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Abstract
This paper presents a new sorting algorithm that sorts input data elements without any
comparison operations between the data—comparison-free sorting. Our algorithm’s
time complexity is on the order of O(N) for both single- and multi-threaded CPU and
many-core GPU implementations. Our results show speedups on average of 4.6× , 4×
, and 3.5× for single-threaded CPU, 8-threaded CPU, andmany-threaded GPU imple-
mentations, respectively, for input sizes ranging from 27 to 230 elements as compared
to common sorting algorithms for a wide variation of element distributions, ranging
from all unique elements to a single repeated element. In addition, our proposed algo-
rithm more efficiently utilizes the GPU architecture as compared to a multi-core CPU
architecture, showing a speedup of approximately 4× for input sizes ranging from 27

to 230 elements.

Keywords Comparison-free sort · Parallel CUDA code · Multi-core CPUs ·
Many-threaded GPUs · Big data · Parallel computing · SIMD · Sorting algorithms

1 Introduction

Sorting algorithms have been widely researched for decades [1–5] due to the ubiq-
uitous need for sorting in myriad application domains [6–8]. Subsequently, sorting
algorithms have been specialized for particular sorting requirements/situations, such
as large computations for processing data [9], high-speed sorting [10], special patterns
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of data types [11], sorting using a single CPU, exploiting the parallelism of multiple
CPUs, parallel processing on large grid-computing machines in order to leverage the
CPUs’ powerful computational capabilities [12], and pooled computing resources for
big data processing [13]. Other work has focused on architecting customized hardware
designs for sorting algorithms in order to efficiently leverage the hardware resources
and provide high-speed hardware processing [14]. However, due to the inherent com-
plexity of sorting algorithms, efficient hardware implementation remains challenging
as available computing resources and hardware complexities rapidly increase.

Recent trends in improving sorting performance tailor the algorithms to leverage
multi-core CPU and many-core GPU computing resources [15–17], mainly due to the
high degree of parallelism provided. Data parallel code is particularly suitable since
the hardware can be classified as SIMT (single instruction multiple thread). Much
research has focused on harnessing the computational power of these resources for
efficient sorting [18, 19]; however, there are still outstanding challenges for improving
sorting algorithms to utilize parallel processing units more efficiently. Most of the
sorting algorithms depend on recursive comparisons within particular input element
partitions and further requiremerging sorted partitions in global memory. Even though
new hybrid sorting structures [20, 21] havemanifested in recent years to alleviate some
of the shortcomings of parallelism, parallel sorting efficiency still has much room for
improvement and addressing the outstanding challenges to achieve this efficiency is
difficult.

Given the vast variety of sorting options, there is no clear, dominate, generalized
sorting algorithm due to many factors [22–25], including the algorithm’s percentage
utilization of the available computing resources againstmemory resources, the specific
data type being sorted, amount of data being sorted, global and shared memory uti-
lization, the computational phases’ execution time similarity, and load balance across
parallel resources. As a result, since not all computing domains and sorting algorithms
can leverage the high throughput of multi-core CPU and many-core GPU processing,
there is a still a great need for novel and transformative sorting methods. In this work,
we adapt a hardware-based comparison-free sorting algorithm [12] to parallel soft-
ware implementations that are capable of utilizing the computing resources of complex
CPU- and GPU-based platforms.

Our proposed software-based comparison-free sorting algorithm parallelizes the
computations into three forward computational phases: count phase, sum phase, and
sort phase, where each phase bundles threads into single-instruction execution units,
which is a criteria for hardware utilization optimization. The threads’ computations
within each phase are arranged in row-major order, which are coalesced into a con-
solidated access for improved DRAM bandwidth utilization. The threads’ execution
phases are synchronized using barrier synchronization that coordinates the threads’
parallel activities before proceeding to the next phase. Atomic actions between threads
are imposed in order to avoid race conditions within each phase. Barrier synchro-
nization and atomic actions are simple and popular methods of coordinating parallel
activities with minimal timing overhead [26, 27].

Our proposed sorting algorithm provides end-to-end sorting timing performance
that is comparable, and even surpasses, most common parallel sorting algorithms
that run on CPU and GPU platforms, to the best of our knowledge. Our algorithm’s
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performance time complexity on GPU platforms is close to linearly proportional to
the number of input elements for input set sizes ranging from 27 to 224 elements,
giving a computational complexity that is on the order O(N), where N is the number
of elements to be sorted, with a small constant scaling factor.

The remainder of this paper is organized as follows. Section 2 discusses relevant
related work and highlights goals and challenges, as well as evaluation plans for com-
paring our proposed algorithm with related work. Section 3 derives the mathematical
operation for our proposed comparison-free sorting algorithm with illustrative exam-
ples. Section 4 provides a detailed analysis of our single- and multi-threaded CPU
implementation along with C-code, and Sect. 5 provides details of our many-threaded
GPU implementation with CUDA code. Section 6 presents our simulation results,
and Sect. 7 summarizes our contributions and compared with other common sorting
algorithms. Finally, Sect. 8 discusses our conclusions and future directions.

2 Related work

In order to provide high-performance operation with a time complexity on the order
of O(N), it is critical to develop a sorting method that scales linearly with the num-
ber of input elements N and has a small constant factor. In general, single-threaded
CPU-based sorting algorithms have moderate performance that scales approximately
at O(NLog(N)2) on average for different data distributions (number of repeated ele-
ments and ordering). Recent works [15–21] have developed parallel sorting algorithms
that exploit both single-instructionmultiple-data (SIMD) instructions and thread-level
parallelism. These sorting algorithms reduce the time complexity to a range from
O(NLog(N)) to O(Log(N)Log(N)) in the best cases. However, these algorithms’ per-
formances are still limited by inefficient operations, such as serial tree comparisons and
swapping, unaligned memory accesses, and unbalanced workload across processing
threads.

Popular, cutting-edge sorting algorithms harness parallel processingmachines, such
as many-core GPUs, to maximize performance. However, challenges still exist with
respect to effectively utilizing the processing elements with balanced computational
workload across all parallel threads. Some new many-core sorting algorithms take
advantage of the SIMD instructions and can evenly balance multiple threads’ work-
loads, giving a performance time complexity of approximate O(N); however, this time
complexity hides potentially high constant factors that are dependent on the data size,
input set size, shared memory access conflicts, and large comparison operations.

In this work, we proposed a comparison-free sorting algorithm that eliminates the
use of comparison operations between data elements. Our methodology is based on
a sequential, single-threaded processing structure with simple array operations that
we extend to parallel computations to effectively harness the computational power of
multi-core CPUs and many-core GPUs, resulting in a time complexity of O(N) with
a minimal constant factor for large input set sizes and diverse data distributions.

To compare our algorithm’s time complexity to related work and common sorting
algorithms, we consider commonly used data input set configurations for comparing
the performance for different sorting algorithms [31–37]. We evaluate single-threaded
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CPU, multi-threaded CPU, and many-threaded GPU implementations for input set
sizes ranging from 27 to 230 elements for different data distributions including Gaus-
sian, nearly sorted, and reverse ordering for input sets containing only unique elements
and varying degrees of repeated elements. We also evaluate varying element valuesM
ranging from values that are much larger than the input set size N (M >N) to values
ofM that are less than or equal to the input set size N (M ≤N) [38]. For example, an
input set size N �4 elements and cases wereM >N ,M �N , andM <N ; each element
can have any arbitrary value regardless of N (e.g., M �{1, 1,000,000, 3, 298}), no
value larger than N (e.g.,M �{1, 0, 4, 3}), or no value larger than N (e.g.,M �{1, 0,
0, 3}), respectively. These cases enable evaluation of the algorithm’s effectiveness in
balancing the computational workload across multiple threads, and verification of an
O(N) time complexity across diverse architectures and sorting scenarios. To further
evaluate the effectiveness in balancing the threads’ computational workloads, we also
evaluate different percentages of repeated elements in the input set.

3 Mathematical operation

Our comparison-free sorting algorithm minimizes the computational complexity, as
well as reducing communication, area, and memory requirements, by eliminating the
repetitive comparisons between elements and the datamovement betweenmemory and
the comparisonunits. Themain operational paradigmof our algorithm is based on array
matrix operations, which is suitable and effective for utilizing parallel resources. The
input to our algorithm is a K-bit binary bus, which enables sorting N �2K input ele-
ments. Each element is stored with a one-hot weight representation, which is a unique
count weight associated with each of the N elements. For example, “5” has a binary
representation of “101,” which has a one-hot weight representation of “100,000.” For
a set of N �2K elements, the complete representation contains all binary elements of
size one-hot weightH �N �2K . For example, aK �3-bit input bus can sort/represent
N �8 elements, where each element’s one-hot weight representation is of size H �
8-bit (i.e., H �N).

Even though Sects. 4 and 5 will present additional phases of operation, our algo-
rithm’s mathematical principal requires two phases. The initialization phase stores
the input elements in an array IN[.] of size N ×1, where each element is of size
K-bits. Concurrently, the input data elements are converted to the elements’ one-hot
weight representations and stored into a transpose memory TM[.][.] of size N ×H,
where each stored element is of size H-bit and H �N , giving a transpose memory
of size N-bit×N-bit. The evaluate phase effectively sorts the elements by outputting
the transposed elements using a matrix multiplication operation between TM[.][.] and
IN[.], rather than using comparison operations. Themultiplication operation is simpli-
fied to a switch operation since the size of each entry in the transpose memory is only
1-bit, which can be either “0” or “1.” Subsequently, the elements are read from the
transposememory, where each transposed row accesses the element in IN[.] and stores
the element into the sorted array SO[.], which contains the final sorted data elements.
Figure 1 depicts our comparison-free sorting algorithm using matrix multiplication
based on linear algebra vector computations and a simple illustrative example. This
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Fig. 1 Comparison-free sorting example using four 2-bit input data elements

example shows our algorithm’s functionality for an example with an input set size N
�4 four input data elements of size 2-bit, with an initial (random) ordering of {2, 0,
3, 1}, which generates the outputted elements in S0[.] �{3, 2, 1, 0}.

Duplicated elements are represented using the same vector space, such that the
corresponding transpose memory TM[.][.] has multiple “1 s” within a column. The
number of “1 s” within the column of TM[.][.] equals the number of times that element
is repeated in the input. The multiple “1 s” accesses the same element in IN[.] with no
contention/confliction since these elements occupy a different index in IN[.]. Conse-
quently, when the column is read, the multiple “1 s” within the associated column is
mapped to the same elements in IN[.], which accesses the same element every time
that column is read (i.e., the number of times the column that is read is equal to the
accumulated number of “1 s” within the entries in the column that is read). For any
columnwith only “0 s” (i.e., the row’s associated element is not in the input data), there
is no associated read operation and the address pointer into TM[.][.] is incremented
to the next column.

In the best case, once each read operation processes a single data element, the read
operation requires N iterations to generate the sorted output data for N input data
elements. However, the worst-case read operation occurs when all columns of the
transpose memory have all “0 s” except for the last column, which has all “1 s.” This
case requires N −1 iterations that have no read operations, since all values are “0,”
plus N iterations for reading the last column that has all “1 s.” Thus, the worst-case
read operation requires 2N −1 iterations.
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Considering the sum of the two phases’, the best-case sorting time (lower bound) is
2N iterationswhen allN input elements are unique. Theworst-case sorting time (upper
bound) is 3N −1 iterations when all N input elements are equal. These bounds are
independent of the data type/representation being sorted or the input data’s relative
sequence/order. Thus, our sorting algorithm’s complexity is on the order of O(N)
independent of the data type.

3.1 Mathematical proof

As proof of concept, we present the mathematical proof for our sorting algorithm
where all N input elements are unique, which represents the bast-case scenario, and
other input element set cases (i.e., different numbers of repeated elements) can be
easily derived from this case.

Let

L � [a1, . . . , a k] (1)

be a given list of k positive integers, and let

M � max[a(1), . . . , a(k)]. (2)

Let J �JL be the (k ×M) matrix whose entries Jr,s are defined by

Jr ,s �
{
1, if a(r) � s
0, Otherwise

. (3)

Thus, if s does not belong to L (i.e., there is no r such that a(r)� s), then the sth
column of J will contain all “0 s.” If s belongs to L, then the sth column of J will have
“1 s” in exactly the locations r where a(r)� s.

Supposing that L had no repetitions, let

L J � [a(1), . . . , a(k)]

J � [b(1), . . . , b(m)], (4)

which gives

b(s) �
{
s, if s ∈ L
0, Otherwise

. (5)

If s /∈ L, then all of the values in the sth column of Cs of J are “0 s,” and (s)�L ·
CT
S �0. If s ∈L, and if r is the unique value for which a(r)� s, then all of the values

in the sth column of Cs of J are all “0” except for the value in the rth column, which
is “1.” Therefore, ()�L CT

S � (r)� s, which proves our claim.
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For example, starting with L � [3, 4, 6], then J �JL would be the matrix

J �
⎧⎨
⎩
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

⎫⎬
⎭ (6)

and

L J � [
0, 0, 3, 4, 0, 6

]
. (7)

Let J* be the matrix obtained by deleting “0” columns from J such that

L J ∗ � [
3, 4, 6

]
. (8)

4 CPU implementations

Our proposed sorting algorithm is based on the mathematical algorithm depicted in
Fig. 1. The C-code program has two vector matrices: the input array matrix IN[.] of
size N ×1 and the outputted sorted array SO[.] of size N ×1. The transpose one-hot
matrix TM[.][.] of size N ×N is substituted for by a count array CA[.], which is
realized using a one-dimensional matrix of size N ×1. CA[.] stores each binary value
that is used as the index into the matrix and the count of the binary value is the matrix’s
stored value that is associated with that matrix index. For the single- (Sect. 4.1) and
multi-threaded (Sect. 4.2) CPU implementations, this structure reduces the storage
memory requirements fromN ×N toN ×1, making the storage memory efficient and
the operations fast when retrieving and storing data.

4.1 Single-threaded implementation

The C-code is structured in two phases, the initialization phase and the evaluation
phase. The initialization phase is illustrated in the first for-loop in Fig. 2a, where the
indices of CA[.] record the input elements of size N ×1. The elements in IN[.] are
read sequentially in the order that they appear in the input sequence (we assume for
convenience that IN[.] starts indexing at 0). With respect to IN[.], the code exhibits
good spatial locality, but poor temporal locality since each element is accessed exactly
once. The elements inCA[.] are referenced twice during each loop iteration and exhibit
good temporal locality with respect to the index vectorCA[.]. Overall, our algorithm’s
initialization phase exhibits good spatial and temporal locality with respect to each
variable in the loop body, which results in good performance when retrieving and
updating memory.

The evaluation phase, which is illustrated in the second for-loop in Fig. 2a, sorts
the input elements using CA[.] and stores the sorted elements in the sort array vector
SO[.]. The elements inCA[.] and SO[.] are read and written sequentially, respectively,
resulting in good spatial locality, which affords high performance with small memory
requirements and has minor computations. Both loops read/write the elements of the
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  1. Input:  Integer Element IN[0:n - 1 ] 
  2.  Output: Integer Sort SO[0:n - 1 ]

3. count array: char CA[0:n-1] : ize to zero
4. for i = 0 to n do
5. CA[IN[i]] ←CA[IN[i]] + 1 

  6.  endfor
7. Z ←0
8. for i = 0 to n do

  9. if CA[i]>0  then 
10. SO[Z] ←i
11. Z←Z+1
12. CA[i] ←CA[i]-1 
13. i←i-1
14. endif
15. endfor
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Fig. 2 aComparison-free sorting C-code for a single-threaded CPU implementation and b illustrative exam-
ple

arrays in row-major order, a characteristic that is more suitable for ANSI-c and the
gcc compiler as compared to column-major order. Additionally, both loops traverse
each element in the arrays sequentially with a reference stride of one (with respect to
the element size), which also exhibits good locality [28]. The memory requirements
can be further reduced by reusing IN[.] for the role of SO[.], which precludes the need
for allocating memory for both arrays, as shown in Fig. 2a.

Figure 2b shows an illustrative example of our algorithm for a single-threaded CPU
implementation based on the C-code. During the initialize phase, the input sequence
array IN[4]�{2, 3, 2, 0} and the count array CA[4]�{0, 0, 0, 0}. Loop 1 (lines 4–6)
generates the count array values in four iterations. Loop 2 (lines 8–15) generates the
sorted array SO[4]�{0, 2, 2, 3} in eight iterations; thus, for every instance of an
element in the sorted array, loop 2 adds another extra iteration (i.e., since elements “0”
and “3” each occur once in the input set, each of these elements take two iterations
in loop 2; since element “1” is not in the input set, this element takes one iteration in
loop 2; and since element “2” occurs twice in the input set, this element takes three
iterations in loop 2).

4.2 Multi-threaded implementation

Our multi-threaded implementation exploits parallel computing by partitioning our
algorithm into several parallel logical flows, where each flow can be assigned to a
thread, and each thread operates on a partition (range) of input elements. The concur-
rent partitions are dictated by the inherent matrix computations and the independent
mapping between the one-hot transpose rows in TM[.][.] and the input array IN[.].
Since context switching and atomic operations require more CPU time for scheduling
and swapping data memory, we derive a structure that trade-offs more local memory
for less context switching and atomic operation overheads, which improves the sorting
performance.

Using the single-thread C-code in Fig. 2a as a basis, we parallelize the first and
second loops, as shown inFig. 3a.Using this structure, each threadhas its ownweighted
counter variable in multiples of the number of threads, and each thread has its own
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key :
Thread Number: H: 1,2,3,4, …
Total Number of Threads: T

  1. Input:  Integer Element IN[0 : n - 1 ]
  2.  Output: Integer Sort SO[0 : n - 1 ]

3. Element Weight: char CA[0:n-1] : ini lize to zero
4. Su integer IS[0 : T - 1][0 : T - 1] : alize to zero

  5.  do to all threads 
  6. for i = H*n/T  to (H+1)*n/ T  do
  7. __sync_fetch_and_add(CA [IN[i]],1)
  8. IS[H][IN[i]*T/n]  IS[H][IN[i]*T/n]+1 
  9. endfor 
14. barrier wait all thread
15. Z sum of IS[0][0] to IS[T][H-1] 
16. for i = H*n/T  to (H+1)*n/T  do
17. if  CA[i] > 0  then
18. SO[Z] i
19. Z Z+1
20. CA[i] CA[i]-1 
21. i i+1
22. endif
23. endfor
24. end thread
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Fig. 3 a Comparison-free sorting C-code for multi-threaded CPUs and b illustrative example

CT[.] array, which stores the sorting results for that thread’s partition of the input
set. We insert another loop between the two loops to merge all of the threads’ CT[.]s
to only one CT[.] and merge the multiple weight counters in each thread to one-hot
weight counter per thread.

Figure 3b shows an illustrative example of our algorithm’s phases of operation for
a multi-threaded CPU implementation where the number of elements is N �8 and the
number of threads is T �2 (Thr0 and Thr1). Initially, the number of elements N in
the unsorted array IN[.] is evenly divided by the number of threads T (i.e., N/T �4
elements per thread). The first thread operates on the first partition of four elements,
the second thread operates on the second partition of four elements, and so on, for
larger examples, as clearly demonstrated in the computations in phase #1. Each thread
concurrently processes its own partition of the input array IN[.] and generates the
arrays for phase #2 in parallel.

During phase #2, the initial sum array IS[.][.] is generated using the operation on
line 8 (Fig. 3a). The count array CA[.] is generated using CA[IN[i]] �CA[IN[i]]
+1 on line 7, which is an atomic add operation to avoid race conditions between
threads accessing the same memory location for repeated elements in IN[.]. Barrier
synchronization is used after phase #2 (line 14) to ensure that all threads (two threads
in this example) have completed phase #2 before proceeding to the next phase. In phase
#3, the threads collaborate to generate SA[.]. The first element of SA[.] is generated by
summing the first column of IS[.][.], and the second element of SA[.] is generated by
summing the second column of IS[.][.]. For larger input set sizes, this process would
continue for all columns of IS[.][.].

In the last phase, phase #4, the threads collaborate to generate SO[.] from SA[.] and
CA[.]. In our two thread example, thread #0 (Thr0) generates the first five elements
in SO[.], and thread #1 (Thr1) generates the next three elements of SO[.] starting at

123

Author's personal copy



S. Abdel-hafeez et al.

index “5” of SO[.]. The alignment of the threads (Thr0 and Thr1) is accomplished
using SA[.] that was generated in phase #3. Each thread reads its partition from CA[.]
and stores the index number from CA[.] in SO[.]. If CA[.] >0, the value at CA[.] is
decremented (lines 17 - 22). After all threads finish, the sorted array SO[.] is complete.

The memory consumption for our algorithm is space efficient, wherein all arrays
are one-dimensional (1D) except for IS[.][.], which is two-dimensional (2D) based on
the number of threads (T ×T ) (e.g., the maximum array size of IS[.][.] for an 8-thread
example is 64, and the 1Darrays are of sizeN , the input set size).Wepoint out that there
is no further overhead for swapping elements in the arrays nor is there any temporary
storage for the merging and comparison operations. Threads independently operate
on the data in all computational phases, except for generating CA[.] and IS[.][.] in
phase #2 where multiple threads operate on the same memory location for repeated
elements. Memory coherence is maintained using an atomic operation, which is a
minor drawback affecting performance.

5 GPU implementation

Our proposed comparison-free sorting algorithm is easily parallelizable due to the
algorithm’s mathematical nature using matrices and vector algebra, as opposed to
sequential parallel tree partitioning and recursive ordering, as is used in most com-
mon sorting algorithms [22–25]. Our algorithm’s parallelism is inherent since the
matrix operations can be streamlined into matrix multiplication operations, where
every thread is independently responsible for the row-column product summation
computations, a characteristic that is considered to be a key feature for harnessing the
processing power of GPUs.

Launching a CUDA kernel creates blocks of threads, where each thread block
is partitioned into WARPs. WARP execution is implemented using SIMD hardware,
wherein threads are coalesced in aWARPand are executed by a single instruction in the
sameWARP. UtilizingWARPs in our algorithm helps to reduce hardware computation
time and enables some optimizations in servicing memory accesses. Due to the matrix
structures’ implementations in the source code, minimal code changes are required
when changing the number of threads per blocks for sorting different input set sizes.

We propose two methods (method 1 and method 2) for the GPU implementation,
which provide high-performance computational solutions that are competitive with
recent common GPU-based sorting mechanisms.

5.1 Method 1

Similarly to the mathematical operation outlined in Sect. 3, method 1 is separated into
two phases: the initialization phase and the evaluate phase.
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5.1.1 Initialization phase

During the initialization phase, the input array IN[.] is converted to a one-hot weight
representation and is transposed and linearized into a 1D transpose memory 1D TM[.]
of size N2 ×1. This obviates the need for a 2D memory for efficient memory access;
however, the size is still the same, which is large and not memory efficient. The CUDA
code:

T M[N ∗ I N [i] + i] � 1, (9)

where i is the number of threads and IN[.] is the input array, which generates a
linearized one-hot transposed array from IN[.] and incorporates parallel independent
thread blocks with the same operation. This single line of CUDA code simplifies
three operations, which are the conversion to the one-hot representation, the transpose
operation, and the linearize operation, into a single instruction. Only N threads are
needed since there are only N elements in the input array IN[.], where each thread
operates on N rows of elements in TM[.]. All N threads are work independently from
each other since every input element has a unique index in IN[.]. This holds even in
the case where there are more than one element with the same value in IN[.], where
each element still needs to have a designated location in TM[.].

Figure 4 shows a detailed example using an input array IN[.] of sizeN �4 elements
that is transformed to the transposed one-hot weighted elements in 1D TM[.] of size
N2 ×1. This example shows how the mapping is constructed between IN[.] and 1D
TM[.] assuming that initially the one-hot 2D-weighted matrixOH[.][.] is constructed.
Even though our CUDA code never instantiatesOH[.][.], using this assumed structure
eases explanation and understanding.

In this example, 1D TM[.] is an array of size 16×1 and is initialized with “0 s.”
The first four elements of 1D TM[.] represent the first column in the assumed 2D
OH[.][.], the second four elements of 1D TM[.] represent the second column of the
assumed 2D OH[.][.], and so on.

5.1.2 Evaluate phase

In this phase, threads are also processed concurrently to sort the elements of the input
array IN[.] with the aid of 1D TM[.], which was created in the initialization phase. For
simplicity of explanation, we start by assuming that all of the elements of the input
array IN[.] are non-repeating (distinct). This results in the assumed 2DOH[.][.] having
a single “1” per column and per row, which presents the mutually exclusive event of
coinciding “1 s” between rows and is considered ideal for independent parallel thread
multiplications. Simple multiplications of 1D TM[.] and IN[.] compute the sorted
array SO[.], a criteria that are performance advantageous for GPU structures. The
first four elements of 1D TM[.] are multiplied and summed with IN[.] to generate the
first four sorted element in SO[.] using the first thread. Concurrently, the second four
elements of 1D TM[.] are multiplied and summed with IN[.] to generate the second
four sorted elements in SO[.] using the second thread, and so on, generating all sorted
elements in SO[.]. The CUDA code for these operations is:
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Fig. 4 Example of constructing the 1D transposed one-hot weighted array TM[.] from the input array IN[.]

(10)

where i is the number of threads and k is the index for the N elements. Thus, each
thread is independently responsible for calculating one sorted element in SO[.], and
the required number of threads in our example is only four threads since TM[.] has
only four rows and IN[.] has only one column with four elements, as shown in Fig. 3a.
However, every thread needs to scan four elements; thus, the four threads require 42

computations.
Figure 5a shows a simple 1D TM[.] * IN[.] multiplication example that introduces

the sorted array SO[.]. All of thesemultiplications operate independently of each other,
which affords the advantages of parallel thread computations and thus fully harnesses
the GPU’s computing resources. However, the problem still exists in utilizing memory
bandwidth efficiently since every thread needs to scan four elements in 1D TM[.]
concurrently with the other threads, and thus, memory efficiency worsens as the input
set size increases.

In general, the input elements can be a mixture of repeating and non-repeating ele-
ments; therefore, the proposed multiplication in method 1 [Eq. (10)] must be modified
to compensate for the general case. The initialization phase [Eq. (9)] for generating
1D TM[.] remains the same, while the evaluate phase is modified. The reason for
restructuring the evaluate phase is due to the rows in 1D TM[.] that have multiple
“1 s” for repeated input elements; therefore, they are not mutually exclusive in the
multiplication operation.
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Fig. 5 Detailed example of method 1 for a GPU sorting a distinct (non-repeating) elements and b arbitrary
input elements (repeating and non-repeating)

The restructured evaluate phase is illustrated in Fig. 5b, where threads scan one
column at a time in 1D TM[.], such that each thread is targeted to one element in the
column in 1D TM[.]. Once all threads have completed computations for the current
working column, the threads moved to the next column. The parallel operation of the
threads does not proceed to the next column until all threads have completed operation
on the current column. This concurrent thread computation behavior for one column
at a time is guaranteed using barrier synchronization, which is a feature supported by
CUDA. Each thread examines the value in each location of the assigned column in
1D TM[.], and if the value is “1,” the associated index of that “1” is mapped to the
associated index in the input array IN[.], and the sorted array SO[.] is updated to store
the associated element. The CUDA code for these operations is:

(11)

where i is the number of threads and j is the index of SO[.]. __synchthreads() ensures
that the two instructions in the for-loop for the previous iteration have completed
for all threads before proceeding to the next iteration. This prevents any thread from
scanning the next column of 1D TM[.] until all threads have completed scanning the
current column of 1D TM[.]. This barrier synchronization between threads is essential
for updating and incrementing the sorted array SO[.] before proceeding to the next
column, as detailed in Fig. 5b.

We note that an atomic operation is no longer needed to protect the j-index from
multiple threads incrementing the index per column since every column in 1D TM[.]
has only one element with a “1” even if the element repeats in the input set, as shown
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in Fig. 5b. Thus, even though threads compute one column at a time, the mutually
exclusive operation in examining the “1” per column is maintained. This way of
structuring the threads, as shown in Eq. (11), precludes the use of an atomic operation
and thus enhances performance.

The example detailed in Fig. 5b shows IN[.] with two distinct elements “2” and
“3,” and one repeated element “1.” Thread-0 (Thr0) is responsible for checking the
elements of index 0 to index 3 in 1D TM[.], thread-1 (Thr1) is responsible for checking
the elements of index 4 to index 7 in 1D [.], thread-2 (Thr2) is responsible for checking
the elements of index 8 to index 11 in TM[.], and thread-3 (Thr3) is responsible for
checking the elements of index 12 to index 15 in TM[.]. All threads are synchronized
and parallelized for each column computation, and the threads will not proceed to
the next column until all threads execute the two instructions in the current iteration
denoted by index k.

Clearly, there are several drawbacks to this approach. SinceN threads need to scanN
elements, a large number of elements must be stored for a long period of time in global
memory while waiting to be scanned and operated on by all threads, which does not
utilize shared memory bandwidth efficiently since there are many swaps between the
global and shared memories. These accesses bottleneck the threads and degrade the
overall performance. Global memory is typically DRAM, which is commonly known
for slow speed due to inherent hardware technology circuit design factors, such as
refresh periods and row buffer misses.

As depicted in Fig. 5b, threads access elements per column, resulting in large data
tiling; however, coalescing WARP techniques are not available for this situation since
the threads’ execution elements are not sequentially available, which leads to poor
locality. Therefore, CUDA devices cannot bundle these threads into a single execution
instruction and thus cannot attain maximum performance.

5.2 Method 2

Method 2 minimizes each threads’ computational load to one element per thread,
instead ofN elements per thread as inmethod 1, by emphasizing the key features of our
comparison-free sorting algorithm, which sorts without using recursive computations
and implies forward-flowing computations. Method 2 organizes thread computations
in consecutive and increasing order to compute the elements in parallel using similar
timing requirements. Thread blocks are partitioned into WARPs that are restricted to
accessing consecutive DRAM locations (i.e., increasing row buffer hits) and oper-
ate one control action per thread block, which complements SIMD hardware. Since
thread blocks collaboratively load and compute elements in shared memory, rather
than accessing global DRAM memory, bandwidth contention is avoided.

Method2 comprises three phases: the count phase, the sumphase, and the sort phase,
which have forward-flowing computation and parallel thread execution as demon-
strated in Fig. 5a. If the number of threads is less than the number of elements, the
sum phase is split into two phases, as exemplified in Fig. 6a.
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Fig. 6 a Detailed example of method 2, and b detailed example of method 2 restructured where the number
of threads is half the number of elements

5.2.1 Count phase

In the count phase, the number of occurrences of elements in IN[.] is counted and
recorded in the index of the counter arrayCA[.]. Figure 6a illustrates a simple example
for generatingCA[.] from the input array IN[.],where “0” occurs just once, “1” occurs
twice, “2” never occurs, and “3” occurs once. The elements’ number of occurrences is
recoded inCA[.] in the elements’ associated index. The CUDA code for this operation
is:

atomicAdd(&(CA[I N [i]]), 1), (12)

where i is the number of threads. In this line of code, four threads execute concur-
rently since each thread operates on one element in the index of the array IN[.]. An
atomic addition is needed for the case where more than a single thread is mapped to
the same element when there are repeated elements in IN[.]. This atomic race con-
dition is considered a computational drawback for repeated elements since all thread
instantiated for the repeated elements must wait to exclusively increment the index of
CA[.], forcing sequential computation.

The threads are organized such that the threads access IN[.] in increasing incremen-
tal order, such that thread-0 operates on the element in index IN[0], thread-1 operates
on the element in index IN [1], and so on for the remainder N threads. This ordering
allows CUDA devices to coalesce thread blocks into WARPs even though all threads
in a block can conceptually execute in any order with respect to each other due to the
fact that a bundle of threads executes the same instruction and thus requires similar
computational workloads.
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5.2.2 Sum phase

The sum phase accumulates the count at each index in the sum array SA[.] using a
parallel prefix-tree adder structure (detailed in [26]). This phase executes several iter-
ations of computations that require N /2+N /4+N /8+ ··· +1 �N −1 kernel additions.
The computational complexity of the parallel prefix-tree adder is O(N), and the CUDA
code for this operation is:

(13)

where T is the number of threads. The if statements check for a half-partition of
elements away from each other, rather than checking every neighboring element for
addition operations, which enables a thread convergent operation by grouping the
threads into WARPs such that each WARP is either a half-partition away or not (i.e.,
each WARP will or will not execute the addition operation). This structure is contrary
to previous methods, where each even thread index executes the addition operation or
not. We refer the reader to [26, 27] for additional details.

5.2.3 Sort phase

After determining the accumulated sum and count values for each index for the input
array IN[.], the sorted array SO[.] can be evaluated for each index using parallel thread
computations. The sum values along with the count values, which were recorded in
SA[.] and CA[.], respectively, pinpoint the start and end indices in SO[.], respectively.
As shown in Fig. 6a, thread-0 computes SO[0], which starts at index 0 and ends at 0
due toCA[0] �1, thread-1 computes SO[1], which starts at index SO[0] �1 and ends
at index 2 since CA[1] �2, and thread-1 also computes SO[2]. We note that thread-2
does not compute SO[2] since CA[2] �0. Finally, thread-3 computes SO[3], which
starts at SA[2] �3 and ends at index 3 since CA[3] �1. Using this operation, threads
no longer need to wait on the other threads to determine their start and end indices in
the sorted array. The CUDA code for this operation is:
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for (; i2< ; i2++)
if (CA[i2]>0)

IN[SO[i]++] = i2;
CA[i2]--;
i2--;

(14)

Atomic operations are no longer needed since each thread examines a unique section
of memory. For the case of repeated elements, the count value inCO[.] presents a race
condition in memory, as is the case in the above example, where thread-1 and thread-2
both try to compute SO[2]; however, the count value associated with thread-2 is 0,
while the count value associated with thread-1 is 1.

We can observe from the example in Fig. 6a that the threads’ workloads are not
uniform. Thread-1 computes two values in SO[.],which are SO[1] and SO[2], thread-
0 computes one value, which is SO[0], thread-2 computes no value in SO[.], and
thread-3 computes one value, which is SO[3]. This non-uniformity in the last phase
reduces locality, which worsens as the input set size increases and memory is not able
to cover neighboring threads. In this case, threads are not coalesced in an efficient way
for WARP hardware control grouping, which reduces SIMD performance.

Since computations on large input sets suffer from there being only a limited number
of thread blocks available, we restructure Fig. 6a, b by introducing the initial sum array
IS[.]. The example in Fig. 6b shows a sample case where there are eight input data
elements (i.e., IN[.] of size 8×1) and the number of available processing threads is
half of the input set size (i.e., there are four threads). CA[.] is of size 8×1 and is
generated by the four threads running in parallel, such that the first four elements in
CA[.] are computed by the four running threads. After the four threads evaluate the
four elements in CA[.], the threads proceed to operate on the second four elements in
CA[.]. Barrier synchronization is used to evaluate the two bundles of four elements in
CA[.]. The CUDA code for these operations is:

(15)

Each element in IS[.] is computed by processing two elements in IN[.], such that
the four threads compute the first two elements in IS[.]. Once the threads complete,
the threads compute the second two elements in IS[.] using barrier synchronization.
The basic operation for evaluating the elements in IS[.] is demonstrated as follows.
Thread-0 checks the value in IN[0] �0, divides the value by “2,” which results in “0,”
increments that result to “1,” which is subsequently stored in IS[0] �1. Concurrently
and atomically, thread-1 checks the value of IN[1]�1, divides the value by “2,” which
results in “0,” increments that result to “2,” which is subsequently stored in IS[0] �
2. Concurrently and atomically, thread-2 checks the value of IN[2] �2, divides the
value by “2,” which results in “1,” increments that result to “1,” which is subsequently
stored in IS[1] �1. Concurrently and atomically, thread-3 checks the value of IN[3]
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�4, divides the value by “2,” which results in “2,” increments that result to “1,” which
is subsequently stored in IS[2] �1. After these operations complete, the four threads
similarly compute the second two elements in IS[.] using the second four elements of
IN[.], and so on until all elements have been processed.

The parallel adder sum array SA[.] in Fig. 6b is generated similarly as in Fig. 6a by
having all threads accumulating the addition values pointed to by the index in IS[.].
We note that the size of IS[.] is only 4×1, and thus, the size of SA[.] is also 4×1,
which is equal to the number of threads. Once all threads compute SA[.], the threads
start computing the sorted array SO[.] in parallel based on the values in CA[.] and
SA[.], as shown in Fig. 6b.

Figure 7 summarizes the completeCUDAcode of our comparison-free sorting algo-
rithm GPU implementation. The design leverages parallelism in the working threads,
which forms the operational structure and the phases of computations using barrier
synchronization between the phases. The first and last phases of computation require
the longest computation time. In the first phase, the repeated elements force the threads
to have amore diversemixture of sequential and parallel behavior. In the last phase, the
repeated elements force the threads to have an unbalanced utilization of the WARPs,
which reduces memory usage efficiency. Based on these, we can estimate the asymp-
totic boundaries of the computational time complexities by using a valid assumption
that the best-case, lower-bound computational time occurs when all elements in the
input set are distinct, and theworst-case, upper-bound computational time occurswhen
all elements in the input set are a single repeated element.

The overall computational time for method 2 is near-linear since N threads operate
on N elements, contrary to method 1 where N threads operate on N2 elements. Addi-
tionally, method 2 uses no backward-flowing computations that require storing data
for comparisons in global memory for a long period of time. Finally, the majority of
threads in method 2 benefit from locality in accessing and operating on neighboring
data, which is more efficient for memory accesses.

Memory coherence in GPUs has a minor effect since constant memory variables
have an interesting impact on the caches in massively parallel processors. The GPU’s
hardware can aggressively cache the constant variables in level one cache, and the
design of the caches in these processors is typically optimized to broadcast a value to
a large number of threads. As a result, when all threads in a WARP access the same
constant memory variable, the memory provides a tremendous amount of bandwidth
to satisfy the threads’ data requirements. Therefore, the threads benefit from spatial
locality in order to coalesce these threads into a single WARP and reduce coherency
effects. In our illustrative example in Fig. 6b, threads benefit from spatial locality in
all phases, except the last phase, where threads are not evenly divided for generating
SO[.] for the case of repeated elements. In Sect. 6, we evaluate several distributions of
repeated elements in the input set, including all unique elements (repeated 0%), only
a single repeated element (repeated 100%), and a trade-off point where elements are
semi-repeated (repeated 70%). Results show that repeated 70% has nearly identical
performance as all unique elements, and repeated 100% only slightly reduces the
performance, but we point out that repeated 100% is not a realistic input set for sorting
applications.
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1. Input: Integer Element IN [0 : n - 1 ]
2. Output: Integer Sort SO [0 : n - 1 ]
3. Count array: Integer CA[0:n-1] to zero
4. Sum: Integer IS[0 : T* blk+1] to zero 
5. do to all threads 
6. for i =blockIdx.x*blockDim.x + threadIdx.x to n do
7. atomicAdd(&(CA[IN[i]]), 1) 
8. atomicAdd(&IS[(IN[i]/( n/(T*blk)))+1],1) 
9. i i+blockDim.x*gridDim.x
10. endfor
11. __syncthreads() 
12. for stride = 1 to ((T*blk)/2+1) do
13.      index (blockIdx.x*blockDim.x + threadIdx.x+1)*stride*2 -1
14. if(index<(T*blk+1)) then 
15. IS[index] IS[index] + IS[index-stride] 
16. endif 
17. __syncthreads() 
18. stride stride*2 
19.     endfor
20. for stride =( T*plk)/4+1 to 0
21. __syncthreads()
22. index (blockIdx.x*blockDim.x + threadIdx.x+1)*stride*2 – 1 
23. if(index + stride< (T*blk )+1) then
24. IS[index+stride] IS[index + stride] + IS[index]
25. endif
26. endfor
27. __syncthreads() 
28. i1 blockIdx.x*blockDim.x + threadIdx.x
29. for i=(blockIdx.x*blockDim.x + threadIdx.x)* (n/(T*blk)) to

((blockIdx.x*blockDim.x + threadIdx.x)+1)* (n/(T*blk)) do
30. if (CA[i] >0) then 
31. SO[IS[i1]] i
32. IS[i1] IS[i1] +1
33. CA[i] CA[i]-1 
34. i i-1 
35. endif
36. endfor
37. end thread
key :
Number of Thread in block : T
Number of block :blk

Fig. 7 CUDA code for our comparison-free sorting algorithm for method 2 on GPUs

6 Simulation results

In this section, we evaluate the performance of our proposed comparison-free sorting
algorithm using increasing input set sizes in powers of 2. We sort integer input data for
different data input set distributions, including random distribution, reverse ordering,
nearly sorted, Gaussian distribution, for different percentages of repeated elements
[i.e., 70% of the elements are repeated (repeated 70%) or 100% of the elements are
repeated (repeated 100%)] and entirely unique data (repeated 0%). These distributions
are frequently used to evaluate sorting algorithms and reveal execution time variations
and sensitivity to different sorting scenarios.We perform simulations using single- and
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Table 1 Experimental CPU characteristics

CPU system specifications Intel CoreTM I7-3770

Clock speed 3.4 GHz

Number of cores×number of threads 4×8

Hyperthreading Yes

L1/L2 (KB)/socket 32/256

RAM size 8 GB

RAM bus DDR3-1333/1600

Misc Smart Cache 8 MB, DMI 5GT/s

Table 2 Experimental GPU characteristics

GPU system specifications NVIDIA TESLA K20M

Number of CUDA parallel processing cores 2496

Peak teraflops 1 TFLOP

Clock speed 706 MHz

Interface 320-bit

Memory size 5 GB

Graphics bus PCI express 2.0×16

multi-threaded CPU implementations with the architectural characteristics in Table 1.
Even though this CPU architecture can support multi-threading, we instantiate only
one thread for the single-threaded experiments (Sect. 6.1) and instantiate 4 and 8
threads for themulti-threaded experiments (Sect. 6.2) executing theC-code in Sect. 4.1
and derived in Fig. 2 and the C-code in Sect. 4.2 and derived in Fig. 3, respectively.
Table 2 depicts the architectural characteristics for our GPU implementation with
16,382 threads (16 threads per block) (Sect. 6.3) executing the CUDA code in Sect. 5
and derived in Fig. 7. Finally, to evaluate threadworkload balancing, we simulate cases
where the elements’ valuesM can be much larger than the input set size N (Sect. 6.4).
We report the actual sorting execution time in seconds and take into account allmemory
copies and contention, as well as context switching times.

6.1 Single-threaded CPU

Figure 8a depicts the logarithmic scale of execution time in seconds for our algorithm
using a single-threaded CPU for varying input data set sizes and different input data
distributions and repeated element occurrences. These results shows that the compu-
tation times for these sorting scenario variations are almost the same for input sizes
below 224 elements, which shows that within this range, the algorithm’s computation
time is insensitive to and non-biased toward different sorting scenarios. Other sorting
algorithms can show large computation time variations for different sorting scenarios
[29, 30] for any input set size.
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Fig. 8 a Logarithmic execution time in seconds and b percentage of execution time for our comparison-free
sorting algorithm for varying input sizes and different sorting scenarios (different data distributions and
number of repeated elements) on a single-threaded CPU

Figure 8b further evaluates these findings by illustrating the percentage of execution
time for sorting scenarios. The execution time variations begin to manifest for input
set sizes greater than 224 elements, at which point Gaussian distribution and repeated
70% exhibit the worst execution times, and repeated 100% and all unique elements
exhibit the best execution times since these sorting scenarios have the greatest memory
locality. These execution timevariations dictate the upper and lower asymptotic bounds
on the sorting time. The average ratio between the best and worst execution time is
1.3× for input set sizes ranging from 28 to 230 elements. As compared to other sorting
algorithms, quicksort has an average variation ratio of N2 between the best and worst
sorting times based on different sorting scenarios [29, 30].

6.2 4-/8-threaded CPU

Figure 9a shows the logarithmic execution time in seconds for our 4-/8-threaded CPU
implementations compared to the single-threaded (1-threaded) CPU implementation
for varying of input set sizes with Gaussian distribution. The single-threaded CPU
outperforms the 4-/8-threaded CPU for small input set sizes less than 212 elements,
with an average improvement of 7.4× . Figure 9b depicts more detailed results with
execution time in seconds for 1-/4-/8-threaded CPUs. Figure 10 shows the percentage
breakdown of execution time for 8-threaded CPU. These results show that the 4-/8-
threaded CPUs outperform the single-threaded CPU for input set sizes greater than
220 elements, showing the effectiveness of parallelism for large input set sizes, with
an average improvement of 1.8× over a single-threaded CPU.

Figure 11 shows the memory consumption in bytes for different input set sizes with
Gaussian distribution. The results show memory efficiency, requiring less than 1 GB
for sorting input set sizes less than 226 elements. The memory consumption becomes
exponential for input set sizes greater than 227 elements and reaches about 5 GB for
input set sizes of 230 elements; however, we point out that this memory requirement is
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Fig. 9 a Logarithmic execution time in seconds and b execution time in seconds for our comparison-free
sorting algorithm for varying input sizes and Gaussian distribution for 1-/4-/8-threaded CPUs

Fig. 10 Percentage of execution
time for our comparison-free
sorting algorithm for varying
input sizes and Gaussian
distribution for 1-/4-/8-threaded
CPUs

Fig. 11 Memory consumption
for our comparison-free sorting
algorithm with respect to data
input set size for an 8-thread
CPU
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still competitive as compared to common sorting algorithms [27–30] that are on order
of 10 GBs for processing similar input set sizes ranging from 227 to 230.
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Fig. 12 a Logarithmic execution time in seconds and b percentage of execution time for our comparison-free
sorting algorithm for varying input sizes on a GPU

6.3 16,384-threaded GPU (16 threads per block)

Figure 12a shows the logarithmic execution time in seconds for varying input set sizes
and different sorting scenarios. These results reveal the asymptotic execution time
boundaries for different ranges of input set sizes. The worst-case computing time is
when the input set has a high percentage of repeated elements, as is the case of a
single repeated element (repeated 100%). This case is predicted in Sect. 5.2 to worsen
the computation time of the first and last phases; thus, this sorting scenario dictates
the worst-case, upper-bound asymptotic execution time. The best-case, lower-bound
asymptotic execution time occurs when all of the input elements are unique, as also
predicted in Sect. 5.2.

Since more realistic data types have a Gaussian distribution or only a few unique
elements, Fig. 12b evaluates the percentage of execution time required for different
sorting scenarios. These results show that more realistic sorting scenarios exhibit
computing times close to the lower-bound asymptotic curve and that the variation in
execution time for different input set sizes is small for theGPU,which is approximately
1.1× for a wide range of input set sizes.

Figure 13a shows the logarithmic execution time in seconds for the 1-/8-threaded
CPUs and GPU for varying input set sizes with Gaussian distribution. The single-
threaded CPU has the best performance, with an average performance increase of
approximately 6.7× and 4.2× as compared to the 8-threaded CPU and the GPU,
respectively, for input set sizes smaller than 213 elements. However, for input set sizes
greater than 213 elements, the GPU’s performance surpasses both CPUs by an average
of 5.3× .

Figure 13b shows the percentage of execution time for the 1-/8-threaded CPUs and
the GPU for varying input set sizes with Gaussian distribution. These results analyze
the conclusions drawn in Fig. 13a and show that the GPU outperforms the 8-threaded
CPU for any input set size and that the computing performance for the GPU has
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Fig. 13 a Logarithmic execution time in seconds and b percentage of execution time for our comparison-free
sorting algorithm for varying input set sizes with a Gaussian distribution for 1-/8- threaded CPUs and a
GPU

the tendency to be closer to linear rather than exponential for large input set sizes
greater 220 elements. On the contrary, other common sorting algorithms usually grow
exponentially in performance beyond 220 elements or have a large scalar factor on the
order of 100 or more for linear scale behavior [34].

Figure 14 shows the logarithmic execution time in seconds for our comparison-free
sorting algorithm’s different phase’s of execution, the count, sum, and sort phases, for
the CPU, which were derived in Fig. 6 and Sect. 5.2. These results show that the worst-
case computation time is dictated by the sort phase for large input set sizes above 220

elements. The sum phase, as predicted in Sect. 5.2, has the lowest computation time
for all input set sizes, while the count and sort phases have larger computation times,
as illustrated in Sect. 5.2. We note that the sort phase has the worst computation time
due to repeated elements that force unbalanced thread workload. This computational
bias is a result of the WARPs effectively utilizing the control hardware resources for
parallel threads performing SIMD computations.

Figure 15 shows memory consumption in bytes for varying input set sizes for our
comparison-free sorting algorithm for theGPU.These results have an efficient constant
factor for input set sizes ranging from 214 to 228 elements, which shows efficient SIMD
operation. The maximum global memory required for the maximum input set size of
228 elements is on the order of 1 GB. We note that the memory consumption can
be reduced by using the latest version of CUDA, which allows using character-type
constants instead of integer-type constants as in conventional CUDA.

6.4 CPU and GPU simulations forM >N

In this section, we evaluate sorting scenarios where the largest element’s value M
can be greater than the input set size N to garner more insight on the computational
complexity behaviors of our proposed algorithm. For example, considering an input

123

Author's personal copy



A comparison-free sorting algorithm on CPUs and GPUs

Fig. 14 Logarithmic execution
time in seconds for our
comparison-free sorting
algorithm’s different
computational phases for
varying input set sizes with
Gaussian distribution for the
GPU
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set size N �1024 elements, and where the values of these elements can range from
“0” to “1000* N,” M �1,024,000. This maximum data value with respect to the
number of elements provides a 99.9% increase, which is considered sufficient to draw
over-arching conclusions about the execution time performance and the behavior of
our algorithm.

For these experiments, we assume the following constraints from our prior simula-
tions: theCPUandGPUuse the characteristics depicted in Tables 1 and 2, respectively;
the input set size N ranges from 27 to 230 elements with Gaussian distribution; the
data values M range from “0” to “1000*N.”

Figure 16 shows the summary of (a) the logarithmic execution time in seconds and
(b) percentage of execution time for input set sizes N where the elements’ values M
range from 0 to 1000*N . These results show that the many-threaded GPU’s perfor-
mance is not influenced by the change in M regardless of how M relates to N (i.e.,
M < N or M > N) as is evident with comparisons where M < N in Figs. 12 and 13;
thus, the degree of execution time is somewhat linearized toward the order of O(N).
We also note that the CPU performance on 1-/8-threaded CPUs has slightly deviated
performance for small input set sizes, but for large N >224 elements, the performance
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Fig. 16 a Logarithmic execution time in seconds and b percentage of execution time for our comparison-
free sorting algorithm for varying input set sizes and corresponding element value ranges with Gaussian
distribution for single- andmulti-threaded CPUs and amany-threadedGPU as compared to common sorting
algorithms

is almost the same and there is no drawback in execution time, wherein the results are
almost identical to that reported in Figs. 8, 9, 10, 11, 12 and 13.

7 Summary and comparison with prior results

Table 3 summarizes the key features of our comparison-free sorting algorithm for 1-
/8-threaded CPUs and amany-threaded GPU. Row 1 compares our sorting algorithm’s
performance increase as compared to common sorting algorithms running on similar
platforms. Row 2 compares the performance increase for the GPU as compared to
the CPUs. Row 3 shows the memory consumption for all implementations, which is
constant at approximately 5 GB.We note that the GPU provides superior performance
as compared to the CPUs with the same memory usage. Rows 4 and 5 show the
sorting scenarios that give the best and worst performance, respectively, for each
implementation, and row 6 shows the variation ratio in the performance between the
best and worst performance. These results show that the GPU’s performance is least
effected by the sorting scenario and only aminor effect on theCPUs performancewhen
the input size is larger than 224 elements. Rows 7 and 8 show the input set size ranges
that show strict linear or logarithmic growth rates, respectively, which shows that the
GPUhas an even larger linear growth rate range as compared to theCPUs; however, we
note that all implementations actually scale linearly for all data sizes with an execution
time complexity near O(N) with small constant factor. Row 9 emphasizes this fact,
showing the logarithmic expression rate, which is a linear expression of rate<0.5 and
DC offset<0.5. In these expressions, the GPU has the highest performance with a rate
of change against input set sizes of powers of 2 with the lowest DC offset close to zero.
The last row shows the number of lines of code required for each implementation for
non-commercial use, which shows our algorithm’s simplicity.
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Fig. 17 a Execution time in seconds and b percentage of execution time for our comparison-free sorting
algorithm as compared to other common sorting algorithms for varying input set sizes with Gaussian
distribution on a single-threaded CPU

Figure 17a, b compares our algorithm’s single-threaded CPU implementation’s
execution time in seconds and percentage of execution time, respectively, with other
common sorting algorithms [29, 30] for varying input set sizes with Gaussian dis-
tribution. These results show execution time reductions for our sorting algorithm of
approximately 4.6× as compared to quicksort and 6× as compared to merge sort
and radix sort. Based on these results, to the best of our knowledge, our algorithm can
be considered as one of the fastest sorting algorithms as compared to other common
sorting algorithms.

Table 4 compares the execution time in seconds for our algorithm for an 8-threaded
CPU compared to other common sorting algorithms executed on a quad-core CPU
for large input sizes. These results show the performance advantage of our algorithm,
which is mainly due to the vector thread operations and forward-flowing computations
as compared to other sorting algorithms that require several backward-flowing compu-
tations and dependent thread operations. Our sorting algorithm also obviates the need
for a large memory by only operating on smaller partitions of the input set and avoids
using the transposed one-hot memory as compared to other sorting algorithms that
use large memories for backend merge sorting computations and backward-flowing
comparisons between data elements. Table 5 shows similar performance advantages
for the GPU implementation compared to other common GPU sorting algorithms
[35–37].

Figure 18 shows the memory consumption in bytes for our sorting algorithm as
compared to other common sorting algorithms for varying input set sizeswithGaussian
distribution. The results show that for input set sizes less than 225 elements, our
algorithm’smemory consumption is comparable to other sorting algorithms and shows
efficient improvements as the input set size increases, and outperforms all other sorting
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Table 4 Sorting time in seconds for common sorting algorithms parallelized on a quad-core CPU and our
proposed sorting algorithm

Algorithm Input set size

220 222 224 226 228

Butterfly sort
[35]

0.6 3 8.6 18.1 33.7

Radix sort [36] 0.44 1.7 6.7 27.1 83.2

AA sort [15] 0.47 0.36 0.9 4.8 17

Proposed
sorting
algorithm
with an
8-threaded
CPU

0.017 0.058 0.234 1.08 4.41

Table 5 Sorting time in second for common sorting algorithms parallelized on a GPU and our proposed
sorting algorithm

Algorithm Input set size

220 222 224 226 228 GPU device

Merge [35] 0.024 0.13 0.41 1.68 2.64 GTX 280
(30 SMs)

Quicksort
[36]

22 62.7 113 228 328 GTX 8800
(512MIB)

Rank [37] 1.7 21.5 92.2 156 285 Quadro 6000

Odd–even
[38]

0.83 7.4 36.7 92 143 Quadro 6000

Bitonic [39] 0.054 0.63 1.3 1.97 2.82 Quadro 6000

Proposed
sorting
algorithm

0.0038 0.016 0.071 0.29 1.2 NVIDIA
TESLA
K20M

algorithms for 228 elements and larger.Most sorting algorithms [34–38] require 10GB
of memory to attain high performance, while our algorithm only requires 5 GB. One
explanation for this efficiency is that our algorithmdoes not require storage formerging
the sorted partitions to produce the final completely sorted set; thus, there is no need
for this temporary storage.

8 Conclusions and future works

In this paper, we proposed a novel comparison-free sorting algorithm, and associ-
ated software implementations for single- and 8-threaded CPUs and many-threaded
GPUs. Our algorithm parallelizes the computations such that each thread is assigned

123

Author's personal copy



S. Abdel-hafeez et al.

(b)(a)

0
1E+10
2E+10
3E+10
4E+10
5E+10
6E+10
7E+10
8E+10
9E+10
1E+11

M
em

or
y 

si
ze

 in
 B

yt
es

 

DATA SIZE N=2^(K) 
Bubble Quick 3-way Merge Insertion Proposed

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

7 8 10 12 14 16 18 20 22 24 26 28 30 7 8 10 12 14 16 18 20 22 24 26 28 30Pe
rc

en
ta

ge
 o

f m
em

or
y 

co
ns

um
pt

io
n 

 
Fig. 18 aTotalmemory consumption in bytes and b percentage ofmemory consumption for our comparison-
free sorting algorithm and other common sorting algorithms for varying input set sizes

to individual elements and the workload is well balanced. The software implementa-
tions use four forward-flowing computational phases: The first phase assigns the input
elements to an index array; the second phase computes the number of occurrences
of each element associated with each index and stores this value in the count array;
the third phase calculates the accumulated sum at each index of the array and stores
this value in the sum array; and the fourth phase correlates the sum and the count
arrays to generate the outputted sorted array. Since sorting is performed using only
forward-flowing computations without increasing the memory requirements due to
storing temporary data and there are no long waiting periods for the data elements
for repeated comparisons, these characteristics obviate the need for large global and
local memories, which is considered as a bottleneck in most sorting algorithms. The
synchronization between the computational phases is maintained using barrier syn-
chronization, and atomic operations are only used when transitioning from phase one
to phase two; thus, the computations are fast and operate in parallel.

Our results evaluate different sorting scenarios with different data distributions,
number of repeated elements, and input set sizes. Results show increased performance
of approximately 4.6× to 6× , 4× , and 3.5× for our single-threaded CPU, multi-
threaded CPU, and GPU implementations, respectively, as compared to most common
sorting algorithm, and show reduced runtime variation for different input set sizes,
especially for theGPU for large input sizes, which is a characteristic that is not inherent
in many other sorting algorithms. Our algorithm also shows a true linear computation
rate complexity on the order O(N) with a minimal constant scaling factor for data sizes
of the order 2 N and logarithmic timescale with a slope rate less than 1, as compared
to other sorting algorithms with linear and logarithmic scale slopes with rate factors
ranging between 10 and 100.

Our future work includes leveraging our sorting algorithm for different varieties of
commercially available parallel processing computational powers, such as the wide
spectrum of GPU-based machines available in the market. This further extends the
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performance advantages of our sorting algorithm to big data and reduces any adverse
memory effects, further enhancing the processing time for big data.
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