

Abstract - This paper presents an improved method to
postpone wearout failures and improves functional unit and
entire system lifetime by considering two important wearout
factors: temperature and functional unit usage. Our method
provides a more fine grained approach as compared to prior
methods by considering individual functional unit usage. Using
this information, system behavior can be predicted and
appropriate thread scheduling and migration decisions can be
made. Our method incorporates temperature predictions
based on recent historical temperatures and functional unit
usages to rank threads and cores in a chip multiprocessor
(CMP). Using these rankings, our method migrates threads
among cores to reduce thermal hotspots. Simulation results on
the ESESC simulator show that our method can improve the
average system temperature and lifetime by approximately
4.33°C and 21.65%,respectively,in a tri-core CMP, and 6.4°C
and 32% in a quad-core CMP.

Keywords: Wearout; Temperature; Chip multiprocessor; Thread
migration

I. INTRODUCTION

In new technology generations, inappropriate voltage
scaling has intensified current and power densities, which
results in rapidly increasing chip temperature [1]. Wearout
mechanisms are intensified by temperature, power, and
system activity, thus wearout faults will become
increasingly prevalent in future technology generations
[1].Concomitantly, shrinking CMOS feature size
accelerates transistor wearout, and consequently processor
lifetime is becoming more unpredictable and shorter than
expected [1][2]. For example, a delay increase of just 0.04ps
per logic cell within an ALU can lead to more than a 20ps
increase in the delay, or about one inverter delay, on the
ALU result bus [1]. This exemplifies how wearout latency
at the device level is magnified much more at the
architectural level.

Even though the time to wearout failure heavily
depends on factors, such as technology, manufacturing
process, temperature, voltage conditions, etc., wearout is
also impacted by factors, such as usage frequency (duty
cycle), which can be moderated/balanced to increase chip
lifetime. The time duration in which hardware is being used
plays an essential role in the onset of wearout. As the
hardware usage increases (i.e., the hardware is stressed),

wearout causes are intensified and manifested sooner. Thus,
one method to postpone wearout failures is to reduce
hardware stress [3]. Since even small changes in usage
and/or temperature has a significant effect on estimated
aging, it is important to consider both of these factors at the
same time.

Several wearout recovery and wearout mitigation
techniques in previous works have tried to balance the
number of executed instructions (i.e., workload/stress) over
multiple functional units to increase the units' lifetimes
[4][5][6][7]. However, prior work has shown that balancing
the number of executed instructions and workloads among
functional units is not always the best strategy for mitigating
aging effects [8].Different instructions which use the same
functional unit, have different delays and clock cycle slack
times. This difference is essential when considering aging
(not performance). Critical instructions have very little
slack time. When path delay increases due to aging effects,
critical instructions start to fail due to this increased delay,
however, non-critical instructions can tolerate more delay,
and execute correctly for a longer period before suffering
wearout effects [8].

Thus, since different instructions place different usage
stresses on different functional units, these factors should be
considered since the first functional unit to fail ultimately
dictates total system lifetime. Based on this motivation, we
propose a method that considers essential factors that
accelerate wearout—temperature and usage time—of the
functional units, predicts system behavior, and attempts to
postpone wearout failures. The main contributions of this
work are:

1) Thermal management thread scheduling decisions
based on fine-grained wearout factors: Functional
units in cores are considered individually, and one
decision does not apply to all of the threads on that core,
which improves the accuracy of thermal management
during thread scheduling.
2) Temperature prediction based on the rate of change
of two historical data set factors (temperature and
usage): Predicting temperatures based on two different
data sets can improve the prediction accuracy.
3) Temperature compatibility with application
behavior: There is a close relationship between
temperature and an application’s behavior, and

Postponing Wearout Failures in Chip Multiprocessors Using Thermal

Management and Thread Migration

Elham Kashefi, Hamid R. Zarandi
Department of Computer Engineering and Information Technology

Amirkabir University of Technology (Tehran Polytechnic)
Tehran, Iran

kashefi@aut.ac.ir, h_zarandi@aut.ac.ir

Ann Gordon-Ross
Department of Electrical and Computer Engineering

University of Florida, Gainesville, FL-32611
ann@ece.ufl.edu

Also with the NSF Center for High-Performance
Reconfigurable Computing (CHREC) at UF

978-1-5090-2520-6/16/$31.00 ©2016 IEEE

migrating threads to different cores provides
compatibility with the thermal demands of a thread,
which can improve system performance.

Simulation results on the ESESC simulator show that

our method can improve the average system temperature
and lifetime by approximately 4.33°C and 21.65%,
respectively, on a tri-core chip multiprocessor (CMP), and
6.4°C and 32%, respectively, on a quad-core CMP
The rest of this paper is organized as follows. Section II
gives an overview of relative prior work. In Section III, our
proposed method is presented. Experimental setup and
evaluation for a set of SPEC2000 benchmarks are given in
Section IV. Finally, we conclude our work in Section V.

II. RELATED WORK

Some architectural level methods [4][5] consider

instructions per cycle (IPC) as a factor for task scheduling,
in which workloads with higher IPC are assigned to cores
with lower temperature. Oboril et al. [8] classifies
instructions according to their criticality. Critical
instructions are executed on different parts of the processor
(units) that use special mitigation techniques to increase the
units’ lifetimes. All other non-critical instructions are
executed on units without these mitigation techniques.
Siddiqua et al. [6] varies the functional unit scheduling to
try to balance wearout across all units. Priority rotation
scheduling and time-dependent scheduling are proposed,
which create a recovery period after a stress period for a
functional unit. Sun et al. [3] also proposes that cores or
units enter a recovery period after a stress period. Khan et
al. [9] proposes a scheduling method for temperature and
age balancing, where applications are ranked according to
the application’s current temperatures and cores are ranked
based on the core’s frequency degradation. Sunet al. [7]
categorizes cores into zones, and uses dynamic task
scheduling to balance the workload across all zones. Each
core has a defined metric indicating how much that core can
be stressed by additional workloads.

Some architectural level methods consider past
circumstances of a core using statistical methods and unit
workloads to balance future workloads or shut down over
stressed cores[3][6][7][9]. However, these methods
consider all units together, and per-unit workload is not
considered. Our proposed method improves upon prior
methods by considering all units separately, which provides
a more fine-grained evaluation of overall chip wearout.

III. OUR PROPOSED METHOD

Our proposed method uses two per-unit historical
input data factors—temperature and usage time—to predict
the future data values for a thread running on a core. Based
on these predictions, threads can be scheduled to the most
suitable core to balance wearout, and thread migration
decisions can also be made. Figure 1 shows a high-level

view of system operation. At runtime, two controlling units
monitor the cores thermal activity and the threads’ core
assignments: a thermal manager and a thread scheduler. The
thermal manager records the temperature of the cores’
functional units. The thread scheduler uses this thermal
information along with usage history, and considering
processor performance, schedules and migrates threads to
avoid core hotspots.

A time quantum comprises of two types of time
segments: one short segment and one long segment. The
main purpose of the short segment is to sample the
temperature and usage of the functional units over a short
time period. Periodic samples are taken during the short
segment, and at the end of the short segment, the thread
scheduler uses tis historical data to determine thread-to-core
scheduling decisions and migrations. Subsequently, the long
segment runs the thread up to the end of the time quantum.

Based on experimental results, a short segment
comprises 40,000 instructions. At the end of the short
segment, the thermal manager evaluates the per-thread data
which indicates the threads’ functional unit requirements,
along with each cores’ thermal and functional unit
capabilities. This information, along with the estimated
thread migration overhead is used to determine if a thread
should be migrated when hotspots are predicted based on
the recorded historical sampled data. When a thread’s
execution ends, or a new thread is generated, or a quantum
ends, a new short segment begins.

The thread migration process uses three main data
structures: the threads-to-cores mapping structure, the
historical temperatures structure, and the core reliability
structure. The threads-to-cores mapping structure records
the current thread-to-core mappings for subsequent
migration decisions. The historical temperatures structure
maintains the historical temperature values for each thread
running in the system. The core reliability structure
maintains the aging state of each cores’ functional units. All
of these structures’ data are used in thread scheduling and
migration decisions to ensure that threads are mapped to the
most suitable cores based on the cores’ thermal conditions.
Historical samples are maintained for the short segment, and

Figure 1. A high level view of proposed method

Core 1 Core 2 Core 4Core 3

C1 C2 C3 C4

Thermal Manager Thread Scheduler
Threads

C
o
re

s

1

2
 3

4

1 2 3 4 5 6 7 8
Thermal Monitor

Thermal Management
and

Scheduling decisions
Thermal Counter

each new time quantum replaces the old data.
Figure 2 depicts a flowchart of our proposed method.

During the short segment, the thermal manager periodically
records the running threads’ core’s temperatures in the
historical temperatures structure, and determines if thread
migration should occur at the end of the short segment.
Thread migration decisions are based on the predicted future
thermal conditions for each core and the cores’ estimated
remaining time until chip hotspot threshold violations.
Based on this estimated time, a thermal and usage ranking
of threads, highest to lowest, is determined based on the
estimated shortest time to a predefined temperature
threshold violation. After the threads are ranked, the threads
are mapped to suitable cores. Based on a thread’s rate of
change (ROC) in historical temperature, the approximate
remaining time before that thread’s temperature threshold is
exceeded can be estimated as [10]:

���� + ��� × � = ������_���� (1)

where ROC is the temperature rate of change (calculated
using the historical samples), Temp is the current
temperature, Target_Temp is predefined temperature
threshold, and X is an unknown variable that indicates the

remaining time before the temperature is expected to exceed
Target_Temp. Similarly to [10], sampling is done on a
100usperiod. Since the ROC is generally non-linear,
averaging historical temperature samples is not accurate for
calculating ROC, thus the temperature samples are weighted
based on age, where newer samples are weighted more
heavily. We empirically evaluated different numbers of
samples and several weighting schemes to determine the
best combination for calculating ROC. Experiments showed
that using more than eight samples incurred high
performance overhead (samples are gathered using several
instructions), using less than four samples resulted in
inaccurate predictions, and using six samples provided a
good performance to prediction accuracy tradeoff.
Experimenting with different historical weightings showed
that when using six samples, weights of 60%, 50%, 40%,
30%, 20%, and 10% for the newest to oldest samples,
respectively, provided the best correlation with actual
execution results.

The functional units’ usage times are considered as an
important factor when ranking threads. In previous
methods, IPC [4][5] has been used as a factor for measuring
aging and for ranking threads and cores, however, these
methods did not take into account which actual functional
units were used and for how long. Prior work showed that
running a benchmark does not increase the functional units’
temperatures equally, and the temperature distribution in all
units is not monotonic [11]. A functional unit’s temperature
increase highly depends on how long an executing
instruction uses each functional unit, and all instructions do
not use the same percentage of the clock cycle. To show this

Figure 3. Thermal behavior for the fpALU unit while running bzip2

Figure 4. Usage time for the fpALU unit while running of bzip2

Figure 2. Flowchart of the proposed method

START
Sample temperature
in short segment for

each live thread

Update temperature
structure at the end of

short segment

Predict all thread’s
temperature in CMP cores

Usage amount of
fundamental units at the
end of short segment, for

each thread

Perform thread
migration?

END

Call thread migration
routines

YesNo

Update thread to core
mapping structure

All cores
evaluated?

Yes

Evaluate necessity of
thread migration

No

Thread to core
mapping structure

Core’s reliability
structure

Measured
temperature

structure

T
em

pe
ra

tu
re

 (
°C

)

Time (Seconds)

%
 o

f
U

sa
ge

Time (Seconds)

correlation between temperature and percentage of usage
time, Figure 3 depicts the thermal behavior over time for
the floating point ALU unit (fpALU) while running the
bzip2 benchmark and Figure 4 depicts the usage
percentage of this unit at the same time. As expected,
trend similarities are obvious when comparing the two
diagrams—a unit’s temperature is directly related to the
unit’s usage percentage.

Given this strong correlation, our method considers
the functional units’ usage times when predicting a core’s
temperature while executing a particular thread. Prior
work [12] classified some instructions as functional
instructions, which are instructions with high rates of
occurrence, such as load, store, branch, integer ALU
operations, and floating point ALU operations. Since
these are the most common instructions, based on
Amdal’s law, we need only consider the different
functional unit usages for these instructions, and can
safely disregard the other instructions. The functional
units used by these instructions are: Load, Branch, Store,
iALU, and fpALU, respectively, where i and fp imply
integer and floating point, respectively. Therefore, these
functional units’ usage times are included when
evaluating and predicting a core’s thermal behavior given
a threads instruction mix, and considering each different
functional unit separately during thermal management
improves the prediction accuracy.

Therefore, a usage ranking of the threads is determined
using the thread’s execution behavior and functional unit
usage, which is derived from the number of committed
functional instructions during a short segment. This
information, along with the cores’ functional units’
collective aging time, can be used to balance aging. A per-
core table records the historical execution frequency for
each of the five functional instructions. These frequency
values can be tabulated using a counter to count the number
of times each of the functional instructions commit, and can
be integrated into the core with a few changes to the
instruction commit unit. At the end of each sampling
period, the counter for the functional instruction type in that
segment dictates the usage percent of the instruction’s
related functional units, and is used for making thread
scheduling and migration decisions.

At the end of a short segment, Figure 5 depicts the
thermal manager’s flowchart for each thread when a core’s
temperature’s rate of change or a functional unit’s usage rate
of change increases, which signals that thread migration
decisions should be made. In this flowchart, decisions are
made based on the rate of change of the cores’ temperatures
and the cores’ functional units’ usage. If the rate of change
is positive, the associated core’s expected time to exceed the
threshold temperature is predicted using Equation (1), and
this time is used to rank the cores highest to lowest—
shortest time to longest time—and the highest ranked core’s
thread is selected for migration. Based on this ranked order,
the threads are migrated to other cores, beginning with the
most aged core (minimum time remaining to exceed the

thermal threshold). Core aging is estimated using the five
functional units, which are ranked based on the unit’s aging
and temperature, and using these rankings, the cores can be
ranked by age. Next, thread migration is done if necessary.
To avoid frequent thread migrations (i.e., migration
thrashing), we use a 0.5°C temperature threshold (based on
[10]) as the temperature difference between two cores to
initiate a thread migration. The following thread migrations
only occur when this threshold is exceeded. The thread with
the highest rank is migrated to the most aged core, the
second lowest ranking thread is migrated to the second most
aged core, and so on until all threads are assigned to
appropriate cores.

IV. EXPERIMENTAL SETUP

For our experiments, we used ESESC [13], which is a
cycle accurate architectural multiprocessor simulator with
detailed power, thermal, and performance models for
modern out-of-order multicores. We modified ESECS to
include our proposed method. Table 1 lists the major
architectural parameters. We used the SPEC2000
benchmark suite, and grouped the benchmarks to create
multithreaded workloads as depicted in Table 2. Each
workload is a combination of floating point and integer type
benchmarks. The benchmarks are selected based on their
thermal characteristics and instruction types (integer and
floating point) [12] such that each workload is a
combination of different benchmarks with different
characteristics in terms of processor utilization and
temperature. We used a thermal threshold value of 85°C

Figure 5. Thread Migration Flowchart

START

Determine RoC1
based on sampled

temperatures

Determine RoC2
based on usage of
fundamental units

RoC1 > 0 RoC2 > 0

t1= (Threshold_temp – Current _ temp) /
RoC1

t2= (Threshold_temp – Current _ temp) /
RoC2

t = Min (t1, t2)

t = 1

Thread ranking
and

call thread migration
routines

END

No

Yes

No

Yes

Yes

No

Threshold_temp
Current_temp

Usage amount of
fundamental units

similarly to [14]. Prior work[15], focus on visible effects of
variations and wearout over the lifetime of the system, and
focus on three forms of processor degradation:1) modeling
the errors that disable one unit/core; 2) core frequency
degradation from manufacturing process variation; and 3)
excessive leakage currents that lead to very serious
problems. Table 3 shows the degraded CMP configurations
that are considered in our experiments. As the leakage
current increases, the chip temperature also increases, which
is representative of aging [16]. Thus, we consider leakage
variations that affect an entire core (e.g., [16]), as well as
those that affect one or more functional unit.

Figure 6 evaluates a tri-core system for the fpALU unit
utilization with and without using thermal management, to
evaluate a single unit impact on core aging. Table 3 depicts
the different degradation rates assumed in the cores’ fpALU
units. The leakage current, and consequently the

degradation of the fpALU in the first core, represents the
fastest aging. The second core’s aging is assumed to be less
than the first core, and the third core is assumed to have no
aging effects.

Three workloads, WL1, WL2 and WL3 as shown in
Table 2, are considered in this experiment, which provides
varying integer and floating point benchmark combinations
for a generalized evaluation. Each workload has at least one
floating point benchmark, and our selected benchmarks
have higher average temperatures as compared to the other
SPEC2000 benchmarks. In Figure 6, utilization is defined
[12] as the time in which the corresponding functional unit
(fpALU) is active, relative to the total time of the workload
execution. Because WL1is composed of three floating-
point-intensive benchmarks, the usage degradation of the
fpALU unit in the first core does not changed significantly,
while WL2 and WL3 have better solutions.

Figure 7 shows the temperature changes using the
measured average temperatures for running threads for the
fpALU unit, with and without our thermal management. The
average temperature of WL1 for the degraded fpALU on the
first core decreases by approximately 1.4 degrees, where the
utilization of this unit in Figure 6 has not decreased. Based
on figures 6 and 7, there is significant improvement for the
second and third cores while executing WL1.

The reason for the results in figures 6 and 7 for WL1
is because WL1’s benchmarks use a large percentage of
floating point ALU instructions, which use the fpALU unit.
Based on this condition, the appropriate thread-to-core
mapping could not be created. On the contrary, WL2 and
WL3 show much better results. For WL2, the temperature
decreases by 8.1 degrees, and the utilization of the aged core

Table 1. Core Architectural Parameters
Core Parameters

Branch Predictor 8K Hybrid 2-level
Branch Target Buffer 4K entries, 4-way
Front-End Width 4-way
Fetch Queue Size 32 entries
Load/Store Buffers 64,48
Retire Width 6 (out-of-order)
Integer Issue Queue 48 entries, 4-way issue
Integer Register File 80 registers
Integer Execution
Units

iALU: 5 units, 1 cycle

FP Issue Queue 24 entries, 1-way issue
FP Register File 80 registers
FP Execution Units fpALU: 2 units, 2 cycles

Memory Hierarchy
L1 Instruction Cache 64KB, 8-way associative, 1 cycle, LRU
Load Queue 64 entries
Store Queue 48 entries

L1 Data Cache
64KB, 8-way associative, 2 cycles, LRU,

WB
Last Level Cache 2MB, 8-way associative, 10 cycles, LRU
Main Memory 200 cycle latency (100 ns @ 2 GHz)

Table 2. Workloads elected in Experimental Study
Workload SPEC2000 group Floating Point/ Integer

WL1 ammp, art, equake FP, FP, FP

WL2 art, ammp, gcc FP, FP, INT
WL3 ammp, bzip2, gcc FP, INT, INT
WL4 art, ammp, equake, vpr FP, FP, FP, INT
WL5 ammp, equake, twolf, bzip2 FP, FP, INT, INT

WL6 art, bzip2, ammp, twolf FP, INT, FP, INT

Table 3. Core Degradation Due to Hard Faults [15]

degradation Assumed list

Increased
 Leakage

None

2X nominal in L1 cache and TLBs

2X nominal in front-end and ROB

2X nominal in integer back-end

2X nominal in floating point back-end

2X nominal in load and store queues

2X nominal across core (excluding L2)

Figure 6. Utilization change of fpALU relative to no thermal

management in a tri-core CMP

Figure 7.Temperature change of fpALU relative to no management in a

tri-core CMP

-10

-5

0

5

10

15

%

 o
f

U
ti

liz
at

io
n

R
el

at
iv

e
to

 N
o

 M
an

ag
em

en
t

Core1 Core2 Core3

WL1 WL2 WL3

-20

-15

-10

-5

0

5

10

T
em

pe
ra

tu
re

 (
°C

)
ch

an
ge

R
el

at
iv

e
to

 N
o

 M
an

ag
em

en
t

Core1 Core2 Core3

WL1 WL2 WL3

decreases as well since the fpALU unit is utilized less. For
WL3, the first core’s temperature reduces by 15.1 degrees
and the utilization of the aged core reduces by 6.4%.

In these three workloads, the average temperature of
the fpALU unit in the first core decreases by 8.2 degrees, the
second core has less aging, and the average temperature
decreases by 2.26 degrees, and the average temperature for
the third core increases by 6.13 degrees. Overall for these
experiments on a tri-core system, the average system
lifetime is improved by 21.65% for all cores. These results
represent the worst-case conditions using highly floating-
point-intensive benchmarks and worst-case experimental
conditions. Workloads containing fewer floating-point-
intensive benchmarks and/or more integer-intensive
benchmarks, and more favorable experimental conditions
would reveal better results.

Figure 8 depicts similar experiments for a quad-core
processor. In these experiments, we use the WL4, WL5 and
WL6 workloads. With these workloads, the average
temperature of the fpALU unit is reduced by 7.7 degrees, 4.8
degrees, 1 degree, and 5.1 degrees, in the first, second, third,
and fourth cores, respectively. Based on the achieved
results, the overall system lifetime for these experiments on
a quad-core processor is improved by 32% on average.
We evaluate performance using CMP throughput [12]
defined throughput as the total number of committed
instructions in a thread divided by the execution time of the
thread. The evaluated CMP throughput is the sum of the
throughput of all of the threads [12].

In our experiments, each workload is executed on a
processor in two methods: with and without our proposed
thermal management. Then, for each workload, the relative
CMP throughput is calculated for both methods. The results
of these experiments are depicted in Table 4. When
considering the experimental conditions and the simulated
aging of the fpALU unit, when appropriate thread scheduling
and migration cannot occur, threads may be relocated
several times, which could be the cause of more throughput
overhead in some cases in Table 4.

V. CONCLUSION

Due to intensive CMOS technology scaling, wearout
mechanisms become a major reliability challenge,
increasing a digital circuit’s delay, thus shortening the
chip’s lifetime. In this paper, we mitigate wearout effects by
considering two prominent wearout factors: temperature
and per-functional unit usage time. Using historical data of
these factors, more accurate thermal predictions can be
made, and more appropriate thread-to-core mappings and
thread migrations can be determined. Our experiments for
the SPEC2000 benchmark suite show that the proposed
method can improve system lifetime by 21.65% on average
on a tri-core CMP, and 32% on average on a quad-core
CMP.

VI. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the scientific
support and assistance from members of Design and
Analysis of Dependable Systems (DADS) laboratory at
Amirkabir University of Technology, the laboratory where
this work is done. We are thankful for all members who
helped this work to be prepared and presented very well.

Moreover, this work was financially supported by the
National Science Foundation (CNS-0953447). Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] J. A. Blome, et al., "Online timing analysis for wearout

detection," in Workshop on architectural reliability, 2006.
[2] R. Balasubramanian and K. Sankaralingam, "Virtually-aged

sampling DMR: unifying circuit failure prediction and circuit
failure detection," 46th Annual IEEE/ACM International
Symposium on Microarchitecture, 2013.

[3] J. Sun, et al., "NBTI aware workload balancing in multi-core
systems," in Quality of Electronic Design, 2009.

[4] J. A. Winter, D. H. Albonesi and C. A. Shoemaker, "Scalable
thread scheduling and global power management for
heterogeneous many-core architectures," 19th international
conference on Parallel architectures and compilation
techniques, 2010.

[5] C. Zhu,et al., "Three-dimensional chip-multiprocessor run-
time thermal management," IEEE Transactions onComputer-
Aided Design of Integrated Circuits and Systems, vol. 27, no.
8, pp. 1479-1492, 2008.

[6] T. Siddiqua and S. Gurumurthi, "A multi-level approach to
reduce the impact of NBTI on processor functional units,"
20th Symposium on Great leakages symposium on VLSI,2010.

[7] J. Sun, et al., "Workload assignment considering NBTI
degradation in multicore systems," ACM Journal on
Emerging Technologies in Computing Systems, vol. 10, no. 1,
pp. 4, 2014.

[8] F. Oboril, et al., "Reducing NBTI-induced processor wearout
by exploiting the timing slack of instructions," eighth

Figure 8. Temperature change of fpALU relative to no management in

a quad-core CMP

Table 4. CMP Throughput Relative to No Thermal Management

Tri-core
CMP throughput

WL1 WL2 WL3

71% 78% 85%

Quad-core
CMP throughput

WL4 WL5 WL6

80% 94% 88%

-15

-10

-5

0

5

10
T

em
pe

ra
tu

re
 (

°C
)

ch
an

ge
R

el
at

iv
e

to
 N

o
 M

an
ag

em
en

t
WL4 WL5 WL6

Core1 Core2 Core3 Core4

IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, 2012.

[9] H. Tajik, H. Homayoun and N. Dutt, "VAWOM: temperature
and process variation aware wearout management in 3D
multicore architecture," 50th AnnualDesign Automation
Conference (DAC),2013.

[10] O. Khan and S. Kundu, "Microvisor: A runtime architecture
for thermal management in chip multiprocessors," T.
HiPEAC, vol. 4, pp. 84-110, 2011.

[11] C. Chen and L. Milor, "System-level modeling and
microprocessor reliability analysis for backend wearout
mechanisms," Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2013.

[12] O. Khan and S. Kundu, "Thread relocation: a runtime
architecture for tolerating hard errors in chip

multiprocessors," IEEE Transactions onComputers, vol. 59,
no. 5, pp. 651-665, 2010.

[13] E. K. Ardestani and J. Renau, "ESESC: A fast multicore
simulator using time-based sampling," High Performance
Computer Architecture (HPCA), 2013.

[14] R. Z. Ayoub and T. S. Rosing, "Predict and act: dynamic
thermal management for multi-core processors," 2009
ACM/IEEE International Symposium on Low Power
Electronics and Design, 2009.

[15] J. A. Winter and D. H. Albonesi, "Scheduling algorithms for
unpredictably heterogeneous cmp architectures," Dependable
Systems and Networks (DSN), 2008.

[16] M. Agarwal, et al., "Circuit failure prediction and its
application to transistor aging," VLSI Test Symposium, 2007.

