
Dynamic Loop Caching Meets Preloaded Loop Caching – A Hybrid Approach
Ann Gordon-Ross and Frank Vahid*

Department of Computer Science and Engineering, University of California, Riverside
{ann/vahid}@cs.ucr.edu, http://www.cs.ucr.edu/~vahid

*Also with the Center for Embedded Computer Systems at UC Irvine.

Abstract
Dynamically-loaded tagless loop caching reduces instruction
fetch power for embedded software with small loops, but only
supports simple loops without taken branches. Preloaded
tagless loop caching supports complex loops with branches
and thus can reduce power further, but has a limit on the total
number of instructions cached. We show that each does well on
particular benchmarks, but neither is best across all of those
benchmarks. We present a new hybrid loop cache that only
preloads the complex loops, while dynamically loading other
loops, thus achieving the strengths of each approach. We
demonstrate better power savings than either previous
approach alone.
Keywords : Loop cache, low power, embedded systems,
architecture.

1. Introduction
Instruction fetch power may consume nearly 50% of an
embedded microprocessor system’s power [1][11]. Reducing
instruction fetch power can thus result in significant system
power savings, important in embedded systems to increase
battery lifetime or reduce cooling requirements.

Several methods focus on reducing instruction fetch power
such as bus encoding [1] and program compression [6]. A
complementary approach capitalizes on embedded system
software that tends to spend much time in small loops by
using a tiny and hence low-power cache to store such loops.
One such method [1] uses a simple but clever controller that
dynamically detects and loads only loops, and that
conservatively detects when the loop is exited, thus
eliminating the need for tag comparisons. Such a dynamically
loaded loop cache method is transparent to the designer, but i s
limited to supporting loops without taken branches or
subroutine calls. In [5], we proposed another tagless method
that overcomes this limitation by observing that embedded
programs are typically fixed, and hence the most frequent
loops can be preloaded into the loop cache. The preloaded
loop cache method can support loops that are more complex,
and thus provides greater power savings, but has a limit as to
how many loops can be preloaded. Each approach has been
shown to excel in different situations.

We present the design of a hybrid dynamically-
loaded/preloaded loop cache that gains the advantages of both
methods. The hybrid loop cache can operate as a dynamically
loaded cache only, providing transparency in cases where
designers do not wish to perform preloading or if the
application running will not be fixed. The hybrid cache can
also be preloaded with only those loops that would not work
well if dynamically loaded, thus avoiding the preloading of
dynamically loadable loops and hence effectively increasing

the size of the preloaded loop storage. We demonstrate power
improvements on several benchmarks.

2. Related Work
An extremely small cache of 32 to 64 words, tightly integrated
with a processor, has very small access power compared to
accessing a standard first level cache or a standard on-chip or
off-chip program memory. Kin et al [7] first proposed such a
small cache, called a filter cache, to reduce power, at the
expense of reduced performance due to frequent filter cache
misses. Bellas et al [2] used a profile-guided compiler to map
frequently executed loops to a special address range, and
discussed architecture extensions that would only load items
in that range into the filter cache, thus reducing (but not
eliminating) misses. We refer to this approach as a selective
filter cache. Two approaches were further developed that
eliminate the power-costly tag comparisons of the above
approaches, which we now discuss.

2.1 Dynamically Loaded Tagless Loop
Caching
The dynamically loaded loop cache, designed at Motorola [1],
exploits the fact that many loops are small and are formed by
the last loop instruction jumping back to the loop start. This
instruction is denoted as a short backwards branch (sbb)
instruction and can be any program-counter relative branch
instruction, i.e., an sbb is not a special instruction. During
program execution, the instructions being fetched from
instruction memory are monitored. A taken sbb triggers the
loop cache controller to begin filling the loop cache. During
the next loop iteration, the instructions fetched from
instruction memory are fed to both the processor and the loop
cache. On the third loop iteration, the instruction memory i s
bypassed and instructions are instead fetched from the loop
cache. If a loop does not completely fit in the loop cache, only
the first instructions are cached.

Fetching continues from the loop cache until the triggering
sbb is not taken. Loop cache filling or fetching also terminates
if there is a control of flow change (cof), namely a taken jump.
A cof causes termination because a cof during filling prevents
the entire loop from being loaded into the loop cache, and a
cof during loop cache fetching could cause execution to leave
the loop cache.

Unlike filter caches, a dynamically loaded loop cache does
not suffer any misses and hence imposes no performance
overhead. It involves no tag comparisons, resulting in even
less power per access. Furthermore, it is completely transparent
to a designer, requiring no special profile-guided compilation
step.

However, the dynamically loaded loop cache cannot cache
loops with cofs, even cofs resulting from simple if statements

that would never cause execution to leave the loop cache, nor
cofs caused by calls from the loop to simple subroutines. In
some cases, it may increase power due to extensive thrashing,
caused by particular loop nestings.

2.2 Preloaded Tagless Loop Caching
We introduced the preloaded tagless loop cache in [5] to
increase the percentage of frequently executed code that could
be captured in the loop cache. Based on the observation that
embedded system products typically have a fixed application,
meaning that the program running on the microprocessor will
not change during the lifetime of the product (e.g., a digital
camera), the critical regions of code could be determined ahead
of time and loaded into a cache whose contents would not
change. The cache could now capture critical regions of code
including loops with cofs, subroutines, and nested loops. By
keeping the starting and ending addresses of each critical
region and the starting location of the instructions in the
cache, any number of regions could be stored. Like the
dynamically loaded loop cache, the cache would be tagless,
small, tightly integrated with the microprocessor and provide
low power instruction fetching. Several methods for
preloading the loop cache are possible; most are carried out
during system reset.

Fetching from the preloaded loop cache begins when a cof
causes the next instruction to be within the range of one of the
loops in the loop cache. Since the loop cache is prefilled, cofs
do not pose a fill problem. During loop cache fetching, a few
pre-determined exit bits associated with each instruction in the
loop cache are used to determine if a cof exits the current loop.
Static code analysis sets these bits, which are then preloaded
with the loop. In rare cases where static analysis cannot
determine the target branch address, such as the case of an
indirect jump, the exit bits are conservatively set to indicate a
loop exit.

The preloaded tagless loop cache has the added benefit of
supporting subroutines and more loops than the dynamic
approach. However, the loop cache size is fixed and so can
only hold a limited number of instructions. In contrast, the
dynamic loop cache is continually refilled. The preloaded
method also requires the designer to perform the extra design
step necessary for profiling the code and filling the loop
cache.

3. Hybrid Loop Caching
Table 1 provides data on the two tagless loop caching
approaches for several benchmarks. Notice that in some cases
dynamic is best, while in others preloaded is best – and the
power difference between the two can be large. What is needed
is a loop caching scheme that achieves the benefits of both
approaches.

We thus designed a hybrid loop cache, consisting of a main
loop cache loaded either dynamically or from a second level of
preloaded storage. As with the earlier approaches, the main
loop cache is very small and tightly integrated with the
microprocessor. The second level of preloaded storage is not
as power critical because accesses to it will be infrequent –
thus, the second level can be as big as size constraints allow.

3.1 Architecture
The hybrid loop cache architecture can be seen in

Figure 1. Its main components consist of two levels of storage,
two controllers, a loop match memory (comparators), and loop
address registers (LARs). The first level of storage is the main
loop cache where instruction fetches occur. The second level of
storage contains the loops that have been determined as
critical regions of code, have been preanalyzed to determine
exit bits, and have been preloaded during system reset. The
two controllers are responsible for controlling the operation of
the loop cache and will be discussed below. The loop address
registers hold the starting and ending addresses of the loops
stored in the second level storage and the starting position of
the loop in the second level storage.

3.2 Operation
The hybrid loop cache consists of two controllers: the loop
cache controller and the preloaded loop filler. The loop cache
controller is the master controller and is responsible for
dynamically filling the main loop cache, determining when to
check for a preloaded loop, and for orchestrating instruction
fetches. This controller can operate in either a dynamic or a
preloaded caching mode. The preloaded loop filler i s
responsible for both detecting the execution of loops that
have been preanalyzed and for filling the main loop cache with
these loops. It is only activated when the loop cache controller
requests a loop to be filled from the second level storage. Both
state machines can be seen in Figure 2.

An important feature of the hybrid loop cache is its ability
to function like a dynamic loop cache if the designer does not
wish to take the extra step to preanalyze the application. If the
designer wishes to bypass the preanalysis step and forgo the
loading of the second level of storage, the loop cache
controller will act as a dynamically loaded loop cache –
completely transparent to the designer. This also means that
the application running on the microprocessor does not need
to be fixed as it was in the preloaded loop cache. In that case,
only the dynamic portion of the design would function. The
same architecture can be used for both fixed and changing
application systems.

3.2.1 Detecting Loops / Filling the Main Loop Cache
Filling the main loop cache can be done dynamically while
instructions are fetched from main memory, or from the
preloaded second level of storage. Determining where the main

Figure 1: Basic architecture of the hybrid loop cache.

Instruction Memory

M
ic

ro
pr

oc
es

so
r

Main Loop
Cache

2nd Level
 Storage

M
ux

Loop Cache
Controller

Preloaded
Loop Filler

Loop
Match

Memory

LARs
Addr

Data

A
dd

r

D
at

a

Addr

Data

Control signals

Control

Control Control

loop cache will be filled from is the responsibility of the loop
cache controller.

During the Idle state, memory fetches are serviced by the
main memory and the main loop cache is disabled. To reduce
the number of comparisons resulting from checking for
preloaded loops, dynamic loading takes precedence, meaning
that during the Idle state, the loop cache controller transitions
to Dynamic Fill upon execution of a taken sbb (tsbb). At this
point, new instructions will be loaded into the main loop
cache and the loop cache contents are invalidated (ilc).

The Dynamic Fill state functions the same as it does for the
dynamic loop cache. During this state, if there is a cof, the loop
can no longer be assumed as a candidate for the dynamic
caching method and the state machine transitions to Idle. At
this point, the preloaded loop filler is activated to determine if
the loop is preloaded in the second level of storage.

The activate loop detection logic (ald) signal is what
triggers the preloaded loop filler to transition from the Idle
state to the Wait state to wait for the next instruction read. The
next instruction address is compared with the LARs by
activating the loop match memory (almm). If there is a match
(lm) the loop is loaded into the main loop cache. If the loop
calls any simple subroutines, one may be loaded along with
the loop. The loop cache busy (lcbusy) signal is asserted
during this time. This provides mutual exclusive filling of the
loop cache.

3.2.2 Fetching From the Main Loop Cache
Fetching from the main loop cache in the hybrid approach,
whether it be a dynamically loaded or a preloaded loop, is the
same as it is for the separate dynamic and preloaded loop
caches. The hybrid approach has two active states, one for each
fetching method and depending on the active state, the main
loop cache is accessed appropriately. The only differences are
in the conditions for transitioning to the Preloaded Active
state.

There are two ways to transition to the Preloaded Active
state. The first way happens when the triggering sbb of a

preloaded loop is taken. For this, execution transitions
immediately to the Preloaded Active state and while in this
state, operation is the same as it is for the preloaded loop
cache.

The second way is via the Wait for Address and Exit Bits
state. The loop cache controller transitions to this state when
there is a cof and lcv is asserted. This state is necessary to
resume fetching from the main loop cache after a return from a
subroutine that has not been preloaded. The next instruction
address must fall within the range of the loaded loop and the
exit bits must indicate that loop cache fetching will continue.

4. Experiments
To examine the power effectiveness of our hybrid loop caching
method, we ran tests on ten benchmarks from the Powerstone
benchmark suite [10] running on a 32-bit MIPS
microprocessor and three benchmarks from the MediaBench
suite [8] running on SimpleScaler [3]. We ran each benchmark
on an instruction set simulator to obtain an address trace of
the program execution. We developed a loop cache simulator
(lcsim) that reads in the instruction trace and outputs detailed
statistics including the number of instruction memory fetches
and loop cache operations (i.e. detect (address comparison),
fill and fetch). We also modeled each loop cache controller in
synthesizable VHDL and synthesized the controllers using
Synopsys Design Compiler [12]. We simulated the loop cache
controllers to determine the switching activity per loop cache
operation.

Based on data in [1], we used a ratio of 100 to 1 for the
power consumption for an access to instruction memory verses
a loop cache of size 16. The power consumed by the loop cache
was increased by 1.5 for each doubling of the size of the loop
cache. Power of the internal nets of the loop cache controller
were 1/8 of the bus wires to a loop cache of size 16. We assume
that the time to access main memory and the loop cache are the
same.

Figure 2: State machines for the hybrid loop cache controller and preloaded loop filler and their interconnect logic.

* Unless specified, all other signals are deasserted in each state. , ** Abbreviations are described in the text.

loop cache
valid (lcv)

done_filling
lcv = 1

lcbusy = 0

Idle Wait

Check
Match

Load
Loop

ilc
lcv = 0

!ald
lcv = lcv

ald
lcbusy = 1

rom_read
almm = 1
lcbusy = 1

!lm
lcbusy = 0

!rom_read
lcbusy = 1

lm
lcbusy = 1

lcv = 0!done_filling
lcbusy = 1

Preloaded Loop Filler
sbb

cof

lcbusy

ald

ilc

Loop Cache Controller

Idle

lcbusy

Wait
Addr &
Exit Bits

cof AND
lcv AND !sbb

Exit Bits to
leave OR
!lcrange

Preloaded
Active

cof AND sbb AND
tsbb AND!lcbusy

Exit Bits
to leave

Exit Bits
to stay
AND
lcrange

Dynamic
Fill

sbb AND lastsbb
lastsbb = 0, ald = 1

!cof AND tsbb

Dynamic
Active

cof AND !tsbb
ald = 1, lastsbb =1!cof

sbb AND cof AND !lcmatch
AND !lcbusy AND !lastsbb

ilc = 1

cof AND tsbb

!cof OR (cof AND tsbb)

!cof OR tsbb
cof AND !tsbb

ald = 1, lastsbb =1

Exit Bits
 to stay

Our results are represented as a percentage of power savings
compared to a design with no loop cache. For power
consumption, we only consider the power consumed due to
accesses to the instruction memory which can be nearly 50% of
the total power consumption [1][11].

Our test results include running the benchmarks through
the dynamically loaded, preloaded and hybrid loop caching
schemes. We tested a hybrid main loop cache and second level
storage sizes of 16 to 128 entries. For each test, we compared
the hybrid results to a dynamically loaded and preloaded loop
cache with a loop cache size equal to the size of the hybrid
main loop cache.

Table 1 shows the results for our tests comparing a hybrid
cache with a main loop cache size of 32 and a second level
storage of size 128, with a dynamic and preloaded cache each
of size 32. In the dynamic and the preloaded columns, the
approach with the greatest savings is bold. Of the thirteen
benchmarks, the hybrid approach performed the best in nine of
them and preformed equally as well in ine. For the remaining
three, the hybrid approach performed better or as well as a
strictly dynamic approach but was outperformed by the
preloaded cache.

Figure 3 examines the effects of deep sub micron
technologies with increasing bus capacitances. The ratios
represent the increase in power consumed by the loop cache for
each doubling of its size, starting at size 16. We looked at a
hybrid loop cache with a main loop cache size of 32 and a
second level storage size of 1024 and preloaded loop cache of
size 1024. As the power ratio increases, the power savings for
the hybrid loop cache remain relatively constant, only
decreasing slightly because of the small number of accesses to
the large second level cache. The very small main loop cache
ensures the constant power savings. However, because the
preloaded loop cache executes entirely from the very large

loop cache, it suffers heavily from increased bus capacitances.
A very important trait of the hybrid loop cache is its

resilience when it is used as simply a dynamically loaded loop
cache. To test this, we compared the results of a hybrid loop
cache with no preloaded loops to the results of a strictly
dynamically loaded loop cache in Table 2. In all cases, the
hybrid loop cache fell less than 1% short of the dynamically
loaded loop cache. If the designer does not wish to preanalyze
the application, the power savings of a dynamically loaded
loop cache can still be achieved transparently to the designer.

5. Conclusions
A hybrid loop cache can reduce embedded system software
instruction fetch power by nearly 50%. It can be used
transparently as a dynamically-loaded loop cache if the
designer does not wish to take the preloading step and will
provide the same power savings as a dynamically loaded loop
cache. If preloading is an option, it can hold more loops than a
preloaded loop cache of the same size because it does not need
to store the loops that can be dynamically loaded. Future work
includes developing an efficient loop match memory to be
able to support large numbers of loops without power
overhead for the comparisons and investigating the impact our
design has on system performance.

6. Acknowledgements
This work was supported in part by the National Science
Foundation (CCR-9876006) and a GAANN Fellowship.

References
[1] Y. Aghaghiri, F. Fallah, M. Pedram. Irredundant Address Bus

Encoding for Low Power. International Symposium on Low Power
Electronics and Design, Aug. 2001, pp. 82-87.

[2] N. Bellas, I. Hajj, C. Polychronopoulos, G. Stamoulis. Energy and
Performance Improvements in Microprocessor Design Using a
Loop Cache. Int. Conference on Computer Design, pp. 378-383,
1999.

[3] D. Burger, T. Austin, S. Bennet. Evaluating Future
Microprocessors: The SimpleScaler ToolSet. University of
Wisconsin-Madison. Computer Science Department. Tech. Report
CS-TR-1308, July 1996.

[4] T. Givargis, J. Henkel, F. Vahid. Interface and Cache Power
Exploration for Core-Based Embedded System, Int. Conf. on
Computer-Aided Design (ICCAD), November 1999, pp. 270-273.

[5] A. Gordon-Ross, S. Cotterell, F. Vahid. Exploiting Fixed Programs
in Embedded Systems: A Loop Cache Example. Computer
Architecture Letters, Volume 1, Jan. 2002.

[6] S.C. Govindarajan. G. Ramaswamy, M. Mehendale. Area and
Power Reduction of Embedded DSP Systems using Instruction
Compression and Re-configurable Encoding. International
Conference on Computer-Aided Design, 2001.

Table 1: Percentage of power savings for instruction fetching.
The bold entries indicate the better of dynamic or preloaded.

Note that hybrid is as good as either in most cases.

0%

25%
50%

75%

100%

1.2 1.4 1.6 1.8 2
Power Ratio

%
 P

o
w

er

S
a

v
in

g
s

Hybrid
32/1024
Preloaded
1024

Figure 3: Power savings for increasing capacitance ratios.

Table 2: Power savings for instruction fetching of a
dynamically loaded loop cache verses a hybrid cache with

no preloaded loops.

Main Loop Cache Size
16 32 64 128

Dynamic 30% 30% 30% 29%
Hybrid 29% 29% 29% 28%

Dynamic
32

Preloaded
32

Hybrid
32/128

adpcm* 0% -1% 35%
blit 95% 94% 95%
compress 9% 9% 17%
crc -1% 63% 99%
des 23% 3% 38%
engine 20% 26% 19%
epic* 0% 47% 19%
fir 29% 36% 56%
g3fax 59% 61% 96%
jpeg* 2% 12% 41%
summin 54% 46% 76%
ucbqsort 2% 34% 49%
v42 5% 25% 22%
AVG 23% 35% 51%

* MediaBench

[7] J. Kin, M. Gupta, W. Mangione-Smith. The Filter Cache: An
Energy Efficient Memory Structure. International Symposium on
Microarchitecture, December 1997.

[8] C. Lee, M. Potkonjak, W.H. Mangione-Smith. MediaBench: A Tool
for Evaluating and Synthesizing Multimedia and Communication
Systems. Proc 30th Annual International Symposium on
Microarchitecture, December 1997.

[9] L.H. Lee, W. Moyer, J. Arends. Low-Cost Embedded Program
Loop Caching – Revisited. U. Mich. Technical Report Number
CSE-TR-411-99, December 1999.

[10] A. Malik, B. Moyer, D. Cermak. A Low Power Unified Cache
Architecture Providing Power and Performance Flexibility. Int.
Symposium on Low Power Electronics and Design. June 2000.

[11] S. Segars. Low Power Design Techniques for Microprocessors.
ISSCC Feb 4, 2001.

[12] Synopsys Inc., http://www.synopsys.com.
[13] J. Villarreal, R. Lysecky, S. Cotterell, F. Vahid. Loop Analysis of

Embedded Applications. UC Riverside Tech. Report UCR-CSE-01-
03, 2001.

