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a  b  s  t  r  a  c  t

Technological  advancements  in  embedded  systems  due  to Moore’s  law  have  led  to  the  proliferation  of
wireless  sensor  networks  (WSNs)  in  different  application  domains  (e.g.,  defense,  health  care,  surveillance
systems)  with  different  application  requirements  (e.g.,  lifetime,  reliability).  Many  commercial-off-the-
shelf  (COTS)  sensor  nodes  can  be specialized  to  meet  these  requirements  using  tunable  parameters  (e.g.,
processor  voltage  and  frequency)  to  specialize  the  operating  state.  Since  a  sensor  node’s  performance
depends  greatly  on environmental  stimuli,  dynamic  optimizations  enable  sensor  nodes  to automatically
determine  their  operating  state  in situ.  However,  dynamic  optimization  methodology  development  given
a large  design  space  and  resource  constraints  (memory  and  computational)  is  an  extremely  challeng-
ing  task.  In  this  paper,  we  propose  a  lightweight  dynamic  optimization  methodology  that  intelligently
selects  initial  tunable  parameter  values  to  produce  a high-quality  initial  operating  state  in one-shot  for
time-critical  or  highly  constrained  applications.  Further  operating  state  improvements  are  made  using  an
efficient  greedy  exploration  algorithm,  achieving  optimal  or  near-optimal  operating  states  while  explor-
ing only  0.04%  of  the  design  space  on  average.  We  also  propose  an  application  metrics  estimation  model,
which  is  leveraged  by  our  dynamic  optimization  methodology,  to estimate  high-level  application  metrics
(e.g.,  lifetime,  throughput)  from  sensor  node  tunable  parameters  and  hardware  specific  internals.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Advancements in semiconductor technology, as predicted by
Moore’s law, have enabled high transistor density in a small chip
area resulting in the miniaturization of embedded systems (e.g.,
sensor nodes). Wireless sensor networks (WSNs) are envisioned
as ubiquitous computing systems, which are proliferating in many
application domains (e.g., defense, health care, surveillance sys-
tems) each with varying application requirements that can be
defined by high-level application metrics (e.g., lifetime, reliabil-
ity). However, the diversity of WSN  application domains makes it
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difficult for commercial-off-the-shelf (COTS) sensor nodes to meet
these application requirements.

Since COTS sensor nodes are mass-produced to optimize cost,
many COTS sensor nodes possess tunable parameters (e.g., proces-
sor voltage and frequency, sensing frequency), whose values can
be tuned for application specialization [18]. The WSN  application
designers (those who  design, manage, or deploy the WSN  for an
application) are typically biologists, teachers, farmers, and house-
hold consumers that are experts within their application domain,
but have limited technical expertise. Given the large design space
and operating constraints, determining appropriate parameter val-
ues (operating state) can be a daunting and/or time consuming
task for non-expert application managers. Typically, sensor node
vendors assign initial generic tunable parameter value settings,
however, no one tunable parameter value setting is appropriate for
all applications. To assist the WSN  managers with parameter tuning
to best fit the application requirements, an automated parameter
tuning process is required.

Parameter optimization is the process of assigning appropriate
(optimal or near-optimal) tunable parameter value settings to meet
application requirements. Parameter optimizations can be static or
dynamic. Static optimizations assign parameter values at deploy-
ment and these values remain fixed for the lifetime of the sensor
node. One of the challenges associated with static optimizations is

2210-5379/$ – see front matter ©  2013 Elsevier Inc. All rights reserved.
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accurately determining the tunable parameter value settings using
environmental stimuli prediction/simulation. Furthermore, static
optimizations are not appropriate for applications with varying
environmental stimuli. Alternatively, dynamic optimizations assign
(and re-assign/change) parameter values during runtime enabling
the sensor node to adapt to changing environmental stimuli, and
thus more accurately meet application requirements.

WSN  dynamic optimizations present additional challenges as
compared to traditional processor or memory (cache) dynamic
optimizations because sensor nodes have more tunable parameters
and a larger design space. The dynamic profiling and optimization
(DPOP) project aims to address these challenges and complexi-
ties associated with sensor-based system design through the use
of automated optimization methods [6].  The DPOP project has
gathered dynamic profiling statistics from a sensor-based sys-
tem, however, the parameter optimization process has not been
addressed.

In this paper, we investigate parameter optimization using
dynamic profiling data already collected from the platform. We
analyze several dynamic optimization methods and evaluate algo-
rithms that provide a good operating state without significantly
depleting the battery energy. We  explore a large design space
with many tunable parameters and values, which provide a fine-
grained design space, enabling sensor nodes to more closely
meet application requirements as compared to smaller, more
course-grained design spaces. Gordon-Ross et al. [8] showed that
finer-grained design spaces contain interesting design alternatives
and result in increased benefits in the cache subsystem (though
similar trends follow for other subsystems). However, the large
design space exacerbates optimization challenges, taking into
consideration a sensor node’s constrained memory and compu-
tational resources. Considering the sensor node’s limited battery
life, energy-efficient computing is always of paramount signifi-
cance. Therefore, optimization algorithms that conserve energy
by minimizing design space exploration to find a good operat-
ing state are critical, especially for large design spaces and highly
constrained systems. Additionally, rapidly changing application
requirements and environmental stimuli coupled with limited bat-
tery reserves necessitates a highly responsive and low overhead
methodology.

Our main contributions in this paper are:

• We propose a lightweight dynamic optimization methodology
that intelligently selects appropriate initial tunable parameter
value settings by evaluating application requirements, the rel-
ative importance of these requirements with respect to each
other, and the magnitude in which each parameter effects each
requirement. This one-shot operating state obtained from appro-
priate initial parameter value settings provides a high-quality
operating state with minimal design space exploration for highly
constrained applications. Results reveal that the one-shot oper-
ating state is within 8% of the optimal operating state averaged
over several different application domains and design spaces.

• We  present a dynamic optimization methodology to iteratively
improve the one-shot operating state to provide an optimal or
near-optimal operating state for less constrained applications.
Our dynamic optimization methodology combines the initial tun-
able parameter value settings with an intelligent exploration
ordering of tunable parameter values and an exploration arrange-
ment of tunable parameters (since some parameters are more
critical for an application than others and thus should be explored
first [31] (e.g., the transmission power parameter may  be more
critical for a lifetime-sensitive application than processor volt-
age)).

• We architect a lightweight online greedy algorithm that lever-
ages intelligent parameter arrangement to iteratively explore the

design space, resulting in an operating state within 2% of the
optimal operating state while exploring only 0.04% of the design
space.

• We for the first time, to the best of our knowledge, propose
an application metrics estimation model that estimates high-level
application metrics from low-level sensor node tunable param-
eters and the sensor node’s hardware internals (e.g., transceiver
voltage, transceiver receive current). Our dynamic optimization
methodology leverages this estimation model while comparing
different operating states for optimization purposes.

Our research has a broad impact on WSN  design and deploy-
ment. Our work enables non-expert application managers to
leverage our dynamic optimization methodology to automati-
cally tailor the sensor node tunable parameters to best meet
the application requirements with little design time effort. Our
proposed methodology is suitable for all WSN  applications ran-
ging from highly constrained to highly flexible applications. The
one-shot operating state provides a good operating state for
highly constrained applications, whereas greedy exploration of
the parameters provides improvement over the one-shot oper-
ating state to determine a high-quality operating state for less
constrained applications. Our initial parameter value settings,
parameter arrangement, and exploration ordering techniques are
also applicable to other systems or application domains (e.g.,
cache tuning) with different application requirements and dif-
ferent tunable parameters. Our application metrics estimation
model provides a first step toward high-level metrics estimation
from sensor node tunable parameters and hardware internals.
The estimation model establishes a relationship between sen-
sor node operating state and high-level metrics. Since application
managers typically focus on high-level metrics and are gen-
erally unaware of low-level sensor node internals, this model
provides an interface between the application manager and
the sensor node internals. Additionally, our model can poten-
tially spark further research in application metrics estimation for
WSNs.

The remainder of this paper is organized as follows. Sec-
tion 2 overviews the related work. Section 3 presents our dynamic
optimization methodology along with the state space and
objective function formulation. We  describe our dynamic optimiza-
tion methodology’s steps and algorithms in Section 4. Section 5
describes our application metrics estimation model that is lever-
aged by our dynamic optimization methodology. Experimental
results are presented in Section 6. Finally, Section 7 concludes the
paper and discusses future research work directions.

2. Related work

There exists much research in the area of dynamic optimiza-
tions [9–11,31], but most previous work targets the processor or
memory (cache) in computer systems. There exists little previous
work on WSN  dynamic optimization, which presents more chal-
lenges given a unique design space, design constraints, platform
particulars, and external influences from the WSN’s operating envi-
ronment.

In the area of dynamic profiling and optimization, Sridharan
et al. [26] dynamically profiled a WSN’s operating environment
to gather profiling statistics, however, they did not describe a
methodology to leverage these profiling statistics for dynamic
optimization. Shenoy et al. [25] investigated profiling methods
for dynamically monitoring sensor-based platforms with respect
to network traffic and energy consumption, but did not explore
dynamic optimizations. In prior work, Munir et al. [18,19] proposed
a Markov Decision Process (MDP)-based methodology for optimal
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sensor node parameter tuning to meet application requirements
as a first step toward WSN  dynamic optimization. The MDP-based
methodology required high computational and memory resources
for large design spaces and needed a high-performance base station
node (sink node) to compute the optimal operating state for
large design spaces. The operating states determined at the base
station were then communicated to the other sensor nodes. The
high resource requirements made the MDP-based methodology
infeasible for autonomous dynamic optimization for large design
spaces given the constrained resources of individual sensor nodes.
Kogekar et al. [14] proposed dynamic software reconfiguration to
adapt software to new operating conditions, however, their work
did not consider sensor node tunable parameters and application
requirements. Verma [27] investigated simulated annealing (SA)
and particle swarm optimization (PSO)-based parameter tuning for
WSNs and observed that SA performed better than PSO because
PSO often quickly converged to local minima. Although there exists
work on optimization of WSNs, our work uses multi-objective
optimization and fine-grained design space to find optimal (or
near-optimal) sensor node operating states that meet application
requirements.

One of the prominent dynamic optimization techniques for
reducing energy consumption is dynamic voltage and frequency
scaling (DVFS). Several previous works explored DVFS in WSNs.
Min  et al. [17] utilized a voltage scheduler, running in tandem
with the operating system’s task scheduler, to perform DVFS
based on an a priori prediction of the sensor node’s workload,
and resulted in a 60% reduction in energy consumption. Similarly,
Yuan et al. [30] used additional transmitted data packet informa-
tion to select appropriate processor voltage and frequency values.
Although DVFS is a method for dynamic optimization, DVFS con-
siders only two sensor node tunable parameters (processor voltage
and frequency). In this paper, we expand the sensor node param-
eter tuning space, which provides a finer-grained design space,
enabling sensor nodes to more closely meet application require-
ments.

Some dynamic optimization work utilized dynamic power
management for energy conservation in WSNs. Wang et al. [28]
proposed a strategy for optimizing mobile sensor node placement
to meet coverage and energy requirements. Their strategy uti-
lized dynamic power management to optimize the sensor nodes’
sleep state transitions for energy conservation. Ning et al. [22]
presented a link layer dynamic optimization approach for energy
conservation in WSNs by minimizing the idle listening time. Their
approach utilized traffic statistics to optimally control the receiver
sleep interval. In our work, we incorporate energy conservation
by switching the sensors, processors, and transceivers to low
power, idle modes when these components are not actively sensing,
processing, and communicating, respectively.

Even though there exists work on WSN  optimizations, dynamic
optimization requires further research. Specifically, there is a need
for lightweight dynamic optimization methodologies for sensor
node parameter tuning considering a sensor node’s limited energy
and storage. Furthermore, sensor node tunable parameter arrange-
ment and exploration order requires further investigation. Our
work provides contribution to the dynamic optimization of WSNs
by proposing a lightweight dynamic optimization methodology for
WSNs in addition to a sensor node’s tunable parameters arrange-
ment and exploration order techniques.

3. Dynamic optimization methodology

In this section, we give an overview of our dynamic optimiza-
tion methodology along with the state space and objective function
formulation for the methodology.

Fig. 1. Our dynamic optimization methodology per sensor node for WSNs.

3.1. Overview

Fig. 1 depicts our dynamic optimization methodology for WSNs.
WSN  designers evaluate application requirements and capture
these requirements as high-level application metrics (e.g., lifetime,
throughput, reliability) and associated weight factors.  The weight
factors signify the weightage/importance of application metrics
with respect to each other. The sensor nodes use application
metrics and weight factors to determine an appropriate operating
state (tunable parameter value settings) by leveraging an applica-
tion metrics estimation model. The application metrics estimation
model estimates high-level application metrics from low-level sen-
sor node parameters and sensor node hardware-specific internals
(Section 5 discusses our application metrics estimation model in
detail).

Fig. 1 shows the per sensor node dynamic optimization pro-
cess (encompassed by the dashed circle), which is orchestrated by
the dynamic optimization controller. The process consists of two
operating modes: the one-shot mode wherein the sensor node
operating state is directly determined by initial parameter value
settings and the improvement mode wherein the operating state is
iteratively improved using an online optimization algorithm. The
dynamic optimization process consists of three steps. In the first
step corresponding to the one-shot mode, the dynamic optimiza-
tion controller intelligently determines the initial parameter value
settings (operating state) and exploration order (ascending or des-
cending), which is critical in reducing the number of states explored
in the third step. In the one-shot mode, the dynamic optimiza-
tion process is complete and the sensor node transitions directly
to the operating state specified by the initial parameter value
settings. The second step corresponds to the improvement mode,
which determines the parameter arrangement based on applica-
tion metric weight factors (e.g., explore processor voltage then
frequency then sensing frequency). This parameter arrangement
reduces the design space exploration time using an optimization
algorithm in the third step to determine a good quality operating
state. The third step corresponds to the improvement mode and
invokes an online optimization algorithm for parameter exploration
to iteratively improve the operating state to more closely meet
application requirements as compared to the one-shot’s operating
state. The online optimization algorithm leverages the intelligent
initial parameter value settings, exploration order, and parameter
arrangement.
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A dynamic profiler records profiling statistics (e.g., processor
voltage, wireless channel condition, radio transmission power)
given the current operating state and environmental stimuli
and passes these profiling statistics to the dynamic optimization
controller. The dynamic optimization controller processes the pro-
filing statistics to determine whether the current operating state
meets the application requirements. If the application require-
ments are not met, the dynamic optimization controller reinvokes
the dynamic optimization process to determine a new operating
state. This feedback process continues to ensure that the appli-
cation requirements are best met  under changing environmental
stimuli. We  point out that our current work describes the dynamic
optimization methodology, however, incorporation of profiling
statistics to provide feedback is part of our future work.

3.2. State space

The state space S for our dynamic optimization methodology
given N tunable parameters is defined as:

S  = P1 × P2 × · · · × PN (1)

where Pi denotes the state space for tunable parameter i, ∀ i ∈ {1, 2,
. . .,  N} and × denotes the Cartesian product. Each tunable parame-
ter’s state space Pi consists of n values:

Pi = {pi1 , pi2 , pi3 , . . . , pin } |Pi| = n (2)

where |Pi| denotes the tunable parameter i’s state space cardinality
(the number of tunable values in Pi). S is a set of n-tuples formed by
taking one tunable parameter value from each tunable parameter.
A single n-tuple s ∈ S is given as:

s  = (p1y , p2y , . . . , pNy ) : piy ∈ Pi,

∀ i ∈ {1, 2, . . . , N}, y ∈ {1, 2, . . . , n} (3)

Each n-tuple represents a sensor note operating state. We  point out
that some n-tuples in S may  not be feasible (such as invalid com-
binations of processor voltage and frequency) and can be regarded
as do not care tuples.

3.3. Optimization objective function

The sensor node dynamic optimization problem can be formu-
lated as:

max  f (s)

s.t. s ∈ S
(4)

where f(s) represents the objective function and captures applica-
tion metrics and weight factors, and is given as:

f (s) =
m∑

k=1

ωkfk(s)

s.t. s ∈ S

ωk ≥ 0, k = 1, 2, . . . , m.

ωk ≤ 1, k = 1, 2, . . . , m.

m∑
k=1

ωk = 1

(5)

where fk(s) and ωk denote the objective function and weight factor
for the kth application metric, respectively, given that there are m
application metrics.

For our dynamic optimization methodology, we  consider three
application metrics (m = 3): lifetime, throughput, and reliability,
whose objective functions are represented by fl(s), ft(s), and fr(s),

Fig. 2. Lifetime objective function fl(s).

respectively. We  define fl(s) (Fig. 2) using the piecewise linear func-
tion:

fl(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, sl ≥ ˇl

CUl
+

(Cˇl
− CUl

)(sl − Ul)

(ˇl − Ul)
, Ul ≤ sl < ˇl

CLl
+ (CUl

− CLl
)(sl − Ll)

(Ul − Ll)
, Ll ≤ sl < Ul

CLl
· (sl − ˛l)

(Ll − ˛l)
, ˛l ≤ sl < Ll

0, sl < ˛l

(6)

where sl denotes the lifetime offered by state s, the constant
parameters Ll and Ul denote the desired minimum and maxi-
mum lifetime, and the constant parameters ˛l and ˇl denote the
acceptable minimum and maximum lifetime. The piecewise linear
objective function provides WSN  designers with a flexible appli-
cation requirement specification, as it allows both desirable and
acceptable ranges [16]. The objective function reward gradient
(slope) would be greater in the desired range than the accept-
able range, however, there would be no reward/gain for operating
outside the acceptable range. The constant parameters CLl

, CUl
,

and Cˇl
in (6) denote the fl(s) value at Ll, Ul, and ˇl, respec-

tively (constant parameters are assigned by the WSN  designer
based on the minimum and maximum acceptable/desired values
of application metrics). The ft(s) and fr(s) can be defined similar
to (6).

The objective function characterization enables the reward/gain
calculation from operating in a given state based on the high-level
metric values offered by the state. Although different characteriza-
tion of objective functions results in different reward values from
different states, our dynamic optimization methodology selects a
high-quality operating state from the design space to maximize
the given objective function value. We  consider piecewise lin-
ear objective functions as a typical example from the possible
objective functions (e.g., linear, piecewise linear, non-linear) to
illustrate our dynamic optimization methodology, though other
objective functions characterizations work equally well for our
methodology.

4. Algorithms for dynamic optimization methodology

In this section, we describe our dynamic optimization method-
ology’s three steps (Fig. 1) and associated algorithms.

4.1. Initial tunable parameter value settings and exploration
order

The first step of our dynamic optimization methodology deter-
mines initial tunable parameter value settings and exploration
order (ascending or descending). These initial tunable parameter
value settings results in a high-quality operating state in one-shot,
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hence the name one-shot mode (Fig. 1). The algorithm calculates
the application metric objective function values for the first and
last values in the set of tunable values for each tunable parameter
while other tunable parameters are set to an arbitrary initial setting
(either first or last value). We  point out that the tunable values for a
tunable parameter can be arranged in an ascending order (e.g., for
processor voltage Vp = {2.7, 3.3, 4} V). This objective function val-
ues calculation determines the effectiveness of setting a particular
tunable parameter value in meeting the desired objective (e.g., life-
time). The tunable parameter setting that gives a higher objective
function value is selected as the initial parameter value for that tun-
able parameter. The exploration order for that tunable parameter
is set to descending if the last value in the set of tunable values
(e.g., Vp = 4 in our previous example) gives a higher objective func-
tion value or ascending otherwise. This exploration order selection
helps in reducing design space exploration for a greedy-based
optimization algorithm (step 3), which stops exploring a tunable
parameter as soon as a tunable parameter setting gives a lower
objective function value than the initial setting. This initial param-
eter value setting and exploration order determination procedure
is then repeated for all other tunable parameters and application
metrics.

Algorithm 1 (Initial tunable parameter value settings and exploration
order algorithm).

Input : f(s) , N, n, m, P
Output: Initia l tunabl e paramete r valu e setting s and exploratio n order
for k ← 1 to m do1

for Pi ← P1 to PN do2
f kpi1

← kth metri c objectiv e functio n valu e when paramete r settin g is3
{Pi = pi1 , P j = Pj0 , i /= j} ;
f kpin

← kth metri c objectiv e functio n valu e when paramete r settin g is4
{Pi = pin , P j = Pj0 , i /= j} ;
d f kPi ← f kpin − f kpi1 ;5
if d f kPi ≥ 0 then6

explore Pi in descendin g order ;7
Pk
d
[i] ← descendin g ;8

Pk
0 [i] ← pk

in
;9

else10
explore Pi in ascendin g order ;11
Pk
d
[i] ← ascendin g ;12

Pk
0 [i] ← pk

i1
;13

end14
end15

end16
return P k

d , P
k
0 ,k ∈{1,...,m}

Algorithm 1 describes our technique to determine initial tun-
able parameter value settings and exploration order (first step of
our dynamic optimization methodology). The algorithm takes as
input the objective function f(s), the number of tunable parameters
N, the number of values for each tunable parameter n, the num-
ber of application metrics m, and P where P represents a vector
containing the tunable parameters, P = {P1, P2, . . .,  PN}. For each
application metric k, the algorithm calculates vectors Pk

0 and Pk
d

(where d denotes the exploration direction (ascending or descen-
ding)), which store the initial value settings and exploration order,
respectively, for the tunable parameters. The algorithm determines
the kth application metric objective function values f k

pi1
and f k

pin

where the parameter being explored Pi is assigned its first pi1 and
last pin tunable values, respectively, and the rest of the tunable
parameters Pj, ∀ j /= i are assigned initial values (lines 3–4). ıf k

Pi

stores the difference between f k
pin

and f k
pi1

. If ıf k
Pi

≥ 0, pin results

in a greater (or equal when ıf k
Pi

= 0) objective function value as

compared to pi1 for parameter Pi (i.e., the objective function value
decreases as the parameter value decreases). Therefore, to reduce
the number of states explored while considering that the greedy
algorithm (Section 4.3)  stops exploring a tunable parameter if a
tunable parameter’s value yields a comparatively lower objective
function value, Pi’s exploration order must be descending (lines
6–8). The algorithm assigns pin as the initial value of Pi for the
kth application metric (line 9). If ıf k

Pi
< 0, the algorithm assigns the

exploration order as ascending for Pi and pi1 as the initial value set-
ting of Pi (lines 11–13). This ıf k

Pi
calculation procedure is repeated

for all m application metrics and all N tunable parameters (lines
1–16).

4.2. Parameter arrangement

Depending on the application metric weight factors, some
parameters are more critical to meeting application requirements
than other parameters. For example, sensing frequency is a criti-
cal parameter for applications with a high responsiveness weight
factor and therefore, sensing frequency should be explored first.
In this subsection, we describe a technique for parameter arrange-
ment such that parameters are explored in an order characterized
by the parameters’ impact on application metrics based on rela-
tive weight factors. This parameter arrangement technique (step
2) is part of the improvement mode, which is suitable for relatively
less constrained applications that would benefit from a higher
quality operating state than the one-shot mode’s operating state
(Fig. 1).

The parameter arrangement step determines an arrangement
for the tunable parameters corresponding to each application met-
ric, which dictates the order in which the parameters will be
explored. This arrangement is based on the difference between
the application metric’s objective function values corresponding
to the first and last values of the tunable parameters, which
is calculated in step 1 (i.e., the tunable parameter that gives
the highest difference in an application metric’s objective func-
tion values is the first parameter in the arrangement vector
for that application metric). For an arrangement that considers
all application metrics, the tunable parameters’ order is set in
accordance with application metrics’ weight factors such that
the tunable parameters having a greater effect on application
metrics with higher weight factors are situated before param-
eters having a lesser affect on application metrics with lower
weight factors in the arrangement. We  point out that the effect
of the tunable parameters on an application metric is determined
from the objective function value calculations as described in
step 1. The arrangement that considers all application metrics
selects the first few tunable parameters corresponding to each
application metric, starting from the application metric with
the highest weight factor such that no parameters are repeated
in the final intelligent parameter arrangement. For example, if
processor voltage is amongst the first few tunable parameters
corresponding to two  application metrics, then the processor
voltage setting corresponding to the application metric with the
greater weight factor is selected whereas the processor voltage
setting corresponding to the application metric with the lower
weight factor is ignored in the final intelligent parameter arrange-
ment. Step 3 (online optimization algorithm) uses this intelligent
parameter arrangement for further design space exploration. The
mathematical details of the parameter arrangement step are as
follows.

Our parameter arrangement technique is based on calculations
performed in Algorithm 1. We define:

∇fP = {∇f 1
P , ∇f 2

P , . . . , ∇f m
P } (7)
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where ∇fP is a vector containing ∇f k
P , ∀ k ∈ {1, 2, . . . , m}

arranged in descending order by their respective values and
is given as:

∇f k
P = {ıf k

P1
, ıf k

P2
, . . . , ıf k

PN
} : |ıf k

Pi
| ≥ |ıf k

Pi+1
|, ∀ i ∈ {1, 2, . . . , N − 1}

(8)

The tunable parameter arrangement vector Pk corresponding to
∇f k

P (one-to-one correspondence) is given by:

Pk = {Pk
1, Pk

2, . . . , Pk
N}, ∀ k ∈ {1, 2, . . . , m}  (9)

An intelligent parameter arrangement P̂ must consider all applica-
tion metrics’ weight factors with higher importance given to the
higher weight factors, i.e.,:

P̂ = {P1
1 , . . . , P1

l1
, P2

1 , . . . , P2
l2

, P3
1 , . . . , P3

l3
, . . . , Pm

1 , . . . , Pm
lm

} (10)

where lk denotes the number of tunable parameters taken from Pk,
∀ k ∈ {1, 2, . . .,  m}  such that

∑m
k=1lk = N. Our technique allows tak-

ing more tunable parameters from parameter arrangement vectors
corresponding to higher weight factor application metrics: lk ≥ lk+1,
∀ k ∈ {1, 2, . . .,  m − 1}. In (10), l1 tunable parameters are taken from
vector P1, then l2 from vector P2, and so on to lm from vector Pm

such that {Pk
1, . . . , Pk

lk
} ∩ {Pk−1

1 , . . . , Pk−1
lk−1

} = ∅, ∀ k ∈ {2, 3, . . . , m}.
In other words, we select those tunable parameters from parame-
ter arrangement vectors corresponding to the lower weight factors
that are not already selected from parameter arrangement vectors
corresponding to the higher weight factors (i.e., P̂ comprises of dis-
joint or non-overlapping tunable parameters corresponding to each
application metric).

In the situation where weight factor ω1 is much greater than
all other weight factors, an intelligent parameter arrangement P̃
would correspond to the parameter arrangement for the applica-
tion metric with weight factor ω1, i.e.,:

P̃ = P1 = {P1
1 , P1

2 , . . . , P1
N} ⇔ ω1 � ωq, ∀ q ∈ {2, 3, . . . , m} (11)

The initial parameter value vector P̂0 and the exploration order
(ascending or descending) vector P̂d corresponding to P̂ (10) can
be determined from P̂ (10), Pk

d
, and Pk

0 , ∀ k ∈ {1, . . . , m}  (Algorithm

1) by examining the tunable parameter from P̂ and determining the
tunable parameter’s initial value setting from Pk

0 and exploration
order from Pk

d
.

4.3. Online optimization algorithm

Step three of our dynamic optimization methodology, which
also belongs to the improvement mode, iteratively improves the
one-shot’s operating state. This step leverages information from
steps one and two, and uses a greedy optimization algorithm for
tunable parameters exploration in an effort to determine a better
operating state than the one obtained from step one (Section 4.1).
The greedy algorithm explores the tunable parameters in the order
determined in step 2. The greedy algorithm stops exploring a tun-
able parameter as soon as a tunable parameter setting yields a
lower objective function value as compared to the previous tunable
parameter setting for that tunable parameter, and hence named as
greedy.  This greedy approach helps in reducing design space explo-
ration to determine an operating state. Even though we propose a
greedy algorithm for design space exploration, any other algorithm
can be used in step three.

Algorithm 2 (Online greedy optimization algorithm for tunable
parameters exploration).

Input : f(s) , N, n, P, P0 , Pd

Output: Sensor node state that maximizes  f (s) and the corresponding  f  (s) value

← initia l tunabl e paramete r valu e setting s from P0 ;1
fbest ← solution from initia l paramete r settings ;2

for Pi ← P1 to PN do3
explore Pi in ascendin g or descendin g order as suggeste d by Pd ;4

foreach Pi = {pi1 , pi2 , . . . , pin }do5
ftemp ← current state solutio n ;6
if ftemp > f best then7

fbest ← ftemp ;8
← ;9

else10
break ;11

end12
end13

end14
return , fbestξ

ξ ζ

ζ

Algorithm 2 depicts our online greedy optimization algorithm,
which leverages the initial parameter value settings (Section 4.1),
parameter value exploration order (Section 4.1), and parameter
arrangement (Section 4.2). The algorithm takes as input the objec-
tive function f(s), the number of tunable parameters N, the number
of values for each tunable parameter n, the intelligent tunable
parameter arrangement vector P̂, the tunable parameters’ initial
value vector P̂0, and the tunable parameter’s exploration order
(ascending or descending) vector P̂d . The algorithm initializes state
� from P̂0 (line 1) and fbest with �’s objective function value (line
2). The algorithm explores each parameter in P̂i where P̂i ∈ P̂ (10)
in ascending or descending order as given by P̂d (lines 3–4). For
each tunable parameter P̂i (line 5), the algorithm assigns ftemp the
objective function value from the current state � (line 6). The cur-
rent state � ∈ S denotes tunable parameter value settings and can
be written as:

� = {Pi = pix } ∪ {Pj, ∀ j /= i}, i, j ∈ {1, 2, . . . , N} (12)

where pix : x ∈ {1, 2, . . . , n} denotes the parameter value corre-
sponding to the tunable parameter Pi being explored and set Pj,
∀ j /= i denotes the parameter value settings other than the current
tunable parameter Pi being explored and is given by:

Pj =
{

Pj0, if Pj not explored before, ∀ j /= i

Pjb, if Pj explored before,  ∀ j /= i
(13)

where Pj0 denotes the initial value of the parameter as given by P̂0
and Pjb denotes the best found value of Pj after exploring Pj (lines
5–13 of Algorithm 2).

If ftemp > fbest (the objection function value increases), ftemp is
assigned to fbest and the state � is assigned to state � (lines 7–9).
If ftemp ≤ fbest, the algorithm stops exploring the current parameter
P̂i and starts exploring the next tunable parameter (lines 10–12).
The algorithm returns the best found objective function value fbest
and the state � corresponding to fbest.

4.4. Computational complexity

The computational complexity for our dynamic optimization
methodology is O(Nm log N + Nn), which is comprised of the intel-
ligent initial parameter value settings and exploration ordering
(Algorithm 1) O(Nm), parameter arrangement O(Nm log N) (sor-
ting ∇f k

P (8) contributes the N log N factor) (Section 4.2), and the
online optimization algorithm for parameter exploration (Algo-
rithm 2) O(Nn). Assuming that the number of tunable parameters
N is larger than the number of parameter’s tunable values n, the
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computational complexity of our methodology can be given as
O(Nm log N). This complexity reveals that our proposed methodol-
ogy is lightweight and is thus feasible for implementation on sensor
nodes with tight resource constraints.

5. Application metrics estimation model

This section presents our application metrics estimation model,
which is leveraged by our dynamic optimization methodology.
This estimation model estimates high-level application metrics
(lifetime, throughput, reliability) from low-level tunable param-
eters and sensor node hardware internals. The use of hardware
internals is appropriate for application metrics modeling as sim-
ilar approaches have been used in literature especially for lifetime
estimation [24,12,13].  Based on tunable parameter value sett-
ings corresponding to an operating state and hardware specific
values, the application metrics estimation model determines corre-
sponding values for high-level application metrics. These high-level
application metric values are then used in their respective objective
functions to determine the objective function values correspond-
ing to an operating state (e.g., lifetime estimation model determines
sl (lifetime offered by state s), which is then used in (6) to deter-
mine the lifetime objective function value). This section presents a
complete description of our application metrics estimation model,
including a review of our previous application metrics estimation
model [20] and additional details.

5.1. Lifetime estimation

A sensor node’s lifetime is defined as the time duration between
sensor node deployment and sensor node failure due to a wide
variety of reasons (e.g., battery depletion, hardware/software fault,
environmental damage, external destruction, etc.). Lifetime esti-
mation models typically consider battery depletion as the cause
of sensor node failure [21]. Since sensor nodes can be deployed
in remote and hostile environments, manual battery replacement
after deployment is often impractical. A sensor node reaches the
failed or dead state once the entire battery energy is depleted. The
critical factors that determine a sensor node’s lifetime are battery
energy and energy consumption during operation.

The sensor node lifetime in days Ls can be estimated as:

Ls = Eb

Ec × 24
(14)

where Eb denotes the sensor node’s battery energy in Joules and
Ec denotes the sensor node’s energy consumption per hour. The
battery energy in mWh  E′

b can be given by:

E′
b = Vb · Cb (mWh) (15)

where Vb denotes battery voltage in V and Cb denotes battery capac-
ity, typically specified in mAh. Since 1 J = 1 W s, Eb can be calculated
as:

Eb = E′
b × 3600

1000
(J) (16)

The sensors in the sensor node gather information about the
physical environment and generate continuous sequences of ana-
log signals/values. Sample-and-hold-circuits and analog-to-digital
(A/D) converters digitize these analog signals. This digital informa-
tion is processed by a processor, and the results are communicated
to other sensor nodes or a base station node (sink node) via a trans-
mitter. The sensing energy is the energy consumed by the sensor
node due to sensing events. The processing energy is the energy
consumed by the processor to process the sensed data (e.g., cal-
culating the average of the sensor values over a time interval or

the difference between the most recent sensor values and the pre-
viously sensed values). The communication energy is the energy
consumed due to communication with other sensor nodes or the
sink node. For example, sensor nodes send packets containing the
sensed/processed data information to other sensor nodes and the
sink node, which consumes communication energy.

We model Ec as the sum of the processing energy, communica-
tion energy, and sensing energy, i.e.:

Ec = Esen + Eproc + Ecom (J) (17)

where Esen, Eproc, and Ecom denote the sensing energy per hour,
processing energy per hour, and communication energy per hour,
respectively.

The sensing (sampling) frequency and the number of sensors
attached to the sensor board (e.g., the MTS400 sensor board [5] has
Sensirion SHT1x temperature and humidity sensors [23]) are the
main contributors to the total sensing energy. Our model considers
energy conservation by allowing sensors to switch to a low power,
idle mode while not sensing. Esen is given by:

Esen = Em
sen + Ei

sen (18)

where Em
sen denotes the sensing measurement energy per hour and

Ei
sen denotes the sensing idle energy per hour. Em

sen can be calculated
as:

Em
sen = Ns · Vs · Im

s · tm
s × 3600 (19)

where Ns denotes the number of sensing measurements per sec-
ond, Vs denotes the sensing board voltage, Im

s denotes the sensing
measurement current, and tm

s denotes the sensing measurement
time. Ns can be calculated as:

Ns = Nr · Fs (20)

where Nr denotes the number of sensors on the sensing board and
Fs denotes the sensing frequency. Ei

sen is given by:

Ei
sen = Vs · Is · ti

s × 3600 (21)

where Is denotes the sensing sleep current and ti
s denotes the

sensing idle time. ti
s is given by:

ti
s = 1 − tm

s (22)

We assume that the sensor node’s processor operates in two
modes: active mode and idle mode [3].  The processor operates
in active mode while processing the sensed data and switches to
the idle mode for energy conservation when not processing. The
processing energy is the sum of the processor’s energy consump-
tion while operating in the active and the idle modes. We  point out
that although we only consider active and idle modes, a processor
operating in additional sleep modes (e.g., power-down, power-
save, standby, etc.) can also be incorporated in our model. Eproc is
given by:

Eproc = Ea
proc + Ei

proc (23)

where Ea
proc and Ei

proc denote the processor’s energy consumption
per hour in the active and idle modes, respectively. Ea

proc is given
by:

Ea
proc = Vp · Ia

p · ta (24)

where Vp denotes the processor voltage, Ia
p denotes the processor

active mode current, and ta denotes the time spent by the processor
in the active mode. ta can be estimated as:

ta = NI

Fp
(25)



Author's personal copy

A. Munir et al. / Sustainable Computing: Informatics and Systems 3 (2013) 94– 108 101

where NI denotes the average number of processor instructions to
process one sensing measurement and Fp denotes the processor
frequency. NI can be estimated as:

NI = Nb · Rb
sen (26)

where Nb denotes the average number of processor instructions to
process one bit and Rb

sen denotes the sensing resolution bits (num-
ber of bits required for storing one sensing measurement).

Ei
proc is given by:

Ei
proc = Vp · Ii

p · ti (27)

where Ii
p denotes the processor idle mode current and ti denotes the

time spent by the processor in the idle mode. Since the processor
switches to the idle mode when not processing sensing measure-
ments, ti can be given as:

ti = 1 − ta (28)

The transceiver (radio) is the main contributor to the total
communication energy consumption. The transceiver trans-
mits/receives data packets and switches to the idle mode for energy
conservation when there are no more packets to transmit/receive.
The number of packets transmitted (received) and the packets’
transmission (receive) interval dictates the communication energy.
The communication energy is the sum of the transmission, receive,
and idle energies for the sensor node’s transceiver, i.e.,:

Ecom = Etx
trans + Erx

trans + Ei
trans (29)

where Etx
trans, Erx

trans, and Ei
trans denote the transceiver’s transmission

energy per hour, receive energy per hour, and idle energy per hour,
respectively. Etx

trans is given by:

Etx
trans = Ntx

pkt · Epkt
tx (30)

where Ntx
pkt

denotes the number of packets transmitted per hour

and Epkt
tx denotes the transmission energy per packet. Ntx

pkt
can be

calculated as:

Ntx
pkt = 3600

Pti
(31)

where Pti denotes the packet transmission interval in seconds
(1 h = 3600 s). Epkt

tx is given as:

Epkt
tx = Vt · It · tpkt

tx (32)

where Vt denotes the transceiver voltage, It denotes the transceiver
current, and tpkt

tx denotes the time to transmit one packet. tpkt
tx is

given by:

tpkt
tx = Ps × 8

Rtx
(33)

where Ps denotes the packet size in bytes and Rtx denotes the
transceiver data rate (in bits/s).

The transceiver’s receive energy per hour Erx
trans can be calculated

using a similar procedure as Etx
trans. Erx

trans is given by:

Erx
trans = Nrx

pkt · Epkt
rx (34)

where Nrx
pkt

denotes the number of packets received per hour and

Epkt
rx denotes the receive energy per packet. Nrx

pkt
can be calculated

as:

Nrx
pkt = 3600

Pri
(35)

where Pri denotes the packet receive interval in s. Pri can be calcu-
lated as:

Pri = Pti

ns
(36)

where ns denotes the number of neighboring sensor nodes. Epkt
rx is

given as:

Epkt
rx = Vt · Irx

t · tpkt
rx (37)

where Irx
t denotes the transceiver receive current and tpkt

rx denotes
the time to receive one packet. Since the packet size is the same, the
time to receive a packet is equal to the time to transmit the packet,
i.e., tpkt

rx = tpkt
tx .

Ei
trans can be calculated as:

Ei
trans = Vt · Is

t · ti
tx (38)

where Is
t denotes the transceiver sleep current and ti

tx denotes the
transceiver idle time per hour. ti

tx can be calculated as:

ti
tx = 3600 − (Ntx

pkt · tpkt
tx ) − (Nrx

pkt · tpkt
rx ) (39)

5.2. Throughput estimation

Throughput is defined as the amount of work processed by a
system in a given unit of time. Defining throughput semantics
for sensor nodes is challenging because three main components
contribute to the throughput, sensing, processing, and commu-
nication (transmission), and these throughput components can
have different significance for different applications. Since these
throughput components are related, one possible interpretation is
to take the throughput of the lowest throughput component as the
effective throughput. However, the effective throughput may not be
a suitable metric for a designer who  is interested in throughputs
associated with all three components.

In our model, we define the aggregate throughput as the combi-
nation of the sensor node’s sensing, processing, and transmission
rates to observe/monitor a phenomenon (measured in bits/second).
The aggregate throughput can be considered as the weighted sum
of the constituent throughputs. Our aggregate throughput model
can be used for the effective throughput estimation by assigning a
weight factor of one to the slowest of the three components and
assigning a weight factor of zero to the others. Since aggregate
throughput modeling allows flexibility and can be adapted to vary-
ing needs of a WSN  designer, we focus on modeling of the aggregate
throughput. We  model aggregate throughput as:

R = ωsRsen + ωpRproc + ωcRcom : ωs + ωp + ωc = 1 (40)

where Rsen, Rproc, and Rcom denote the sensing, processing, and com-
munication throughputs, respectively, and ωs, ωp, and ωc denote
the associated weight factors.

The sensing throughput, which is the throughput due to sensing
activity, depends upon the sensing frequency and sensing resolu-
tion bits per sensing measurement. Rsen is given by:

Rsen = Fs · Rb
sen (41)

where Fs denotes the sensing frequency.
The processing throughput, which is the processor’s throughput

while processing sensed measurements, depends upon the proces-
sor frequency and the average number of instructions required to
process the sensing measurement. Rproc is given by:

Rproc = Fp

Nb
(42)

The communication throughput, which measures the number of
packets transferred successfully over the wireless channel, depends
upon the packet size and the time to transfer one packet. Rcom is
given by:

Rcom = Peff
s × 8

tpkt
tx

(43)
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where Peff
s denotes the effective packet size excluding the packet

header overhead (i.e., Peff
s = Ps − Ph where Ph denotes the packet

header size).

5.3. Reliability estimation

The reliability metric measures the number of packets trans-
ferred reliably (i.e., error-free packet transmission) over the
wireless channel. Accurate reliability estimation is challenging due
to dynamic changes in the network topology, number of neighbor-
ing sensor nodes, wireless channel fading, sensor network traffic,
packet size, etc. The two main factors that affect reliability are
transceiver transmission power Ptx and receiver sensitivity. For
example, the AT86RF230 transceiver [2] has a receiver sensitivity
of -101 dBm with a corresponding packet error rate (PER) ≤1% for
an additive white gaussian noise (AWGN) channel with a physi-
cal service data unit (PSDU) equal to 20 bytes. Reliability can be
estimated using Friis free space transmission equation [7] for differ-
ent Ptx values, distance between transmitting and receiving sensor
nodes, and assumptions on fading model parameters (e.g., shad-
owing fading model). Different reliability values can be assigned
corresponding to different Ptx values such that the higher Ptx values
give higher reliability, however, more accurate reliability estima-
tion requires using profiling statistics for the number of packets
transmitted and the number of packets received. These profiling
statistics increase the estimation accuracy of the PER and, therefore,
reliability.

5.4. Models validation

Our models provide good accuracy in estimating application
metrics since our models accommodate many sensor node hard-
ware internals such as the battery voltage, battery capacity, sensing
board voltage, sensing sleep current, sensing idle time, sensing
resolution bits, etc. Our models are also highly flexible since our
models permit calculations for particular network settings such
as the number of neighboring sensor nodes and different types
of sensors with different hardware characteristics (e.g., sensing
resolution bits, sensing measurement time, sensing measurement
current, etc.).

Since our models provide a first step toward modeling applica-
tion metrics, our models’ accuracy cannot be completely verified
against other models because there are no similar/related applica-
tion metrics estimation models. The existing models for lifetime
estimation take different parameters and have different assump-
tions, thus an exact comparison is not feasible, however, we observe
that our lifetime model yields results in a similar range as other
models [24,12,13].  We  also compare the lifetime estimation from
our model with an experimental study on WSN  lifetimes [21]. This
comparison verifies conformity of our lifetime model with real
measurements. For example, with a sensor node battery capacity
of 2500 mAh, experiments indicate a sensor node lifetime ran-
ging from 72 to 95 h for a 100% duty cycle for different battery
brands (e.g., Ansmann, Panasonic Industrial, Varta High Energy,
Panasonic Extreme Power) [21]. Using our model with a duty
cycle of 36% on average for the sensing, processing, and commu-
nication, we calculated that a lifetime of 95/0.36 = 264 h ≈ 11 days
can be attained. Similarly for a duty cycle of 0.25% on
average for the sensing, communication, and processing, the
lifetime can be calculated as 95/0.0025 = 38,000 h ≈ 1583 days
(example lifetime calculations using our model is given in
Section 6.2.1).

The relative comparison of our models with existing models and
real measurements provide insights into the accuracy of our mod-
els, however, more accurate models can be constructed following

our modeling approach by considering additional parameters and
more detailed hardware models for sensor nodes.

6. Experimental results

In this section, we describe the experimental setup and results
for three application domains: security/defense, health care, and
ambient conditions monitoring. The results include the percentage
improvements attained by our initial tunable parameter settings
(one-shot operating state) over other alternative initial value sett-
ings, and a comparison of our greedy algorithm (which leverages
intelligent initial parameter settings, exploration order, and param-
eter arrangement) for design space exploration with other variants
of a greedy algorithm and SA. This section also presents an execu-
tion time and data memory analysis to verify the complexity of our
dynamic optimization methodology.

6.1. Experimental setup

Our experimental setup is based on the Crossbow IRIS mote plat-
form [4] with a battery capacity of 2000 mAh  using two  AA alkaline
batteries. The IRIS mote platform integrates an Atmel ATmega1281
microcontroller [3],  an MTS400 sensor board [5] with Sensirion
SHT1x temperature and humidity sensors [23], and an Atmel AT-
86RF230 low-power 2.4 GHz transceiver [2].  Table 1 shows the
sensor node hardware specific values, corresponding to the IRIS
mote platform, which are used by the application metrics estima-
tion model [4,3,23,2].

We  analyze six tunable parameters: processor voltage Vp, pro-
cessor frequency Fp, sensing frequency Fs, packet size Ps, packet
transmission interval Pti, and transceiver transmission power Ptx.
In order to explore the fidelity of our methodology across small
and large design spaces, we consider two  design space cardinali-
ties (number of states in the design space): |S| = 729 and |S| = 31, 104.
The tunable parameters for |S| = 729 are: Vp = {2.7, 3.3, 4} (v), Fp = {4,
6, 8} (MHz) [3],  Fs = {1, 2, 3} (samples per second) [23], Ps = {41, 56,
64} (bytes), Pti = {60, 300, 600} (s), and Ptx = { −17, − 3, 1} (dBm)
[2]. The tunable parameters for |S| = 31, 104 are: Vp = {1.8, 2.7, 3.3,
4, 4.5, 5} (V), Fp = {2, 4, 6, 8, 12, 16}  (MHz) [3],  Fs = {0.2, 0.5, 1, 2, 3,
4} (samples per second) [23], Ps = {32, 41, 56, 64, 100, 127} (bytes),
Pti = {10, 30, 60, 300, 600, 1200} (s), and Ptx = { −17, − 3, 1, 3} (dBm)
[2].  All state space tuples are feasible for |S| = 729, whereas |S| = 31,
104 contains 7779 infeasible state space tuples because all Vp and
Fp pairs are not feasible.

In order to evaluate the robustness of our methodology across
different applications with varying application metric weight
factors, we  model three sample application domains: a secu-
rity/defense system, a health care application, and an ambient
conditions monitoring application. We  assign application specific
values for the desirable minimum L, desirable maximum U, accept-

Table 1
Crossbow IRIS mote platform hardware specifications.

Notation Description Value

Vb Battery voltage 3.6 V
Cb Battery capacity 2000 mAh
Nb Processing instructions per bit 5
Rb

sen Sensing resolution bits 24
Vt Transceiver voltage 3 V
Rtx Transceiver data rate 250 kbps
Irx
t Transceiver receive current 15.5 mA

Is
t Transceiver sleep current 20 nA

Vs Sensing board voltage 3 V
Im
s Sensing measurement current 550 �A

tm
s Sensing measurement time 55 ms

Is Sensing sleep current 0.3 �A
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Table  2
Desirable minimum L, desirable maximum U, acceptable minimum ˛, and acceptable
maximum  ̌ objective function parameter values for the studied applications. One
lifetime unit = 5 days, one throughput unit = 20 kbps, one reliability unit = 0.05.

Notation Security/defense Health care Ambient monitoring

Ll 8 units 12 units 6 units
Ul 30 units 32 units 40 units
˛l 1 units 2 units 3 units
ˇl 36 units 40 units 60 units
Lt 20 units 19 units 15 unit
Ut 34 units 36 units 29 units
˛t 0.5 units 0.4 units 0.05 units
ˇt 45 units 47 units 35 units
Lr 14 units 12 units 11 units
Ur 19.8 units 17 units 16 units
˛r 10 units 8 units 6 units
ˇr 20 units 20 units 20 units

able minimum ˛, and acceptable maximum  ̌ objective function
parameter values for application metrics (Section 3.3)  as shown in
Table 2. We  specify the objective function parameters as a multiple
of base units for lifetime, throughput, and reliability. We  assume
one lifetime unit is equal to 5 days, one throughput unit is equal
to 20 kbps, and one reliability unit is equal to 0.05 (percentage of
error-free packet transmissions).

Although we analyzed our methodology for the IRIS motes
platform, three application domains, and two  design spaces, our
algorithms and application metrics estimation model are equally
applicable to any platform, application domain, and design space.
Our application metrics estimation model accommodates several
sensor node hardware internals, which are hardware platform-
specific and can be obtained from the platform’s datasheets. Since
the appropriate values can be substituted for any given plat-
form, our model can be used with any hardware platform. Since
the constant assignments for the minimum and maximum desir-
able values and weight factors are application-dependent and
designer-specified, appropriate assignments can be made for any
application given the application’s specific requirements. Finally,
since the number of tunable parameters and the parameters’ pos-
sible/allowed tunable values dictates the size of the design space,
we evaluate both large and small design spaces but any sized design
space could be evaluated by varying the number of tunable param-
eters and associated values.

6.2. Results

In this subsection, we present example application metrics
calculations using our application metrics estimation model as
well as present results for percentage improvements attained by
our dynamic optimization methodology over other optimization
methodologies.

6.2.1. Application metrics estimation
Since the objective function values corresponding to different

states depends upon the estimation of high-level applica-
tion metrics, we present example calculations to exemplify
this estimation process using our application metrics estima-
tion model (Section 5) and the IRIS mote platform hardware
specifications (Table 1). We  consider the example state sy =
(Vpy , Fpy , Fsy , Psy , Ptiy , Ptxy ) = (2.7, 4, 1, 41,  60,  −17).

First, we calculate the lifetime corresponding to sy. Using
(15), the battery energy is E′

b
= 3.6 × 2000 = 7200 mWh,  which

is Eb = 7200 × 3600/1000 = 25,920 J from (16). The lifetime metric
calculation requires calculation of processing, communication, and
sensing energy.

For the processing energy per hour, (26) and (25) give
NI = 5 ×24 = 120 and ta = 120/(4 × 106) = 30 �s, respectively. The

processor’s active mode energy consumption per hour from
(24) is Ea

proc = 2.7 × 2.5 × 10−3 × 30 × 10−6 = 0.2025 �J where Ia
p =

2.5 mA corresponding to (Vpy , Fpy ) = (2.7, 4) [3].  Using (28) gives
ti = 1 −30 × 10−6 s = 999.97 ms.  The processor’s idle mode energy
consumption per hour from (27) is Ei

proc = 2.7 × 0.65 × 10−3 ×
999.97 × 10−3 = 1.755 mJ  where Ii

p = 0.65 mA corresponding to
(Vpy , Fpy ) = (2.7, 4) [3].  The processor energy consumption per
hour from (23) is Eproc = 0.2025 × 10−6 + 1.755 × 10−3 = 1.7552 mJ.

For the communication energy per hour, (31) and (33) give
Ntx

pkt
= 3600/60 = 60 and tpkt

tx = 41 × 8/(250 × 103) = 1.312 ms,

respectively. (32) gives Epkt
tx = 3 × 9.5 × 10−3 × 1.312 × 10−3 =

37.392 �J. The transceiver’s transmission energy per hour
from (30) is Etx

trans = 60 × 37.392 × 10−6 = 2.244 mJ. (36) gives
Pri = 60/2 =30 where we assume ns = 2, however, our model is
valid for any number of neighboring sensor nodes. (35) and (37)
give Nrx

pkt
= 3600/30 = 120 and Epkt

rx = 3 × 15.5 × 10−3 × 1.312 ×
10−3 = 61.01 �J, respectively. The transceiver’s receive energy per
hour from (34) is Erx

trans = 120 × 61.01 × 10−6 = 7.3212 mJ.  (39)
gives ti

tx = 3600 − (60 × 1.312 × 10−3) − (120 × 1.312 × 10−3) =
3599.764 s. The transceiver’s idle energy per hour from (38) is
Ei

trans = 3 × 20 × 10−9 × 3599.764 = 0.216 mJ. (29) gives commu-
nication energy per hour Ecom = 2.244 + 7.3212 + 0.216 = 9.7812 mJ.

We calculate sensing energy per hour using (18). (20)
gives Ns = 2 ×1 = 2 (since MTS400 sensor board [5] has
Sensirion SHT1x temperature and humidity sensors [23]). (19)
gives Em

sen = 2 × 3 × 550 × 10−6 × 55 × 10−3 × 3600 = 0.6534 J.
Using (22) and (21) gives ti

s = 1 − 55 × 10−3 = 0.945 s and
Ei

sen = 3 × 0.3 × 10−6 × 0.945 × 3600 = 3.062 mJ,  respectively.
(18) gives Esen = 0.6534 + 3.062 × 10−3 = 0.6565 J.

After calculating processing, communication, and sensing
energy, we  calculate the energy consumption per hour from (17)
as Ec = 1.7552 × 10−3 + 9.7812 × 10−3 + 0.6565 = 0.668 J. (14) gives
Ls = 25,  920/(0.668 × 24) = 1616.77 days.

For the throughput application metric, (41), (42), and
(43) give Rsen = 1 ×24 = 24 bps, Rproc = 4 ×106/5 =800 kbps,
and Rcom = 21 × 8/(1.312 × 10−3) = 128.049 kbps, respectively
(Peff

s = 41 − 21 = 20 where we  assume Ph = 21 bytes). (40) gives
R = (0.4)(24) + (0.4)(800 × 103) + (0.2)(128.049 × 103) = 345.62 kbps
where we  assume ωs, ωp, and ωc equal to 0.4, 0.4, and 0.2,
respectively.

We estimate the reliability corresponding to Ptx = −17 dBm to
be 0.7 (Section 5.3), however, an accurate reliability value can only
be obtained using profiling statistics for the number of packets
transmitted and number of packets lost.

Similarly, the lifetime, throughput, and reliability for state sy =
(Vpy , Fpy , Fsy , Psy , Ptiy , Ptxy ) = (5,  16,  4, 127, 10,  3) can be calculated
as 10.6 days, 1321.77 kbps, and 0.9999, respectively. These calcu-
lation reveal that the tunable parameter value settings for a sensor
node can have a profound impact on the application metrics. For
example, the lifetime of a sensor node in our two  examples var-
ied from 10.6 days to 1616.8 days for different tunable parameter
value settings. Hence, our proposed tunable parameter value sett-
ings technique and application metrics estimation model can help
WSN  designers to find appropriate tunable parameter value sett-
ings to conserve the sensor node’s energy and to enhance the sensor
node’s lifetime after satisfying other application requirements such
as throughput and reliability.

6.2.2. Percentage improvements of one-shot over other initial
parameter settings

In order to evaluate our one-shot dynamic optimization solu-
tion quality, we  compare the solution from the one-shot initial
parameter settings P̂0 with the solutions obtained from the fol-
lowing four potential initial parameter value settings (although
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Table 3
Percentage improvements attained by one-shot (P̂0) over other initial parameter
settings for |S| = 729 and |S| = 31,104.

|S| = 729 |S| = 31,104

App. domain I1 I2 I3 I4 I1 I2 I3 I4

Security/defense 155% 10% 57% 29% 148% 0.3% 10% 92%
Health care 78% 7% 31% 11% 73% 0.3% 10% 45%
Ambient monitoring 52% 6% 20% 7% 15% −7% −12% 18%

any feasible n-tuple s ∈ S can be taken as the initial parameter
settings):

• I1 assigns the first parameter value for each tunable parameter,
i.e., I1 = pi1 , ∀ i ∈ {1, 2, . . . , N}.

• I2 assigns the last parameter value for each tunable parameter,
i.e., I2 = pin , ∀ i ∈ {1, 2, . . . , N}.

• I3 assigns the middle parameter value for each tunable parame-
ter, i.e., I3 = �pin /2�, ∀ i ∈ {1, 2, . . . , N}.

• I4 assigns a random value for each tunable parameter, i.e., I4 =
piq : q = rand() % n, ∀ i ∈ {1, 2, . . . , N} where rand() denotes a
function to generate a random/pseduo-random integer and %
denotes the modulus operator.

Table 3 depicts the percentage improvements attained by the
one-shot parameter settings P̂0 over other parameter settings
for different application domains and weight factors. We  assume
weight factors for the security/defense and health care applications
as: ωl = 0.25, ωt = 0.35, and ωr = 0.4; and for the ambient conditions
monitoring application as: ωl = 0.4, ωt = 0.5, and ωr = 0.1. We point
out that different weight factors could result in different percent-
age improvements, however, we observed similar trends for other
weight factors. Table 3 shows that one-shot initial parameter sett-
ings can result in as high as 155% improvement as compared to
other initial value settings. We  observe that some arbitrary sett-
ings may  give a comparable or even a better solution for a particular
application domain, application metric weight factors, and design
space cardinality, but that arbitrary setting would not scale to other
application domains, application metric weight factors, and design
space cardinalities. For example, I3 obtains a 12% better quality
solution than P̂0 for the ambient conditions monitoring applica-
tion for |S| = 31, 104, but yields a 10% lower quality solution for
the security/defense and health care applications for |S| = 31, 104,
and a 57%, 31%, and 20% lower quality solution than P̂0 for the
security/defense, health care, and ambient conditions monitoring
applications, respectively, for |S| = 729.

The percentage improvement attained by P̂0 over all applica-
tion domains and design spaces is 33% on average. Our one-shot
methodology is the first approach (to the best of our knowledge) to
intelligent initial tunable parameter value settings for sensor nodes
to provide a good quality operating state, as arbitrary initial param-
eter value settings typically result in a poor operating state. Results
reveal that on average P̂0 gives a solution within 8% of the optimal
solution obtained from an exhaustive search [20].

6.2.3. Comparison with greedy variants- and SA-based dynamic
optimization methodologies

For comparison purposes, we implemented an SA-based algo-
rithm, our greedy online optimization algorithm (GD) (which
leverages intelligent initial parameter value selection, exploration
ordering, and parameter arrangement), and several other greedy
online algorithm variations (Table 4) in C++. We  compare our
results with SA to provide relative comparisons of our dynamic
optimization methodology with another methodology that lever-
ages an SA-based online optimization algorithm and arbitrary
initial value settings. We  point out that step 3 of our dynamic

Table 4
Greedy algorithms with different parameter arrangements and exploration orders.

Notation Description

GD Greedy algorithm with parameter

exploration order P̂d and arrangement P̂
GDascA Explores parameter values in ascending order

with arrangement A  = {Vp, Fp, Fs, Ps, Pti, Ptx}
GDascB Explores parameter values in ascending order

with arrangement B = {Ptx, Pti, Ps, Fs, Fp, Vp}
GDascC Explores parameter values in ascending order

with arrangement C = {Fs, Pti, Ptx, Vp, Fp, Ps}
GDdesD Explores parameter values in descending order

with arrangement D  = {Vp, Fp, Fs, Ps, Pti, Ptx}
GDdesE Explores parameter values in descending order

with arrangement E = {Ptx, Pti, Ps, Fs, Fp, Vp}
GDdesF Explores parameter values in descending order

with arrangement F = {Ps, Fp, Vp, Ptx, Pti, Fs}

optimization methodology can use any lightweight algorithm (e.g.,
greedy, SA-based) in the improvement mode (Fig. 1). Although,
we present SA for comparison with the greedy algorithm, both of
these algorithms are equally applicable to our dynamic optimiza-
tion methodology. We  compare GD results with different greedy
algorithm variations (Table 4) to provide an insight into how ini-
tial parameter value settings, exploration ordering, and parameter
arrangement affect the final operating state quality. We  normalize
the objective function value (corresponding to the operating state)
attained by the algorithms with respect to the optimal solution
(objective function value corresponding to the optimal operating
state) obtained from an exhaustive search.

Fig. 3 shows the objective function values normalized to the
optimal solution for SA and greedy algorithms versus the number
of states explored for a security/defense system for |S| = 729. Results
indicate that GDascA, GDascB, GDascC, GDdesD, GDdesE, GDdesF, and
GD converge to a steady state solution (objective function value
corresponding to the operating state) after exploring 11, 10, 11,
10, 10, 9, and 8 states, respectively. We  point out that we do not
plot the results for each iteration and greedy algorithm variations
for brevity, however, we  obtained the results for all iterations and
greedy algorithm variations. These convergence results show that
GD converges to a final operating state slightly faster than other
greedy algorithms, exploring only 1.1% of the design space. GDascA

and GDascB converge to almost equal quality solutions as GDdesD

and GDdesE showing that ascending or descending parameter val-
ues exploration and parameter arrangements do not significantly
impact the solution quality for this application for |S| = 729.

Results also indicate that the SA algorithm outperforms all
greedy algorithms and converges to the optimal solution after
exploring 400 states or 55% of the design space. Fig. 3 also veri-
fies the ability of our methodology to determine a good quality,

Fig. 3. Objective function values normalized to the optimal solution for a varying
number of states explored for SA and the greedy algorithms for a security/defense
system where ωl = 0.25, ωt = 0.35, ωr = 0.4, and |S| = 729.
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Fig. 4. Objective function values normalized to the optimal solution for a vary-
ing  number of states explored for SA and greedy algorithms for a security/defense
system where ωl = 0.25, ωt = 0.35, ωr = 0.4, and |S| = 31, 104.

near-optimal solution in one-shot that is within 1.4% of the opti-
mal  solution. GD achieves only a 1.8% improvement over the initial
state after exploring 8 states.

Fig. 4 shows the objective function values normalized to the
optimal solution for SA and greedy algorithms versus the num-
ber of states explored for a security/defense system for |S| = 31,
104. Results reveal that GD converges to the final solution by
exploring only 0.04% of the design space. GDdesD, GDdesE, and
GDdesF converge to better solutions than GDascA, GDascB, and GDascC

showing that descending parameter values exploration and param-
eter arrangements D, E, and F are better for this application
as compared to the ascending parameter values exploration and
parameter arrangements A, B, and C.  This difference is because
a descending exploration order tends to select higher tunable
parameter values, which increases the throughput considerably
as compared to lower tunable parameter values. Since through-
put has been assigned a higher weight factor for this application
than the lifetime, better overall objective function values are
attained.

Comparing Fig. 4 and Fig. 3 reveals that the design space size
also affects the solution quality in addition to the parameter value
exploration order and parameter arrangement. For example, for
|S| = 729, the ascending and descending parameter value explo-
ration order and parameter arrangement results in comparable
quality solutions, whereas for |S| = 31, 104, the descending param-
eter value exploration order results in higher quality solutions.
Again, the SA algorithm outperforms all greedy algorithms and
converges to the optimal solution for |S| = 31, 104 after exploring
100 states or 0.3% of the design space. Fig. 4 also verifies the ability
of our methodology to determine a good quality, near-optimal
solution in one-shot that is within 9% of the optimal solution. GD
achieves only a 0.3% improvement over the initial state (one-shot
solution) after exploring 11 states.

Fig. 5. Objective function values normalized to the optimal solution for a varying
number of states explored for SA and greedy algorithms for an ambient conditions
monitoring application where ωl = 0.4, ωt = 0.5, ωr = 0.1, and |S| = 729.

Results for a health care application for |S| = 729 reveal that GD
converges to the final solution slightly faster than other greedy
algorithms, exploring only 1% of the design space. The SA algo-
rithm outperforms the greedy algorithm variants after exploring
400 states or 55% of the design space for |S| = 729, but the SA
improvement over the greedy algorithm variants is insignificant
as the greedy algorithm variants attain near-optimal solutions.
Results indicate that the one-shot solution is within 2% of the opti-
mal  solution. GD achieves only a 2% improvement over the one-shot
solution after exploring 8 states.

Results for a health care application for |S| = 31, 104 reveal that
GD converges to the final solution by exploring only 0.0257% of the
design space. The SA algorithm outperforms all greedy algorithms
and converges to the optimal solution after exploring 100 states
(0.3% of the design space). The one-shot solution is within 1.5% of
the optimal solution. GD achieves only a 0.2% improvement over
the one-shot solution after exploring 8 states.

Fig. 5 shows the objective function values normalized to the
optimal solution versus the number of states explored for an ambi-
ent conditions monitoring application for |S| = 729. Results reveal
that GD converges to the final solution slightly faster than other
greedy algorithms, exploring only 1.1% of the design space. GDascA,
GDascB, and GDascC converge to a higher quality solution than
GDdesD, GDdesE, and GDdesF because the ascending exploration order
tends to select lower tunable parameter values, which results in
comparatively larger lifetime values as compared to higher tun-
able parameter values. This higher lifetime results in higher lifetime
objective function values and thus higher overall objective func-
tion values. We  observe that the greedy algorithm variants result
in higher quality solutions after exploring more states than the one
attained by GD, since GDascA, GDascB, GDascC, and GDdesF attain the
optimal solution for |S| = 729. This observation reveals that other
arbitrary parameter arrangements and exploration orders may
obtain better solutions than GD but those arbitrary arrangements
and exploration orders would not scale for different application
domains with different weight factors and for different design space
cardinalities. The SA algorithm outperforms GDdesD, GDdesE, and
GD after exploring 400 states (55% of the design space). GDascA,
GDascB, GDascC, and GDdesF attain optimal solutions. Our one-shot
solution is within 8% of the optimal solution. GD achieves only a 2%
improvement over the one-shot solution after exploring 8 states.

Results for an ambient conditions monitoring application for
|S| = 31, 104 indicate that GD converges to the optimal solution after
exploring 13 states (0.04% of design space), with a 17% improve-
ment over the one-shot solution. The one-shot solution is within
14% of the optimal solution. GDascA, GDascB, and GDascC converge to
a better solution than GDdesD, GDdesE, and GDdesF for similar rea-
sons as |S| = 729. The one-shot solution is within 14% of the optimal
solution. SA converges to a near-optimal solution after exploring
400 states (1.3% of the design space).

The results for different application domains and design spaces
verify that the one-shot mode provides a high-quality solution
that is within 8% of the optimal solution averaged over all appli-
cation domains and design space cardinalities. These results also
verify that improvements can be achieved over the one-shot solu-
tion during the improvement mode. The results indicate that GD
may  explore more states than other greedy algorithms if state
exploration provides a noticeable improvement over the one-shot
solution. The results also provide an insight into the convergence
rates and reveal that even though the design space cardinality
increases by 43x, both heuristic algorithms (greedy and SA) still
explore only a small percentage of the design space and result in
high-quality solutions. Furthermore, although SA outperforms the
greedy algorithms after exploring a comparatively larger portion
of the design space, GD still provides an optimal or near-optimal
solution with significantly less design space exploration. These
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results advocate the use of GD as a design space exploration
algorithm for constrained applications, whereas SA can be used
for relatively less constrained applications. We  point out that
both GD and SA are online algorithms for dynamic optimization
and are suitable for larger design spaces as compared to other
stochastic algorithms, such as MDP-based algorithms which are
only suitable for restricted (comparatively smaller) design spaces
[18].

6.2.4. Computational complexity
We  analyze the relative complexity of the algorithms by mea-

suring their execution time and data memory requirements. We
perform data memory analysis for each step of our dynamic opti-
mization methodology. Our data memory analysis assumes an 8-bit
processor for sensor nodes with integer data types requiring 2 bytes
of storage and float data types requiring 4 bytes of storage. Analysis
reveals that the one-shot solution (step 1) requires only 150, 188,
248, and 416 bytes whereas step two requires 94, 140, 200, and 494
bytes for (number of tunable parameters N, number of application
metrics m)  equal to (3, 2), (3, 3), (6, 3), and (6, 6), respectively. GD in
step 3 requires 458, 528, 574, 870, and 886 bytes, whereas SA in step
3 requires 514, 582, 624, 920, and 936 bytes of storage for design
space cardinalities of 8, 81, 729, 31104, and 46656, respectively.

The data memory analysis shows that SA has comparatively
larger memory requirements than the greedy algorithm. Our
analysis reveals that the data memory requirements for all three
steps of our dynamic optimization methodology increases lin-
early as the number of tunable parameters, tunable values, and
application metrics, and thus the design space, increases. The
analysis verifies that although all three steps of our dynamic
optimization methodology have low data memory requirements,
the one-shot solution in step one requires 361% less memory on
average.

We measured the execution time for all three steps of our
dynamic optimization methodology averaged over 10,000 runs
(to smooth any discrepancies in execution time due to operating
system overheads) on an Intel Xeon CPU running at 2.66 GHz [29]
using the Linux/Unix time command [15]. We  scaled these execu-
tion times to the Atmel ATmega1281 microcontroller [3] running
at 8 MHz. Even though scaling does not provide 100% accuracy for
the microcontroller runtime because of different instruction set
architectures and memory subsystems, scaling provides reason-
able runtime estimates and enables relative comparisons. Results
showed that step one and step two required 1.66 ms  and 0.332 ms,
respectively, both for |S| = 729 and |S| = 31, 104. For step three, we
compared GD with SA. GD explored 10 states and required 0.887
ms and 1.33 ms  on average to converge to the solution for |S| = 729
and |S| = 31, 104, respectively. SA required 2.76 ms  and 2.88 ms  to
explore the first 10 states (to provide a fair comparison with GD)
for |S| = 729 and |S| = 31, 104, respectively. The other greedy algo-
rithms required comparatively more time than GD because they
required more design state exploration to converge than GD, how-
ever, all the greedy algorithms required less execution time than
SA.

To verify that our dynamic optimization methodology is
lightweight, we compared the execution time results for all three
steps of our dynamic optimization methodology with the exhaus-
tive search. The exhaustive search required 29.526 ms  and 2.765 s
for |S| = 729 and |S| = 31, 104, respectively, which gives speedups of
10× and 832×, respectively, for our dynamic optimization method-
ology. The execution time analysis reveals that all three steps of
our dynamic optimization methodology requires execution time
on the order of milliseconds, and the one-shot solution requires
138% less execution time on average as compared to all three steps
of the dynamic optimization methodology. Execution time savings
attained by the one-shot solution as compared to the three steps

Table 5
Energy consumption for the one-shot and the improvement mode for our dynamic
optimization methodology. IMGD

|S|=X and IMSA
|S|=X denote the improvement mode

using GD and SA as the online algorithms, respectively, for |S| = X where X = {729,
31,104}. ES|S|=X denotes the exhaustive search for |S| = X where X = {729, 31,104}.
Bf denotes the fraction of battery energy consumed in an operating mode and Rl

denotes the maximum number of times (runs) our dynamic optimization method-
ology can be executed in a given mode depending upon the sensor node’s battery
energy.

Mode Texe(ms) Edyn (�J) Bf Rl

One-shot 1.66 23.75 9.16 × 10−10 1.1 × 1010

IMGD
|S|=729 2.879 41.2 1.6 × 10−9 629.13 × 106

IMSA
|S|=729 4.752 68 2.62 × 10−9 381.2 × 106

ES|S|=729 29.526 422.52 1.63 × 10−10 61.35 × 106

IMGD
|S|=31,104 3.322 47.54 1.83 × 10−9 545.22 × 106

IMSA
|S|=31,104 4.872 69.72 2.7 × 10−9 371.77 × 106

ES|S|=31,104 2765 39,570 1.53 × 10−6 655 × 103

of our dynamic optimization methodology are 73% and 186% for
GD and SA, respectively, when |S| = 729, and are 100% and 138%
for GD and SA, respectively, when |S| = 31, 104. These results indi-
cate that the design space cardinality affects the execution time
linearly and our dynamic optimization methodology’s advantage
increases as the design space cardinality increases. We  verified our
execution time analysis using the clock() function [1],  which con-
firmed similar trends.

To further verify that our dynamic optimization methodology
is lightweight, we  calculate the energy consumption for the two
modes of our methodology — the one-shot and the improvement
modes with either a GD- or SA-based online algorithm. We  cal-
culate the energy consumption Edyn for an Atmel ATmega1281
microcontroller [3] operating at Vp = 2.7 V and Fp = 8 MHz as Edyn

= Vp · Ia
p · Texe where Ia

p and Texe denote the processor’s active cur-
rent and the execution time for the methodology’s operating
mode at (Vp, Fp), respectively (we observed similar trends for
other processor voltage and frequency settings). We point out
that we  consider the execution time for exploring the first 10
states both for the GD- and SA-based online algorithms in our
energy calculations as both the GD and SA algorithms attained
near-optimal results after exploring 10 states both for |S| = 729
and |S| = 31,104. Table 5 summarizes the energy calculations for
different modes of our dynamic optimization methodology as
well as for the exhaustive search for |S| = 729 and |S| = 31,104.
We assume that the sensor node’s battery energy in our calcu-
lations is Eb = 25, 920 J, which is computed using (16). Results
indicate that one-shot consumes 1679% and 166,510% less energy
as compared to the exhaustive search for |S| = 729 and |S| = 31,104,
respectively. Improvement mode using GD as the online algo-
rithm consumes 926% and 83,135% less energy as compared to
the exhaustive search for |S| = 729 and |S| = 31,104, respectively.
Improvement mode using SA as the online algorithm consumes
521% and 56,656% less energy as compared to the exhaustive
search for |S| = 729 and |S| = 31,104, respectively. Furthermore, our
dynamic optimization methodology using GD as the online algo-
rithm can be executed 545.22 × 106 − 655 × 103 = 544.6 × 106 more
times than the exhaustive search and 173.45 × 106 more times than
when using SA as the online algorithm for |S| = 31,104. These results
verify that our dynamic optimization methodology is lightweight
and can be theoretically executed on the order of million times even
on energy-constrained sensor nodes.

7. Conclusions and future work

In this paper, we proposed a lightweight dynamic optimization
methodology for WSNs, which provided a high-quality solution
in one-shot using an intelligent initial tunable parameter value
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settings for highly constrained applications. We  also proposed an
online greedy optimization algorithm that leveraged intelligent
design space exploration techniques to iteratively improve on
the one-shot solution for less constrained applications. Results
showed that our one-shot solution is near-optimal and within
8% of the optimal solution on average. Compared with simulating
annealing (SA) and different greedy algorithm variations, results
showed that the one-shot solution yielded improvements as high
as 155% over other arbitrary initial parameter settings. Results
indicated that our greedy algorithm converged to the optimal or
near-optimal solution after exploring only 1% and 0.04% of the
design space whereas SA explored 55% and 1.3% of the design
space for design space cardinalities of 729 and 31,104, respec-
tively. Data memory and execution time analysis revealed that
our one-shot solution (step one) required 361% and 85% less data
memory and execution time, respectively, when compared to
using all the three steps of our dynamic optimization method-
ology. Furthermore, one-shot consumed 1,679% and 166,510%
less energy as compared to the exhaustive search for |S| = 729
and |S| = 31,104, respectively. Improvement mode using GD as
the online algorithm consumed 926% and 83,135% less energy as
compared to the exhaustive search for |S| = 729 and |S| = 31,104,
respectively. Computational complexity along with the execution
time, data memory analysis, and energy consumption confirmed
that our methodology is lightweight and thus feasible for sensor
nodes with limited resources.

Future work includes the incorporation of profiling statistics
into our dynamic optimization methodology to provide feedback
with respect to changing environmental stimuli. In addition, we
plan to further verify our dynamic optimization methodology by
implementing our methodology on a physical hardware sensor
node platform. Future work also includes the extension of our
dynamic optimization methodology to global optimizations,  which
will ensure that individual sensor node tunable parameter settings
are both optimal for the sensor node and for the entire WSN.
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