSPs, and BRAMs is:

𝑆𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚 = {𝐼𝑊 + 𝐻 × (𝑁𝐶𝑊𝑟𝑜𝑤 + 𝑁𝐷𝑊𝐵𝑅𝐴𝑀) + 𝐹𝑊} ×
𝐵𝑦𝑡𝑒𝑠𝑤𝑜𝑟𝑑 (18)

The number of configuration words in a PRR row (NCWrow)
in (18) is:

𝑁𝐶𝑊𝑟𝑜𝑤 = 𝐹𝐴𝑅_𝐹𝐷𝑅𝐼 + (𝑁𝐶𝐹𝐶𝐿𝐵 + 𝑁𝐶𝐹𝐷𝑆𝑃 + 𝑁𝐶𝐹𝐵𝑅𝐴𝑀 +
1) × 𝐹𝑅𝑠𝑖𝑧𝑒 (19)

where NCFCLB, NCFDSP, and NCFBRAM are:

 𝑁𝐶𝐹𝐶𝐿𝐵 = 𝑊𝐶𝐿𝐵 × 𝐶𝐹𝐶𝐿𝐵 (20)

 𝑁𝐶𝐹𝐷𝑆𝑃 = 𝑊𝐷𝑆𝑃 × 𝐶𝐹𝐷𝑆𝑃 (21)

 𝑁𝐶𝐹𝐵𝑅𝐴𝑀 = 𝑊𝐵𝑅𝐴𝑀 × 𝐶𝐹𝐵𝑅𝐴𝑀 (22)

The number of BRAM initialization words in a PRR row
(NDWBRAM) in (18) is:

𝑁𝐷𝑊𝐵𝑅𝐴𝑀 = 𝐹𝐴𝑅_𝐹𝐷𝑅𝐼 + (𝑊𝐵𝑅𝐴𝑀 × 𝐷𝐹𝐵𝑅𝐴𝑀 + 1) ×
𝐹𝑅𝑠𝑖𝑧𝑒 (23)

Table IV. SPECIFIC VALUES FROM TABLE III FOR VIRTEX-4, -5, AND -6

DEVICE FAMILIES

Parameter Virtex-4 Virtex-5 Virtex-6

CFCLB 22 36 36

CFDSP 21 28 28

CFBRAM 20 30 28

DFBRAM 64 128 128

FRsize 41 41 81

IW 12 16 20

FW 108 114 113

FAR_FDRI 5 5 5

Bytesword 4 4 4

Table V. APPLICATION OF OUR PRR SIZE/ORGANIZATION COST MODEL FOR

VIRTEX-5 AND -6 DEVICE FAMILIES

 Virtex-5 LX110T Virtex-6 LX75T

Parameter FIR MIPS SDRAM FIR MIPS SDRAM

LUT_FFreq 1300 2619 332 1466 3238 385

DSPreq 32 4 0 27 4 0

BRAMreq 0 6 0 0 6 0

LUTreq 1150 1527 157 1317 2096 181

FFreq 394 1592 292 394 1860 324

CLBreq 163 328 42 184 405 49

HCLB 5 1 1 1 1 1

WCLB 2 17 3 5 11 2

HDSP 5 1 0 1 1 0

WDSP 1 1 0 2 1 0

HBRAM 0 1 0 0 1 0

WBRAM 0 2 0 0 1 0

CLBavail 200 340 60 200 440 80

FFavail 1600 2720 480 3200 7040 1280

LUTavail 1600 2720 480 1600 3520 640

DSPavail 40 8 0 32 16 0

BRAMavail 0 8 0 0 8 0

RUCLB 82% 97% 70% 92% 92% 61%

RUFF 25% 59% 61% 12% 26% 25%

RULUT 72% 56% 33% 82% 60% 28%

RUDSP 80% 50% 0% 84% 25% 0%

RUBRAM 0% 75% 0% 0% 75% 0%

IV. APPLICATION OF COST MODELS

We evaluate our cost models using two Xilinx devices
(Virtex-5 LX110T and Virtex-6 LX75T) and three PRMs (FIR,
MIPS, and SDRAM), formulas (1) to (17), and follow the flow
in Fig. 1 to obtain the smallest PRRsize and the smallest partial
bitstream size for each PRM. Our selected devices provide a
broad generalization since these devices have disparate
architectures (Table II and Table IV), where the Virtex-5
LX110T has 8 rows, the Virtex-6 LX75T has 3 rows, and both
devices have different resource distributions. We note that
since the Virtex-5 LX110T has only one DSP column in the
device fabric, we use (4) instead of (3). To provide a good
comparison, the selected PRMs have similar complexity and
resource usage (with respect to CLBs, DSPs, and BRAMs) to
the PRMs used in prior research [2][7]. FIR implements a finite
impulse response (FIR) filter with 32 coefficients, MIPS
implements a 5-stage pipeline of MIPS R2000 32-bit processor,
and SDRAM implements a 32-bit synchronous dynamic
random access memory (SDRAM) controller. The selected
PRMs are not intended to work together as part of a complete
PR design, but rather are selected to evaluate the accuracy of
our cost models, which provides adequate verification and
evaluation.

Results were obtained using a 1.8 GHz AMD Turion 64
Mobile ML-32, 2 GB RAM, and the Xilinx ISE 12.4 tools.
Table V summarizes the results of our PRR size/organization
cost model for the PRMs, where the values of HCLB, WCLB,
HDSP, WDSP, HBRAM, and WBRAM for each PRM produce the
smallest PRRsize and the highest RU for each resource.

In order to validate the accuracy of our PRR
size/organization cost model, we specified area constraints
(using the AREA_GROUP attribute in the user constraint file
(*.ucf)) considering the position, size, and resource
organization for an area on the target device (similar procedure
as manual PRR floorplanning) where all associated PRM

resources are used. Each PRM was considered as an entire
design, and we used Xilinx ISE to place and route the PRM in
the target device. All PRMs were fully placed and routed in the
target devices, which means that the PRR size/organizations in
Table V for each PRM were successfully placed and routed for
the target devices.

We show the accuracy of our PRR size/organization cost
model by comparing the results from Table V and the results
from executing the entire design flow for the same PRMs and
target devices. Table VI shows the results of executing Xilinx
ISE to place and route the PRMs on the target devices from
Table V using the AREA_GROUP attribute, and the compari-
son of these results against the results when using our PRR
size/organization cost model (Table V). The numbers in paren-
thesis indicate resource savings/increases with respect to Table
V as positive/negative percentages, respectively. The PRR
sizes/organizations in Table VI are the same as in Table V. We
note that the Xilinx tools perform optimizations to reduce the
PRMs’ resource requirements during place and route, resulting
in fewer resources for the associated PRMs as compared to the
resources included in the synthesis reports, and producing
higher internal fragmentation (lower RU) in the PRRs, espe-
cially with LUTs and CLBs, but not with DSPs or BRAMs (0%
change with respect to values in Table V).

To further reduce PRR size and increase RU, we further
tested our PRR size/organization cost model with the
LUT_FFreq, DSPreq, and BRAMreq parameters from Table VI.
LUT_FFreq, DSPreq, and BRAMreq parameters are used in (1)-(7)
to derive the PRR sizes/organizations for the associated PRMs.
The PRR size/organization did not change for SDRAM for
both device targets, we saved two/one CLB column(s) for the
Virtex-5/Virtex-6 for FIR, respectively, and we saved two CLB
columns in the Virtex-5 for MIPS, while MIPS failed place and
route on the Virtex-6. These results show using the synthesis
report values is sufficiently accurate for early estimation of the

Table VI. EXECUTION OF PLACE AND ROUTE OF PRMS USING THE AREA_GROUP ATTRIBUTE AND COMPARED AGAINST THE RESULTS

IN TABLE V. THE PARENTHESIZED NUMBERS INDICATE THE RESOURCE SAVINGS/INCREASES WITH RESPECT TO TABLE V AS

POSITIVE/NEGATIVE PERCENTAGES, RESPECTIVELY.

 Virtex-5 LX110T Virtex-6 LX75T

Parameter FIR MIPS SDRAM FIR MIPS SDRAM

LUT_FFreq 1082 (16.8%) 2183 (16.6%) 324 (2.4%) 999 (31.9%) 2630 (18.8%) 370 (3.9%)

DSPreq 32 (0%) 4 (0%) 0 (0%) 27 (0%) 4 (0%) 0 (0%)

BRAMreq 0 (0%) 6 (0%) 0 (0%) 0 (0%) 6 (0%) 0 (0%)

LUTreq 1015 (11.7%) 1528 (-0.1%) 191 (-21.7%) 999 (24.1%) 1932 (7.8%) 215 (-18.8%)

FFreq 410 (-4.1%) 1592 (0%) 292 (0%) 394 (0%) 1860 (0%) 324 (0%)

CLBreq 136 (16.6%) 273 (16.8%) 41 (2.4%) 125 (32.1%) 329 (18.8%) 47 (4.1%)

RUCLB 68% (16.6%) 80% (16.8%) 68% (2.4%) 63% (32.1%) 75% (18.8%) 59% (4.1%)

RUFF 26% (-4.1%) 59% (0%) 61% (0%) 12% (0%) 26% (0%) 25% (0%)

RULUT 63% (11.7%) 56% (-0.1%) 40% (-21.7%) 62% (24.1%) 55% (7.8%) 34% (-18.8%)

RUDSP 80% (0%) 50% (0%) 0% (0%) 84% (0%) 25% (0%) 0% (0%)

RUBRAM 0% (0%) 75% (0%) 0% (0%) 0% (0%) 75% (0%) 0% (0%)

Table VII. PARTIAL BITSTREAM SIZES (BYTES) FOR PRMS AND DEVICES

FROM TABLE V

 Partial bitstream size (bytes)

PRM Virtex-5 LX110T Virtex-6 LX75T

FIR 83440 77340

MIPS 157672 189140

SDRAM 18416 24204

Table VIII. EXECUTION TIMES IN MINUTES (m) AND SECONDS (s) FOR

SYNTHESIS AND IMPLEMENTATION OF PRMS FOR THE PRR

SIZE/ORGANIZATION FROM TABLE V

 Virtex-5 LX110T Virtex-6 LX75T

Process FIR MIPS SDRAM FIR MIPS SDRAM

Synthesis 4m 25s 4m 15s 3m 20s 4m 4m 50s 4m 23s

Implementation 5m 35s 5m 15s 2m 55s 4m 15s 5m 50s 4m 30s

PRR size and organization using our proposed cost model.

We note that high RUs lead to densely packed PRRs that
may eventually cause routing problems in the PRR, but this
depends on the complexity of the PRR’s associated PRMs.
Also, since the Xilinx tools allow the static region’s nets to
cross the PRRs, routing problems may arise if nets from the
static region try to cross a densely packed PRR. Higher RUs
may be obtained by selecting non-rectangular PRRs (such as an
“L” or “T” PRR shape), but chances of routing problems in the
PRRs are increased.

Using the values from Table IV for the PRMs and devices
in Table V, and applying (18) to (23), we obtain the partial
bitstream size in bytes for each PRM, which are depicted in
Table VII. The obtained partial bitstream sizes are similar to
those PRMs used in experiments to measure the
reconfiguration times in prior work [2][4][7]. We note that
there is no prior work that formulates a cost model to determine
a partial bitstream size, or the most relevant prior work does
not include detailed PRR resource usage information as we
have included in our work, thus there is no direct comparison
we can do with prior work.

Our cost models enable system designers to estimate the
PRRs’ sizes/organizations and associated PRMs’ partial
bitstream sizes without executing the entire PR design flow.
Using our proposed methodology, system designers need only
to synthesize the PRMs, and use the formulas from our
proposed cost models. Table VIII depicts the execution times
for synthesizing the PRMs from Table V on the selected
devices, which includes the summation of the time to obtain the
PRRs’ sizes/organizations and bitstream sizes, which take less
than 5 minutes in all cases. Table VIII also includes the
implementation times of each PRM (using area constraints) for
the PRR size/organizations in Table V as a reference.

V. CONCLUSIONS

In this work, we presented cost models for high-level,
early-design-time estimation of partial reconfigurable region
(PRR) size/organization and associated partial bitstream sizes
for hardware-multitasking partially reconfigurable (PR)
designs. Our high level approach precludes the typically
lengthy PR design flow, and significantly aids system designers
in PR partitioning and accelerates design space exploration.
Our cost models are generally portable across different Xilinx
field-programmable gate array (FPGA) families. Experimental
results evaluated our cost models on two different Xilinx
devices to determine the best PRR size/organization to produce
the smallest PRR size and partial bitstream size for different

PRMs. Our future work will use our cost models as part of the
floorplanning stage in the PR design flow.

ACKNOWLEDGMENTS

This work was supported by the Unidad Coordinadora del
Programa de Ciencia y Tecnología (FINCyT), Perú, under
contract N° 121-2009-FINCyT-BDE, by the I/UCRC Program
of the National Science Foundation (NSF) under grants EEC-
0642422 and IIP-1161022, and the NSF CHREC membership
support of Draper Laboratory. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation. The authors gratefully
acknowledge the support of Universidad Nacional de
Ingeniería – Lima, Perú, the Presidencia del Consejo de
Ministros in Perú, through FINCyT, and the tools provided by
Xilinx.

REFERENCES

[1] C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hübner, J. Becker, "A
multi-platform controller allowing for maximum dynamic partial
reconfiguration throughput," in Proceedings of the International
Conference on Field Programmable Logic an Applications (FPL’08),
pp. 535-538, 2008.

[2] F. Duhem, F. Muller, P. Lorenzini, "Reconfiguration time overhead on
field programmable gate arrays: reduction and cost model," IET
Computers & Digital Techniques, vol. 6, no. 2, pp. 105–113, 2012.

[3] D. Koch, Partial Reconfiguration on FPGAs: Architectures, Tools and
Applications, Lecture Notes in Electrical Engineering, vol. 153,
Springer, 2013.

[4] M. Liu, W. Kuehn, Z. Lu, A. Jantsch, "Run-time partial reconfiguration
speed investigation and architectural design space exploration," in
Proceedings of the 19th International Conference on Field
Programmable Logic and Applications (FPL’09), pp. 498-502, 2009.

[5] A. Morales-Villanueva and A. Gordon-Ross, "On-chip context save and
restore of hardware tasks on partially reconfigurable FPGAs," in IEEE
International Symposium on Field Programmable Custom Computing
Machines (FCCM'13), pp. 61-64, 2013.

[6] A. Morales-Villanueva and A. Gordon-Ross, "HTR: on-chip hardware
task relocation for partially reconfigurable FPGAs," in Proceedings of
the 9th International Symposium on Applied Reconfigurable Computing
(ARC'13), LNCS, vol. 7806, pp. 185-196, 2013.

[7] K. Papadimitriou, A. Dollas, S. Hauck, "Performance of partial
reconfiguration in FPGA systems: a survey and cost model," ACM
Transactions on Reconfigurable Technology and Systems (TRETS), vol.
4, no. 4, article 36, 2011.

[8] Xilinx Inc., Partial Reconfiguration of Virtex FPGAs in ISE 12
(WP374), July 23, 2010.

[9] Xilinx Inc., Virtex-5 FPGA Configuration User Guide v3.10 (UG191),
Nov 18, 2011.

[10] Xilinx Inc., Virtex-5 FPGA User Guide v5.4 (UG190), March 16, 2012.

