
Abstract— Large applications that exceed available FPGA 
resources must time-multiplex these resources using smaller 
hardware modules. In order to orchestrate this 
time-multiplexing, temporal partitioning partitions these 
hardware modules into multiple subsets, each of which fit 
within the available resources. During a temporal partition 
transition, the FPGA is reconfigured to the subsequent 
temporal partition. However, FPGA reconfiguration time can 
impose significant performance overhead as the entire FPGA 
fabric must be reconfigured even if only a small portion has 
changed. Partially reconfigurable (PR) FPGAs can decrease 
reconfiguration time by only reconfiguring the portions of the 
FPGA fabric that differ. In this paper, we present a design 
methodology using a simulated annealing-based module 
placement optimization engine to minimize FPGA 
reconfiguration overhead by exploiting module overlap across 
successive temporal partitions. Experimental results show that 
our methodology reduces FPGA reconfiguration time by 44% 
on average. 
 

Keywords-temporal partitioning, partial reconfiguration, 
field programmable gate arrays, module placement. 

I. INTRODUCTION 
Hardware implementations for large-scale scientific 

applications implemented using field programmable gate 
arrays (FPGAs) have commonly achieved speedups in the 
range of 10x-1000x when compared to equivalent software 
implementations [1][3][10]. Several key design elements to 
achieve high speedups include application decomposition 
and inter-module communication. During application 
decomposition, system designers decompose an application 
into multiple communicating modules (either software 
and/or hardware modules), which coordinate, communicate 
(data and/or control synchronization), and work in parallel 
to achieve a common goal (the complete application’s 
functionality). In order to fully exploit speedups, 
communication must be efficient to assure module 
processing pipelines are kept full. 

To facilitate application decomposition, hardware 
functionality can be represented using a task graph, where 
nodes represent hardware modules and edges represent 
inter-module communication. Since large applications may 
require more hardware resources than are available on a 
target FPGA system, temporal partitioning [12] groups task 
graph nodes such that each partition fits within the available 
resources and tasks within a given temporal partition 
execute concurrently. During runtime, full reconfiguration 
reconfigures the entire FPGA fabric to the next temporal 
partition. Inter-partition communication passes data and 
control synchronization to subsequent temporal partitions.  

Despite the ability to time multiplex FPGA resources, a 
drawback of temporal partitioning may be lengthy 
reconfiguration time, as full FPGA system reconfiguration 
can take on the order of hundreds of milliseconds [5][16]. 
Lengthy reconfiguration times can severely impact system 
performance for applications with frequent temporal 
partition transitions. Partial reconfiguration (PR) can 
alleviate this reconfiguration overhead [17]. In PR FPGAs, 
the FPGA fabric is partitioned into partially reconfigurable 
regions (PRRs) each of which may be individually 
reconfigured while the other PRRs continue executing. 
Module placement maps hardware modules to PRRs.  

Since temporal partitions often share the same/similar 
hardware modules (referred to as module overlap), PR has a 
large potential for reducing reconfiguration time, as only the 
PRRs that differ require reconfiguration during a temporal 
partition transition. For example, module overlap should be 
maximized during module placement such that common 
modules spanning subsequent temporal partitions occupy 
the same PRRs. Minimizing reconfiguration time via 
optimal module placement constitute an NP-complete 
problem. In addition, even though modules may span 
temporal partitions, there is no guarantee that inter-module 
communication will be similar, thus requiring inter-module 
communication reconfiguration. 

A dynamic communication architecture capable of 
runtime inter-module communication establishment can 
accommodate inter-module communication reconfiguration. 
This dynamic communication architecture enables temporal 
partition assembly, which is the process of dynamically 
assigning modules to a temporal partition at runtime from a 
subset of modules ready to execute. A system’s ability to 
perform temporal partition assembly significantly enhances 
reconfigurability, and thus presents a mechanism to reduce 
reconfiguration time. 

In this paper, we introduce a PRR module placement 
methodology for VAPRES (Virtual Architecture for 
Partially Reconfigurable Embedded Systems) [5]. Our 
module placement methodology exploits module overlap to 
reduce reconfiguration time using a simulated 
annealing-based optimization engine operating on an 
application task graph. Additionally, we present a runtime 
temporal partition assembly technique using a customizable 
communication architecture. Experimental results reveal a 
44% average reduction in reconfiguration time as compared 
to full reconfiguration.  

II. BACKGROUND AND RELATED WORK 
Numerous previous works propose methodologies to 

solve the temporal partitioning problem using heuristics or 

Runtime Temporal Partitioning Assembly to Reduce FPGA Reconfiguration Time 
Abelardo Jara-Berrocal and Ann Gordon-Ross 

Department of Electrical and Computer Engineering 
NSF Center for High Performance Reconfigurable Computing (CHREC), University of Florida 

Gainesville, Florida, USA 
{berrocal, ann}@chrec.org; http://www.chrec.org 



exact methods. Most heuristics are modifications of list 
scheduling methods used in compilers for microcode 
generation. List scheduling sorts the nodes in topological 
order (node successors appear in the topological ordering 
after all node predecessors) and assigns a priority to each 
node for scheduling. Research works in list 
scheduling-based temporal partitioning typically differ in 
their definition of node priority.  

Purna and Bathia [12] defined node priority using the as 
soon as possible (ASAP) metric. Saha et al. [13] proposed 
weighted based scheduling (WBS) where resource usage 
dictated node priority (lower resource usage equated to 
higher priority). Danne et al. [4] proposed earliest deadline - 
next fit (ED-NF) for scheduling periodic real-time tasks 
where nodes with earlier deadlines had higher priority. Khan 
et al. [9] proposed a power-aware scheduling technique to 
increase battery life in embedded systems where nodes with 
higher dynamic power consumption were scheduled first. 
Since heuristic methods did not guarantee optimal results, 
Kaul et al. [8] formulated a set of ILP equations and 
constraints to model the temporal partitioning problem. 
Whereas this approach is suitable for small applications, ILP 
is intractable for applications with large task graphs.  

All previous temporal partitioning methods assumed full 
FPGA reconfiguration during partition transition. In order to 
reduce reconfiguration overhead, Singhal et al. [14] 
proposed a sequential pair representation floor planner, 
which considered module overlap and leveraged PR to 
reconfigure only differing PRRs. Their approach 
incorporated inter-module communication reconfiguration 
into system reconfiguration. The temporal partitioning 
methodology used a simulated annealing-based engine and 
output a two-dimensional FPGA fabric floor plan for each 
temporal partition. The simulated annealing cost function 
included a wire length cost, which estimated if timing 
closure could be met for each temporal partition. Despite the 
novelty, PR architectural and implementation details that 
leveraged their floor planning methodology were not 
discussed. For example, when performing PR, nets between 
the PRRs and the static regions must be disabled.  

To the best of our knowledge, our work is the first to 
propose a technique to perform runtime assembly of 
temporal partitions. Unlike previous methods, instead of 
incorporating inter-module communication reconfiguration 
into system reconfiguration, we use a custom, dynamic 
inter-module communication architecture to meet varying 
inter-module communication requirements, which facilitates 
runtime temporal partition assembly.   

III. ARCHITECTURAL SUPPORT FOR MODULE 
PLACEMENT AND COMMUNICATION  

In order to support our module placement methodology 
and runtime temporal partition assembly technique, we use 
VAPRES, a general purpose embedded base platform for 
building PR systems [5] (we refer the reader to this 
reference for implementation details). VAPRES provides an 
ideal architectural framework to enable independent PRR 
reconfiguration, runtime temporal partition assembly, 
arbitrary module placement, and temporal partition 
transition and control. In addition, VAPRES enables 
customizable inter-module and inter-partition 
communication using SCORES (Scalable Communication 
Architecture for Reconfigurable Embedded Systems) [7]. 

A. Virtual Architecture Description 
Figure 1 depicts the VAPRES architectural layout. 

VAPRES consists of two main regions: the system control 
region and the data processing region. The system control 
region resides in the FPGA’s static region and orchestrates 
all system functionalities, such as module placement and 
PRR reconfiguration. The system control region includes a 
soft-core Microblaze, flash controller, and various other 
application-specific peripherals. The Microblaze 
communicates with the PRRs using the fast simplex link 
(FSL) interface. 

The data processing region is composed of one or more 
reconfigurable streaming blocks (RSBs) (Figure 1 depicts a 
system with a single RSB). An RSB contains a set of PRRs 
(which execute the application’s modules), an embedded 
communication architecture (SCORES), interfaces 
connecting the PRRs to SCORES, and specialized I/O 
modules. The system control dynamically loads modules 
into the PRRs for data processing. Data enters and leaves a 
module (PRR) through the module’s input and output ports, 
respectively. PRRs within a particular RSB are structured as 
a one-dimensional linear array and are placed adjacently in 
the VAPRES floor plan. This layout allows modules to span 
multiple adjacent PRRs.  

B. Inter-Module and Inter-Partition Communication 
Architecture using VAPRES 
SCORES is the fundamental VAPRES component for 

runtime temporal partition assembly. The SCORES 
topology is constructed as a linear switch array. SCORES is 
highly parameterized, offering customizable parameters 
such as data channel widths and number of data channels 
flowing in both directions through the switch array and 
between the switch and the connected PRR. This 
customizability enables application-specific resource 
scaling. SCORES allows PRRs to dynamically establish fast 
data-streaming channels with any arbitrary PRR. During 
streaming channel establishment, dedicated data channels 
between adjacent switches are reserved between the 
communicating PRRs. After data transmission has 
completed, the channel reservations are broken and the 
channels/ports may be reserved for new inter-module 
communication.  

 
Figure 1: VAPRES architectural layout. 



Using SCORES for runtime temporal partition assembly 
is advantageous over incorporating inter-module 
communication reconfiguration into system reconfiguration 
if the time for SCORES to establish a streaming channel is 
significantly less than full system reconfiguration time. 
Assuming no channel contention (blocked inter-module 
communication due to no available ports), SCORES 
requires a maximum of tassembly clock cycles to assemble a 
temporal partition (referred to as the current temporal 
partition): 

    

€ 

tassembly =maxi, j (TsNi→ j Pk
k= i

j

∑ )   

where i and j correspond to the i-th and j-th nodes in the 
application task graph and communicate in the current 
temporal partition, Ts = 3 represents the number of clock 
cycles required for a switch to allocate an output port to a 
requesting input port (route the communication to an 
adjacent switch or to an attached FIFO-based interface), Pk 
is the total number of input ports at the k-th switch on the 
path between the PRRs allocated to the modules 
corresponding to the i-th and j-th nodes, and Ni→j is the total 
number of switches in this path.  

Additionally, the FSL interface connecting each PRR 
with the Microblaze provides inter-partition communication. 
Before a partition transition, communicated data and/or 
control synchronization is transferred to the Microblaze and 
stored in internal or external memory. After the partition 
transition, the Microblaze provides this data/control to the 
appropriate PRRs. 

Given this architectural support, the next step is to 
design temporal partitioned applications. Application 
designers must encapsulate the modules (referred to as 
original modules) inside special module wrappers. Module 
wrappers provide the necessary hardware to connect the 
original module’s input and output ports with the 
FIFO-based interfaces (see Figure 1). Figure 2 depicts a 
sample task graph composed of the original modules 
encapsulated by module wrappers.   

IV. MODULE PLACEMENT DESIGN METHODOLOGY 
Figure 3 depicts an overview of our proposed 

design-time methodology for PR module placement. The 
methodology uses weighted based scheduling (WBS) [6] on 
the input hardware task graph to create an initial set of 
temporal partitions. The output of WBS is a set of linked 
lists, of which each list represents a temporal partition and 
that temporal partition’s composing modules. The temporal 

partition size is the sum of the temporal partition’s 
composing module sizes (number of PRRs).  

A placement solution defines module placement in 
PRRs for all temporal partitions, and is represented as a 
placement matrix where each row represents one temporal 
partition and each column one available PRR. The simulated 
annealing optimization engine iteratively optimizes this 
placement solution to minimize reconfiguration time. We 
generate the initial placement solution for the simulating 
annealing optimization engine as follows. For each 
placement matrix row corresponding to a temporal partition 
link list generated by WBS, available PRRs are filled from 
left to right based on linked list position. This filling method 
works well for temporal partitions whose size (number of 
active modules during that temporal partition) equals the 
number of available PRRs. For temporal partitions, whose 
size is less than the number of available PRRs, this filling 
method results in unoccupied PRRs. To account for these 
unoccupied PRRs, we define an extra module type that 
corresponds to an empty PRR. For each temporal partition 
whose size is less than the number of available PRRs, empty 
modules are added to the linked list until the temporal 
partition size equals the number of available PRRs. This 
filling method is critical for module placement.  

A. Placement Solution Evaluation  
The partial configuration cost determines how many 

PRRs must be reconfigured during all partition transitions. 
The partial configuration cost is calculated using a 
placement matrix to represent module placement inside the 
PRRs through all temporal partitions.   

1) Partial Configuration Cost  
A placement solution’s quality is evaluated using the 

partial configuration cost, which is the total number of PRR 
reconfigurations required for a complete application 
execution (all partition transitions). Currently, this number 
is independent of the actual system time required for PRR 
reconfiguration because we assume homogeneous PRRs 
with respect to layout and resources. This cost could easily 

 
Figure 2: Original application task graph modules encapsulated by 

module wrappers to connect to the FIFO-based interfaces. 

 
Figure 3: Module placement design methodology.  

(1) 



be annotated with actual reconfiguration times, and is the 
focus of future work. Partial configuration cost calculation 
considers two cases for which PRR reconfiguration is not 
required. The first case is when same-type modules occupy 
the same PRR(s) in the immediate subsequent temporal 
partition. For modules spanning multiple PRRs, all PRRs 
must contain the same module. The second case is a 
generalization of the first case and considers same-type 
modules occupying the same PRR(s) in any subsequent 
temporal partition, where the intervening partitions contain 
empty PRR(s). In this situation, the module may be retained 
across multiple temporal partitions since those PRRs would 
otherwise be empty. 

2) Placement Matrix and Partial Configuration Cost 
Calculation  

The partial configuration cost is calculated using a 2D 
PlacementMatrix. The PlacementMatrix associates one row 
with each temporal partition and one column with each 
available PRR. For example, if a module occupies row three 
and column two in the PlacementMatrix, the module 
occupies the second PRR in the third temporal partition. The 
PlacementMatrix is filled using methods that complement 
the two cases for reducing partial configuration cost. For 
each non-empty j-th PRR in the i-th temporal partition, 
PlacementMatrix[i][j] = x_y where x corresponds to the 
module type and y is the offset in the number of PRRs from 
this module’s first occupied PRR. For example, if a module 
of type five spans the second and third PRRs in the second 
temporal partition, PlacementMatrix[2][2] = 5_1 and 
PlacementMatrix [2][3] = 5_2. This representation provides 
a method for placing modules that span multiple PRRs. For 
each empty j-th PRR in the i-th temporal partition, 
PlacementMatrix[i][j]’s entry is filled with a negative 
number whose absolute value indicates the number of 
subsequent contiguous empty PRRs. This representation 
provides a method to determine if there is enough empty 
space to retain a module during subsequent temporal 
partitions. Figure 4 depicts a PlacementMatrix constructed 
from the (a) initial placement solution and (b) a possible 
optimal placement solution corresponding to the task graph 
in Figure 6. 

Figure 5 depicts the PlacementCost algorithm, which 
computes the partial configuration cost using a 
PlacementMatrix (Figure 4 annotates the PlacementMatrix 
with the PlacementCost algorithm calculations). First, the 
PlacementCost algorithm scans each placement matrix row 
for a candidate module. A candidate module is located when 
a PlacementMatrix entry is equal to x_1 (x denotes an 
arbitrary module type), which corresponds to a module’s 

first occupied PRR (denoted by _1). For each candidate 
module (line 4), the PlacementCost algorithm determines 
potential module retention due to module overlap by 
vertically scanning (line 9) PlacementMatrix entries of the 
same column (corresponding to the same PRR where x_1 
was found) for subsequent temporal partitions (increasing 
PlacementMatrix rows). A candidate module may be 
retained if the candidate module’s occupied PRR(s) in 
subsequent temporal partitions is/are empty 
(PlacementMatrix entries indicate enough adjacent empty 
PRRs to retain the entire module) (line 8).  

Vertical scanning for candidate module retention 
continues until a non-empty PlacementMatrix entry 
indicates that the module’s first occupied PRR is no longer 
empty (a non-negative placement matrix entry). At this 
point, the PlacementCost algorithm determines module 
overlap. If the inspected PlacementMatrix entry corresponds 
to the first occupied PRR of a same-type module as the 
candidate module (value of the entry is x_1) the algorithm 
halts vertical scanning and resumes searching for the next 
candidate module (line 12). Partial configuration cost for 
this situation is not incremented because an x_1 entry in the 
same column but a subsequent PlacementMatrix row means 
that the first occupied PRR for both modules are vertically 
aligned, thus no reconfiguration is required. On the other 
hand, if the inspected PlacementMatrix entry is of a 
different type or corresponds to a different PRR for modules 
spanning multiple PRRs, the partial configuration cost is 
incremented by the size of the candidate module (line 14). 
Therefore, this situation halts vertical scanning and 
candidate module searching is resumed (line 12). 

 
Figure 4: The PlacementMatrix for two possible placement solutions for the 

task graph in Figure 6 for (a) initial placement solution and (b) possible 
optimal placement solution. Arrows indicate vertical scanning by the 

PlacementCost algorithm. Positive numbers indicate partial configuration 
cost increments. 

 
Figure 5: PlacementCost algorithm 

 
Figure 6: A sample partitioned task graph. Numbers inside and outside 

the nodes indicate module type and module size, respectively. 



B. Simulated Annealing Optimization  
Figure 3 depicts our simulated annealing optimization 

engine flow. The engine takes as input the initial placement 
solution produced by WBS, which becomes the current 
placement solution. Step one builds the PlacementMatrix for 
the current placement solution and calculates the associated 
partial configuration cost (current cost) using the 
PlacementCost algorithm. Step two generates the next 
placement solution using the simulated annealing 
perturbation function to modify module placement by 
selecting a random temporal partition from the current 
placement solution and swapping two random modules. 
This step generates a PlacementMatrix and computes the 
partial configuration cost for the next placement solution 
(next cost). 

V. RESULTS  
In this section, we evaluate PRR reconfiguration and 

temporal partition assembly times and our module 
placement methodology. 

A. PRR Reconfiguration and Temporal Partition Assembly 
Time Evaluation 
We implemented a prototype system based on VAPRES 

with three PRRs (sufficient for functionality testing 
purposes) on a Virtex 4 VLX60 FPGA to evaluate the time 
to reconfigure a PRR and the time for temporal partition 
assembly. We calculated the time for temporal partition 
assembly using equation (1). We customized the SCORES 
communication architecture with five 32-bit channels 
flowing in both directions between switches and three 32-bit 
module input ports and three 32-bit module output ports 
connecting PRRs to switches. This SCORES configuration 
allows a module to both send and receive data from three 
different modules. Ni→j represents the maximum number of 
switches between two communicating modules, and since 
VAPRES associates one switch with each PRR, Ni→j = 3. Pk 
is the summation of the number of channels flowing to the 
right, the number of channels flowing to the left, and the 
number of input ports at each switch, and thus, Pk = 6 + 6 + 
3 = 15. The number of clock cycles required to assemble a 
temporal partition is equal to tassembly = 3 x 3 x 15 = 135. 

We evaluated PRR reconfiguration time using the 
Microblaze xps_timer peripheral. VAPRES PRRs required 
640 slices spanning sixteen vertical CLBs and ten horizontal 
CLBs. We point out that these PRR sizes are relatively 
small and larger PRRs might be required for applications 
with larger modules. A single PRR reconfiguration required 
10,277,796 clock cycles (102.77 ms) of which transferring 
the partial bitstream from flash memory to the ICAP BRAM 
buffer accounted for 95.1% of the time and writing the 
partial bitstream to the ICAP port accounted for 4.9% of the 
time. Thus, these values show that a PRR’s partial 
reconfiguration time is significantly longer than SCORES’s 
runtime temporal partition assembly time (135 clock 
cycles), and larger PRRs would increase this gap as the PRR 
partial reconfiguration time would increase but SCORES’s 

runtime temporal partition assembly time would remain 
constant.  

However, despite longer reconfiguration times, larger 
PRRs still have the potential advantage of reducing the 
number of temporal partitions since larger PRRs store 
bigger modules. Unfortunately, larger PRR sizes can 
increase PRR fragmentation (wasted PRR resources when a 
module uses fewer resources than a PRR provides). 
Therefore, both PRR size and reconfiguration frequency 
must be considered during system design and is the focus of 
our future work.   

B.  Experimental Setup and Evaluation Methodology  
We implemented our module placement design 

methodology (Figure 3) as a C++ program. To evaluate our 
module placement design methodology for a variety of 
application requirements, we generated a benchmark suite 
consisting of random acyclic task graphs composed of 30 to 
60 nodes with one to five outgoing edges per node. We 
generated the task graphs using the publicly available task 
graphs for free (TGFF) [15] tool, which has been used for 
benchmark generation for task scheduling research in 
embedded systems [11]. The simulated annealing 
optimization engine parameters were set to Tinit = 100 
(initial temperature), M = 10 (number of simulated 
annealing iterations performed at each temperature value), α 
= 0.95, β = 1.01, and MaxIterations = 20,000 [2]. These 
parameters resulted in solutions with the same 
reconfiguration costs as the solutions generated by an 
exhaustive search algorithm implemented in C++ for all the 
task graphs in our benchmark suite. Experimental 
determination of simulated annealing optimization engine 
parameters for more complex task graphs (higher number of 
nodes and higher number of outgoing edges per node) is 
part of our future work.  

To test our module placement solution quality, we 
performed extensive experiments for a variety of system and 
application evaluation cases. Each evaluation case consisted 
of a selected task graph, a maximum number of module 
types, and a number of available PRRs. We considered 
systems with 4, 8, 12, and 16 available PRRs and varied the 
number of different module types from 1 to 20. For each 
evaluation case we performed 30 different experimental 
tests using different random seeds. At the beginning of each 
experimental test, task graph nodes were annotated with a 
random module type and each module type was assigned a 
random size between 1 and 4 PRRs. Our module placement 
design methodology operated on the annotated task graph 
and determined the best placement solution.  

For comparison purposes, we define the full 
configuration cost as the (number of available PRRs)*(total 
number of temporal partitions - 1). The full configuration 
cost corresponds to the total number of reconfigured PRRs 
when full system reconfiguration is used (PR benefits are 
not exploited). Subtracting one from the total number of 
temporal partitions discounts the first configuration as 
system initialization. From the 30 experimental tests 
performed for each evaluation case, we calculated average 



partial configuration cost, full configuration cost, and 
average percent reduction in configuration time. 

C. Partial Configuration Savings 
Figure 7 depicts average reduction in configuration time 

for three task graphs from our benchmark suite: (a) small 
size-low connectivity (20 nodes, 30 edges), (b) medium 
size-medium connectivity (60 nodes, 120 edges), and (c) 
medium size-high connectivity (60 nodes, 160 edges). 
Results show that as the number of different module types 
decreases, the reduction in configuration time increases to 
100% (100% means that no reconfiguration is necessary) for 
one module type. This reduction is expected because as the 
variety of module types decreases, module overlap increases 
to the point where only one module type spans all temporal 
partitions. Figure 7 also shows that as the number of 
available PRRs increases, the reduction in configuration 
time also increases because a larger number of available 
PRRs provides the optimization engine with more module 
placement flexibility, enabling more module overlap and 
module retention.  

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented a module placement design 

methodology for temporal partitioning to minimize runtime 
reconfiguration overhead by exploiting module overlap and 
partially reconfigurable (PR) FPGAs. By considering PR 
when performing module placement, modules that span 
temporal partitions may be placed in the same partially 
reconfigurable regions (PRRs), and thus these modules do 
not require reconfiguration during a temporal partition 
transition. Extensive experimental results showed that 
reconfiguration time can be reduced by as much as 58% for 
a moderately sized application. Future work includes 
developing an algorithm for automatic SCORES 
communication architecture parameter sizing to guarantee 
inter-module communication requirements are met while 
minimizing area overhead. We will also explore techniques 
to further reduce system stall time during partition transition 
by prefetching subsequent temporal partition modules 
before the current temporal partition has completed.  

ACKNOWLEDGEMENTS 
This work was supported in part by the I/UCRC 

Program of the National Science Foundation (NSF) under 
Grant No. EEC-0642422. We gratefully acknowledge tools 
provided by Xilinx. 

REFERENCES 
[1] J. Bakos, P. Elenis, J. Tang. FPGA Acceleration of Phylogeny 

Reconstruction for Whole Genome Data. 7th IEEE International 
Symposium on Bioinformatics & Bioengineering, 2007 

[2] C. Bobda. Introduction to Reconfigurable Computing. Architectures, 
Algorithms and Applications. Springer, 2007 

[3] T. Court, M. Herbordt. Families of FPGA-Based Accelerators for 
Approximate String Matching. ACM Microprocessors & 
Microsystems, v. 31, Issue 2, 2007 

[4] K. Danne, M. Platzner, A heuristic approach to schedule periodic 
real-time tasks on reconfigurable hardware. FPL 2005 

[5] R. Garcia, A. Gordon-Ross, and A. George. Exploiting Partially 
Reconfigurable FPGAs for Situation-Based Reconfiguration in 
Wireless Sensor Networks. FCCM 2009 

[6] M. Huang, P. Saha, and T. El-Ghazawi. Hardware Task Scheduling 
Optimizations for Reconfigurable Computing. HPRCTA 2008 

[7] A. Jara-Berrocal and A. Gordon-Ross. SCORES: A Scalable and 
Parametric Streams-Based Communication Architecture for Modular 
Reconfigurable Systems. DATE 2009 

[8] M. Kaul, R. Vemuri. Optimal Temporal Partitioning and Synthesis 
for Reconfigurable Computers. DATE 98 

[9] J. Khan, R. Vemuri. An Iterative Algorithm for Battery-Aware Task 
Scheduling on Portable Computing Platforms. DATE 2005 

[10] V. Kindratenk, D. Pointer, A case study in porting a production 
scientific supercomputing application to a reconfigurable computer. 
FCCM 2006 

[11] S. Ming, B. Wells. Task Scheduling in a Finite-Resource, 
Reconfigurable Hardware/Software Codesign Environment. 
INFORMS Journal on Computing, 2006 

[12] K. Purna, D. Bhatia. Temporal Partitioning and Scheduling Task 
Graphs in Reconfigurable Computers. IEEE Trans. on Comp. 1999 

[13] P. Saha. Automatic software hardware co-design for reconfigurable 
computing systems. FPL 2007 

[14] L. Singhal, E. Bozorgzadeh. Multi-layer Floorplanning on a 
Sequence of Reconfigurable Designs. FPL 2006 

[15] Task Graphs for Free. http://ziyang.eecs.umich.edu/~dickrp/tgff/ 
[16] Xilinx Inc. Virtex 4 Configuration Guide (UG071), January 2006 
[17] Xilinx Inc. EA PR User Guide 208, March 2009

 

 
 
 
 
 
 
 
 
 

 
 
 

Figure 7: Average reduction in configuration time verses number of module types for varying available PRRs for three different application task 
graphs: (a) small size-low connectivity (20 nodes, 30 edges), (b) medium size-medium connectivity (60 nodes, 120 edges), and (c) medium size-high 

connectivity (60 nodes, 160 edges) 

(a) (b) (c)  
  


