
 

 
 

 

Abstract - This paper presents an improved method to 
postpone wearout failures and improves functional unit and 
entire system lifetime by considering two important wearout 
factors: temperature and functional unit usage. Our method 
provides a more fine grained approach as compared to prior 
methods by considering individual functional unit usage. Using 
this information, system behavior can be predicted and 
appropriate thread scheduling and migration decisions can be 
made. Our method incorporates temperature predictions 
based on recent historical temperatures and functional unit 
usages to rank threads and cores in a chip multiprocessor 
(CMP). Using these rankings, our method migrates threads 
among cores to reduce thermal hotspots. Simulation results on 
the ESESC simulator show that our method can improve the 
average system temperature and lifetime by approximately 
4.33°C and 21.65%,respectively,in a tri-core CMP, and 6.4°C 
and 32% in a quad-core CMP. 
 
Keywords: Wearout; Temperature; Chip multiprocessor; Thread 
migration 

I. INTRODUCTION 

In new technology generations, inappropriate voltage 
scaling has intensified current and power densities, which 
results in rapidly increasing chip temperature [1]. Wearout 
mechanisms are intensified by temperature, power, and 
system activity, thus wearout faults will become 
increasingly prevalent in future technology generations 
[1].Concomitantly, shrinking CMOS feature size 
accelerates transistor wearout, and consequently processor 
lifetime is becoming more unpredictable and shorter than 
expected [1][2]. For example, a delay increase of just 0.04ps 
per logic cell within an ALU can lead to more than a 20ps 
increase in the delay, or about one inverter delay, on the 
ALU result bus [1]. This exemplifies how wearout latency 
at the device level is magnified much more at the 
architectural level.  

Even though the time to wearout failure heavily 
depends on factors, such as technology, manufacturing 
process, temperature, voltage conditions, etc., wearout is 
also impacted by factors, such as usage frequency (duty 
cycle), which can be moderated/balanced to increase chip 
lifetime. The time duration in which hardware is being used 
plays an essential role in the onset of wearout. As the 
hardware usage increases (i.e., the hardware is stressed), 

wearout causes are intensified and manifested sooner. Thus, 
one method to postpone wearout failures is to reduce 
hardware stress [3]. Since even small changes in usage 
and/or temperature has a significant effect on estimated 
aging, it is important to consider both of these factors at the 
same time. 

Several wearout recovery and wearout mitigation 
techniques in previous works have tried to balance the 
number of executed instructions (i.e., workload/stress) over 
multiple functional units to increase the units' lifetimes 
[4][5][6][7]. However, prior work has shown that balancing 
the number of executed instructions and workloads among 
functional units is not always the best strategy for mitigating 
aging effects [8].Different instructions which use the same 
functional unit, have different delays and clock cycle slack 
times. This difference is essential when considering aging 
(not performance). Critical instructions have very little 
slack time. When path delay increases due to aging effects, 
critical instructions start to fail due to this increased delay, 
however, non-critical instructions can tolerate more delay, 
and execute correctly for a longer period before suffering 
wearout effects [8]. 

Thus, since different instructions place different usage 
stresses on different functional units, these factors should be 
considered since the first functional unit to fail ultimately 
dictates total system lifetime. Based on this motivation, we 
propose a method that considers essential factors that 
accelerate wearout—temperature and usage time—of the 
functional units, predicts system behavior, and attempts to 
postpone wearout failures. The main contributions of this 
work are:  

1) Thermal management thread scheduling decisions 
based on fine-grained wearout factors: Functional 
units in cores are considered individually, and one 
decision does not apply to all of the threads on that core, 
which improves the accuracy of thermal management 
during thread scheduling.  
2) Temperature prediction based on the rate of change 
of two historical data set factors (temperature and 
usage): Predicting temperatures based on two different 
data sets can improve the prediction accuracy.  
3) Temperature compatibility with application 
behavior: There is a close relationship between 
temperature and an application’s behavior, and 
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migrating threads to different cores provides 
compatibility with the thermal demands of a thread, 
which can improve system performance. 
 
Simulation results on the ESESC simulator show that 

our method can improve the average system temperature 
and lifetime by approximately 4.33°C and 21.65%, 
respectively, on a tri-core chip multiprocessor (CMP), and 
6.4°C and 32%, respectively, on a quad-core CMP 
The rest of this paper is organized as follows. Section II 
gives an overview of relative prior work. In Section III, our 
proposed method is presented. Experimental setup and 
evaluation for a set of SPEC2000 benchmarks are given in 
Section IV. Finally, we conclude our work in Section V. 

 
II. RELATED WORK 

 
Some architectural level methods [4][5] consider 

instructions per cycle (IPC) as a factor for task scheduling, 
in which workloads with higher IPC are assigned to cores 
with lower temperature. Oboril et al. [8] classifies 
instructions according to their criticality. Critical 
instructions are executed on different parts of the processor 
(units) that use special mitigation techniques to increase the 
units’ lifetimes. All other non-critical instructions are 
executed on units without these mitigation techniques. 
Siddiqua et al. [6] varies the functional unit scheduling to 
try to balance wearout across all units. Priority rotation 
scheduling and time-dependent scheduling are proposed, 
which create a recovery period after a stress period for a 
functional unit. Sun et al. [3] also proposes that cores or 
units enter a recovery period after a stress period. Khan et 
al. [9] proposes a scheduling method for temperature and 
age balancing, where applications are ranked according to 
the application’s current temperatures and cores are ranked 
based on the core’s frequency degradation. Sunet al. [7] 
categorizes cores into zones, and uses dynamic task 
scheduling to balance the workload across all zones. Each 
core has a defined metric indicating how much that core can 
be stressed by additional workloads. 

Some architectural level methods consider past 
circumstances of a core using statistical methods and unit 
workloads to balance future workloads or shut down over 
stressed cores[3][6][7][9]. However, these methods 
consider all units together, and per-unit workload is not 
considered. Our proposed method improves upon prior 
methods by considering all units separately, which provides 
a more fine-grained evaluation of overall chip wearout. 

III. OUR PROPOSED METHOD 
 

Our proposed method uses two per-unit historical 
input data factors—temperature and usage time—to predict 
the future data values for a thread running on a core. Based 
on these predictions, threads can be scheduled to the most 
suitable core to balance wearout, and thread migration 
decisions can also be made. Figure 1 shows a high-level 

view of system operation. At runtime, two controlling units 
monitor the cores thermal activity and the threads’ core 
assignments: a thermal manager and a thread scheduler. The 
thermal manager records the temperature of the cores’ 
functional units. The thread scheduler uses this thermal 
information along with usage history, and considering 
processor performance, schedules and migrates threads to 
avoid core hotspots.  

A time quantum comprises of two types of time 
segments: one short segment and one long segment. The 
main purpose of the short segment is to sample the 
temperature and usage of the functional units over a short 
time period. Periodic samples are taken during the short 
segment, and at the end of the short segment, the thread 
scheduler uses tis historical data to determine thread-to-core 
scheduling decisions and migrations. Subsequently, the long 
segment runs the thread up to the end of the time quantum. 

Based on experimental results, a short segment 
comprises 40,000 instructions. At the end of the short 
segment, the thermal manager evaluates the per-thread data 
which indicates the threads’ functional unit requirements, 
along with each cores’ thermal and functional unit 
capabilities. This information, along with the estimated 
thread migration overhead is used to determine if a thread 
should be migrated when hotspots are predicted based on 
the recorded historical sampled data. When a thread’s 
execution ends, or a new thread is generated, or a quantum 
ends, a new short segment begins. 

The thread migration process uses three main data 
structures: the threads-to-cores mapping structure, the 
historical temperatures structure, and the core reliability 
structure. The threads-to-cores mapping structure records 
the current thread-to-core mappings for subsequent 
migration decisions. The historical temperatures structure 
maintains the historical temperature values for each thread 
running in the system. The core reliability structure 
maintains the aging state of each cores’ functional units. All 
of these structures’ data are used in thread scheduling and 
migration decisions to ensure that threads are mapped to the 
most suitable cores based on the cores’ thermal conditions. 
Historical samples are maintained for the short segment, and 

 

Figure 1. A high level view of proposed method 
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each new time quantum replaces the old data. 
Figure 2 depicts a flowchart of our proposed method. 

During the short segment, the thermal manager periodically 
records the running threads’ core’s temperatures in the 
historical temperatures structure, and determines if thread 
migration should occur at the end of the short segment. 
Thread migration decisions are based on the predicted future 
thermal conditions for each core and the cores’ estimated 
remaining time until chip hotspot threshold violations. 
Based on this estimated time, a thermal and usage ranking 
of threads, highest to lowest, is determined based on the 
estimated shortest time to a predefined temperature 
threshold violation. After the threads are ranked, the threads 
are mapped to suitable cores. Based on a thread’s rate of 
change (ROC) in historical temperature, the approximate 
remaining time before that thread’s temperature threshold is 
exceeded can be estimated as [10]: 
 

���� + ��� × � = ������_����  (1) 
 

where ROC is the temperature rate of change (calculated 
using the historical samples), Temp is the current 
temperature, Target_Temp is predefined temperature 
threshold, and X is an unknown variable that indicates the 

remaining time before the temperature is expected to exceed 
Target_Temp. Similarly to [10], sampling is done on a 
100usperiod. Since the ROC is generally non-linear, 
averaging historical temperature samples is not accurate for 
calculating ROC, thus the temperature samples are weighted 
based on age, where newer samples are weighted more 
heavily. We empirically evaluated different numbers of 
samples and several weighting schemes to determine the 
best combination for calculating ROC. Experiments showed 
that using more than eight samples incurred high 
performance overhead (samples are gathered using several 
instructions), using less than four samples resulted in 
inaccurate predictions, and using six samples provided a 
good performance to prediction accuracy tradeoff. 
Experimenting with different historical weightings showed 
that when using six samples, weights of 60%, 50%, 40%, 
30%, 20%, and 10% for the newest to oldest samples, 
respectively, provided the best correlation with actual 
execution results. 

The functional units’ usage times are considered as an 
important factor when ranking threads. In previous 
methods, IPC [4][5] has been used as a factor for measuring 
aging and for ranking threads and cores, however, these 
methods did not take into account which actual functional 
units were used and for how long. Prior work showed that 
running a benchmark does not increase the functional units’ 
temperatures equally, and the temperature distribution in all 
units is not monotonic [11]. A functional unit’s temperature 
increase highly depends on how long an executing 
instruction uses each functional unit, and all instructions do 
not use the same percentage of the clock cycle. To show this 

 
 

Figure 3. Thermal behavior for the fpALU unit while running bzip2 

 

Figure 4. Usage time for the fpALU unit while running of bzip2  

 

Figure 2. Flowchart of the proposed method 
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correlation between temperature and percentage of usage 
time, Figure 3 depicts the thermal behavior over time for 
the floating point ALU unit (fpALU) while running the 
bzip2 benchmark and Figure 4 depicts the usage 
percentage of this unit at the same time. As expected, 
trend similarities are obvious when comparing the two 
diagrams—a unit’s temperature is directly related to the 
unit’s usage percentage. 

Given this strong correlation, our method considers 
the functional units’ usage times when predicting a core’s 
temperature while executing a particular thread. Prior 
work [12] classified some instructions as functional 
instructions, which are instructions with high rates of 
occurrence, such as load, store, branch, integer ALU 
operations, and floating point ALU operations. Since 
these are the most common instructions, based on 
Amdal’s law, we need only consider the different 
functional unit usages for these instructions, and can 
safely disregard the other instructions. The functional 
units used by these instructions are: Load, Branch, Store, 
iALU, and fpALU, respectively, where i and fp imply 
integer and floating point, respectively. Therefore, these 
functional units’ usage times are included when 
evaluating and predicting a core’s thermal behavior given 
a threads instruction mix, and considering each different 
functional unit separately during thermal management 
improves the prediction accuracy.  

Therefore, a usage ranking of the threads is determined 
using the thread’s execution behavior and functional unit 
usage, which is derived from the number of committed 
functional instructions during a short segment. This 
information, along with the cores’ functional units’ 
collective aging time, can be used to balance aging. A per-
core table records the historical execution frequency for 
each of the five functional instructions. These frequency 
values can be tabulated using a counter to count the number 
of times each of the functional instructions commit, and can 
be integrated into the core with a few changes to the 
instruction commit unit.  At the end of each sampling 
period, the counter for the functional instruction type in that 
segment dictates the usage percent of the instruction’s 
related functional units, and is used for making thread 
scheduling and migration decisions. 

At the end of a short segment, Figure 5 depicts the 
thermal manager’s flowchart for each thread when a core’s 
temperature’s rate of change or a functional unit’s usage rate 
of change increases, which signals that thread migration 
decisions should be made. In this flowchart, decisions are 
made based on the rate of change of the cores’ temperatures 
and the cores’ functional units’ usage. If the rate of change 
is positive, the associated core’s expected time to exceed the 
threshold temperature is predicted using Equation (1), and 
this time is used to rank the cores highest to lowest—
shortest time to longest time—and the highest ranked core’s 
thread is selected for migration. Based on this ranked order, 
the threads are migrated to other cores, beginning with the 
most aged core (minimum time remaining to exceed the 

thermal threshold). Core aging is estimated using the five 
functional units, which are ranked based on the unit’s aging 
and temperature, and using these rankings, the cores can be 
ranked by age. Next, thread migration is done if necessary. 
To avoid frequent thread migrations (i.e., migration 
thrashing), we use a 0.5°C temperature threshold (based on 
[10]) as the temperature difference between two cores to 
initiate a thread migration. The following thread migrations 
only occur when this threshold is exceeded. The thread with 
the highest rank is migrated to the most aged core, the 
second lowest ranking thread is migrated to the second most 
aged core, and so on until all threads are assigned to 
appropriate cores.  
 

IV. EXPERIMENTAL SETUP 
 

For our experiments, we used ESESC [13], which is a 
cycle accurate architectural multiprocessor simulator with 
detailed power, thermal, and performance models for 
modern out-of-order multicores. We modified ESECS to 
include our proposed method. Table 1 lists the major 
architectural parameters. We used the SPEC2000 
benchmark suite, and grouped the benchmarks to create 
multithreaded workloads as depicted in Table 2. Each 
workload is a combination of floating point and integer type 
benchmarks. The benchmarks are selected based on their 
thermal characteristics and instruction types (integer and 
floating point) [12] such that each workload is a 
combination of different benchmarks with different 
characteristics in terms of processor utilization and 
temperature. We used a thermal threshold value of 85°C 

Figure 5. Thread Migration Flowchart 
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similarly to [14]. Prior work[15], focus on visible effects of 
variations and wearout over the lifetime of the system, and 
focus on three forms of processor degradation:1) modeling 
the errors that disable one unit/core; 2) core frequency 
degradation from manufacturing process variation; and 3) 
excessive leakage currents that lead to very serious 
problems. Table 3 shows the degraded CMP configurations 
that are considered in our experiments. As the leakage 
current increases, the chip temperature also increases, which 
is representative of aging [16]. Thus, we consider leakage 
variations that affect an entire core (e.g., [16]), as well as 
those that affect one or more functional unit. 

Figure 6 evaluates a tri-core system for the fpALU unit 
utilization with and without using thermal management, to 
evaluate a single unit impact on core aging. Table 3 depicts 
the different degradation rates assumed in the cores’ fpALU 
units. The leakage current, and consequently the 

degradation of the fpALU in the first core, represents the 
fastest aging. The second core’s aging is assumed to be less 
than the first core, and the third core is assumed to have no 
aging effects.  

Three workloads, WL1, WL2 and WL3 as shown in 
Table 2, are considered in this experiment, which provides 
varying integer and floating point benchmark combinations 
for a generalized evaluation. Each workload has at least one 
floating point benchmark, and our selected benchmarks 
have higher average temperatures as compared to the other 
SPEC2000 benchmarks. In Figure 6, utilization is defined 
[12] as the time in which the corresponding functional unit 
(fpALU) is active, relative to the total time of the workload 
execution. Because WL1is composed of three floating-
point-intensive benchmarks, the usage degradation of the 
fpALU unit in the first core does not changed significantly, 
while WL2 and WL3 have better solutions. 

Figure 7 shows the temperature changes using the 
measured average temperatures for running threads for the 
fpALU unit, with and without our thermal management. The 
average temperature of WL1 for the degraded fpALU on the 
first core decreases by approximately 1.4 degrees, where the 
utilization of this unit in Figure 6 has not decreased. Based 
on figures 6 and 7, there is significant improvement for the 
second and third cores while executing WL1. 

The reason for the results in figures 6 and 7 for WL1 
is because WL1’s benchmarks use a large percentage of 
floating point ALU instructions, which use the fpALU unit. 
Based on this condition, the appropriate thread-to-core 
mapping could not be created. On the contrary, WL2 and 
WL3 show much better results. For WL2, the temperature 
decreases by 8.1 degrees, and the utilization of the aged core 

Table 1. Core Architectural Parameters 
Core Parameters 

Branch Predictor 8K Hybrid 2-level 
Branch Target Buffer 4K entries, 4-way 
Front-End Width 4-way 
Fetch Queue Size 32 entries 
Load/Store Buffers 64,48 
Retire Width 6 (out-of-order) 
Integer Issue Queue 48 entries, 4-way issue 
Integer Register File 80 registers 
Integer Execution 
Units 

iALU: 5 units, 1 cycle 

FP Issue Queue 24 entries, 1-way issue 
FP Register File 80 registers 
FP Execution Units fpALU: 2 units, 2 cycles 

Memory Hierarchy 
L1 Instruction Cache 64KB, 8-way associative, 1 cycle, LRU 
Load Queue 64 entries 
Store Queue 48 entries 

L1 Data Cache 
64KB, 8-way associative, 2 cycles, LRU, 

WB 
Last Level Cache 2MB, 8-way associative, 10 cycles, LRU 
Main Memory 200 cycle latency (100 ns @ 2 GHz) 

 

 
 

Table 2. Workloads elected in Experimental Study 
Workload SPEC2000 group Floating Point/ Integer 

WL1 ammp, art, equake FP, FP, FP 

WL2 art, ammp, gcc  FP, FP, INT 
WL3 ammp, bzip2, gcc FP, INT, INT 
WL4 art, ammp, equake, vpr FP, FP, FP, INT 
WL5 ammp, equake, twolf, bzip2 FP, FP, INT, INT 

WL6 art, bzip2, ammp, twolf FP, INT, FP, INT 

 
Table 3. Core Degradation Due to Hard Faults [15] 

degradation Assumed list 

Increased 
 Leakage 

None 

2X nominal in L1 cache and TLBs 

2X nominal in  front-end and ROB 

2X nominal in integer back-end  

2X nominal in floating point back-end 

2X nominal in load and store queues  

2X nominal across core (excluding L2) 

 
Figure 6. Utilization change of fpALU relative to no thermal 

management in a tri-core CMP 

 
Figure 7.Temperature change of fpALU relative to no management in a 

tri-core CMP 
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decreases as well since the fpALU unit is utilized less. For 
WL3, the first core’s temperature reduces by 15.1 degrees 
and the utilization of the aged core reduces by 6.4%. 

In these three workloads, the average temperature of 
the fpALU unit in the first core decreases by 8.2 degrees, the 
second core has less aging, and the average temperature 
decreases by 2.26 degrees, and the average temperature for 
the third core increases by 6.13 degrees. Overall for these 
experiments on a tri-core system, the average system 
lifetime is improved by 21.65% for all cores. These results 
represent the worst-case conditions using highly floating-
point-intensive benchmarks and worst-case experimental 
conditions. Workloads containing fewer floating-point-
intensive benchmarks and/or more integer-intensive 
benchmarks, and more favorable experimental conditions 
would reveal better results. 

Figure 8 depicts similar experiments for a quad-core 
processor. In these experiments, we use the WL4, WL5 and 
WL6 workloads. With these workloads, the average 
temperature of the fpALU unit is reduced by 7.7 degrees, 4.8 
degrees, 1 degree, and 5.1 degrees, in the first, second, third, 
and fourth cores, respectively. Based on the achieved 
results, the overall system lifetime for these experiments on 
a quad-core processor is improved by 32% on average. 
We evaluate performance using CMP throughput [12] 
defined throughput as the total number of committed 
instructions in a thread divided by the execution time of the 
thread. The evaluated CMP throughput is the sum of the 
throughput of all of the threads [12]. 

In our experiments, each workload is executed on a 
processor in two methods: with and without our proposed 
thermal management. Then, for each workload, the relative 
CMP throughput is calculated for both methods. The results 
of these experiments are depicted in Table 4. When 
considering the experimental conditions and the simulated 
aging of the fpALU unit, when appropriate thread scheduling 
and migration cannot occur, threads may be relocated 
several times, which could be the cause of more throughput 
overhead in some cases in Table 4. 

 

V. CONCLUSION 

Due to intensive CMOS technology scaling, wearout 
mechanisms become a major reliability challenge, 
increasing a digital circuit’s delay, thus shortening the 
chip’s lifetime. In this paper, we mitigate wearout effects by 
considering two prominent wearout factors: temperature 
and per-functional unit usage time. Using historical data of 
these factors, more accurate thermal predictions can be 
made, and more appropriate thread-to-core mappings and 
thread migrations can be determined. Our experiments for 
the SPEC2000 benchmark suite show that the proposed 
method can improve system lifetime by 21.65% on average 
on a tri-core CMP, and 32% on average on a quad-core 
CMP. 
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