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Abstract—As sensor networks are finding widespread use 
across many applications, designers increasingly must not only 
focus on application development, but also on sensor network 
optimizations. Given the complexities of sensor networks and 
the difficulty of analyzing the long-term effects of design 
changes within a deployed system, simulation is often the only 
feasible option for evaluating such optimizations. The Arizona 
Transaction-Level Simulator for Sensor Networks (ATLeS-SN) 
is a transaction-level modeling based sensor network 
simulation environment emphasizing modular design for 
modeling various components within sensor nodes and across 
the sensor network. We provide an overview of our proposed 
ATLeS-SN simulation framework and highlight the benefits of 
this framework for a building monitor application and a forest 
fire detection and propagation tracking application.  
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I. INTRODUCTION 
Sensor networks are collections of sensor nodes typically 

comprised of a microcontroller, sensors and actuators, radios, and 
power source. Many sensor networks are inexpensive to 
manufacture and can be rapidly deployed. Hence, sensor networks 
are seeing increased use in a wide variety of applications including 
industrial controls monitoring, wildlife habitat monitoring, military 
applications, and even everyday use in home automation, garage 
door openers, or intrusion detection systems [18].  

Given the significant differences in requirements for sensor 
network applications, designers must not only focus on application 
development, but also on sensor network optimization intended to 
maximize performance, throughput, lifetime, or other high-level 
metrics. For example, a sensor network utilized for gunshot 
localization would require precise timing and latency constraints 
along with high computational performance. On the other hand, a 
sensor network deployed in a remote area for wildlife monitoring 
may require a very long lifetime because an operator may be 
unable to frequently access the system for maintenance. 

Unfortunately, the complexity of sensor network systems 
makes it difficult to assess the impact of design changes or 
optimizations on system-level design constraints, such as long-
term power consumption. Taking empirical measurements by 
deploying a specifically optimized sensor network for several 
months and verifying power consumption is impractical. Thus, 
simulating a sensor network is typically the only feasible option for 
evaluating and optimizing a sensor network. 

Simulation of wireless sensor networks has been the focus of 
much previous work. Network simulation tools such as REAL [9] 
and NS2 [13] pioneered simulation in this field in order to test 
routing and MAC protocols for current and emerging network 
standards. However, network-level simulators are not designed to 
simulate applications, nor are they suitable for simulating 
individual sensor node power consumption. As these tools were 
developed before sensor node hardware became commonplace, 
they typically cannot emulate the specific operation of individual 
nodes apart from the radio transceivers. In addition, users must be 

well versed in network architectures, protocols, and terminology to 
effectively utilize this class of simulators. 

After standards were developed and physical hardware for 
sensor network became more readily available, simulators such as 
TOSSIM [11] and PowerTOSSIM [16] emerged to simulate both 
the functionality and power consumption of individual nodes – 
specifically focusing on TinyOS-based mote devices – by 
simulating the microprocessor and radio hardware with instruction-
level precision. However, such simulators can only simulate 
specific sensor nodes and typically require significant simulation 
time due to the low-level at which the simulation is performed. In 
many cases, such timing accuracy may be unnecessary. 

XRM’s reactive modules simulator employed statistical 
methods and high-level state machines modules to simulate a 
sensor network [4]. While providing a fast simulation approach, 
statistical approaches often have insufficient capability to 
reproduce unique or aberrant sensor events, and it is often difficult 
or infeasible to produce a statistical model that captures the 
behavior of a real application. 

CENSE combines simulation methods with hardware 
emulation of physical sensor nodes to provide accurate low-level 
simulation capabilities [10]. This combined simulation/emulation 
approach can provide very accurate measurements. For example, 
by coupling the simulation approach with power measurement 
hardware, an accurate analysis of the sensor network power 
consumption can be determined. However, such emulation 
approaches require specialized hardware for each emulated 
physical sensor node and are difficult to scale to large sensor 
network simulations. In addition, because the emulation hardware 
is specific to the nodes being tested, the model is difficult to 
generalize or adapt to other sensor node hardware. 

While these existing simulation approaches are effective for 
their respective purposes, they lack the ability to model a sensor 
network across all levels – including node level hardware, 
application level software, and network level interconnection. A 
more holistic and modular system-level simulation is needed to 
effectively analyze and evaluate high-level design metrics such as 
power consumption or long-term fault tolerance. For example, an 
effective simulation tool for sensor networks should allow a 
designer to efficiently and accurately estimate the energy 
consumption of sensor nodes while abstracting network protocol 
details in order to increase simulation speed. While many 
simulators offer point solutions for evaluating specific elements of 
sensor nodes or sensor networks, a more general and modular 
framework would provide many advantages.  

In this paper, we present the Arizona Transaction-Level 
Simulator for Sensor Networks (ATLeS-SN) – a transaction-level 
modeling and simulation environment for sensor networks 
implemented using the SystemC language. ATLeS-SN emphasizes 
modular design for modeling various components both within 
sensor nodes and across the sensor network. This flexible approach 
allows designers to focus on modeling, simulating, analyzing, and 
optimizing specific sensor network components without requiring 
a detailed timing accurate implementation across all levels. In 
Section 2, we provide an overview of transaction-level modeling 



 
 

(TLM) and the SystemC language. In addition, we specifically 
highlight two previous sensor network simulation efforts that 
utilized transaction-level modeling and SystemC. In Section 3, we 
provide a detailed overview of our ATLeS-SN framework. In 
Section 4, we highlight the benefits of this framework for two 
applications: a building monitor application and a forest fire 
detection and propagation tracking application. Through these case 
studies, we highlight the development efficiency, simulation 
scalability, and ease of incorporating additional functionality 
afforded by ATLeS-SN. Most importantly, we highlight how 
ATLeS-SN enabled us to quickly analyze the forest fire detection 
and propagation tracking application in the early design phases to 
determine that the current implementation was unsuitable, thereby 
enabling us to quickly identify the shortcoming in order to make 
the necessary modifications. Finally, in Section 5, we conclude and 
highlight future directions. 

II. TRANSACTION-LEVEL MODELING AND SYSTEMC 
OVERVIEW 

Transaction-level modeling is a modeling technique intended 
to separate the specification of computation and communication 
while providing efficient methods for implementing the various 
elements at different levels of abstraction [2][5]. Figure 1 provides 
a basic overview of transaction-level modeling, in which a model 
can consist of components, channels, interfaces, ports, and 
connections. Within a TLM model, components correspond to the 
basic computational, physical, or storage elements. In the provided 
example, the microprocessor (!P), memory (Mem), and 
peripherals (PE1, PE2, …, PEn) are all components. In contrast to 
components, channels provide the basic means of communicating 
between components, such as the instruction and data bus (Bus) 
connecting a microprocessor and memory. Both components and 
channels can define one or more interfaces that specify a set of 
methods – or transactions – that can be utilized to interact with the 
respective component or channel. In addition, components can 
have multiple ports that specify the type of interface(s) to which a 
component can be connected. A port can be connected to a 
component or channel as long as that component or channel 
implements the corresponding interface. In that sense, a single port 
can only be connected to one component or channel.  

Transaction-level modeling provides many benefits that make 
it a useful tool for modeling, designing, and simulating systems. 
The inherent modularity of TLM allows designers to model and 
refine the individual elements of a system with varying levels of 
detail and timing accuracy. On the one extreme, a functional un-
timed implementation can be utilized to identify the required 
elements verifying functional correctness but provides little details 
regarding the final implementation or resulting system 
performance. Such a model can be extended to an approximate-
timed model by incorporating timing annotations to approximate 
the time required to perform specific operations. At the other 
extreme, a cycle-accurate bit-accurate implementation defines the 
exact cycle-by-cycle timing where all operations are defined at the 
bit level often corresponding to a synthesizable. 

 Transaction-level modeling provides an efficient means of 
designing complex systems by allowing designers to start with a 
high-level functional model and successively refine that model 
until the final cycle-accurate bit-accurate implementation is 
reached. For example, consider a designer tasked with designing a 
system implementing a new image processing application. 
Initially, the designers may start with a functional abstraction 
consisting of a microprocessor connected to a memory. As the 
target microprocessor may not yet be known, the software can be 
directly model with a C/C++ implementation of the required 

algorithm. Once the designer has selected a microprocessor, the 
C/C++ implementation can be replaced with an instruction-
accurate instruction-set simulator. At this level, only approximate 
timing is available, as the instruction accurate simulation may not 
model the delays due to cache misses, page faults, or branch 
mispredictions. However, the approximate timed performance data 
can be utilized to evaluate various code optimizations. As this 
implementation is further refined, a cycle-accurate implementation 
may be required in which the instruction-set simulator can be 
replaced by a synthesizable VHDL/Verilog implementation of the 
target processor. At the time a system design is first envisioned, 
detailed timing information is often not available perhaps due to 
insufficient documentation or an incomplete hardware design. 
Despite this lack of detail, transaction-level modeling provides a 
useful model for simulating and evaluating early design options, 
thereby reducing the design space as further details and 
requirements are known. 

Transaction-level modeling has gained in popularity over the 
past several years and has been increasingly supported within 
various design languages, including SystemC [14], SpecC [7], and 
among others. While SystemC was originally designed as a 
hardware description language comparable to VHDL or Verilog, 
the current SystemC standard provides robust system-level 
modeling capabilities that make it an excellent option for 
transaction-level modeling. SystemC is a modeling language built 
on top of C++ that provides the required modeling abstractions 
required to implement complex system design while still retaining 
the cycle-accurate bit-accurate modeling suitable for synthesizable 
hardware descriptions. One of the advantages of SystemC is the 
integration of simulation engine within the SystemC 
implementation itself. Thus, designers can compile and simulate a 
SystemC-based model using any standard C++ compiler.  

A. Transaction-Level Modeling of Sensor Networks 
Transaction-level modeling and SystemC provide an intuitive 

method for modeling the various elements of a sensor network. For 
each sensor node, the functionality and/or timing of various 
physical components, e.g. microprocessor, sensors, and radio, as 
well as software components, e.g. application, operating systems 
(OS), drivers, can be efficiently modeled. Given the complexity 
and number of elements that need to be implemented within a 
complete sensor network system, transaction-level modeling offers 
tremendous flexibility in both how the various components are 
modeled as well as allowing designers to focus on specific 
components of complex sensor network implementation.  

For example, a designer may be interested in implementing 
and analyzing the performance of the software executing on each 
sensor node. The designer might choose to model the processor 
using a cycle-accurate instruction set simulator. This would 
provide very precise timing information for the sensor node. A 

Figure 1. Transaction-level model example consisting of several 
components (!P, Mem, PE1, PE2, …, PEn) connected through a 

communication channel (Bus) with two interfaces. 
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disadvantage of this approach is that a single node modeled at this 
level of abstraction would require long simulation times. Even with 
state-of-the-art high-performance workstations, simulating a small 
network with tens of nodes would be prohibitively time 
consuming. Instead, a designer can save time by implementing an 
approximate-timed model [1] in which the functionality of various 
elements is implemented at a high level of abstraction, along with 
timing statements that provide an approximation of the time 
required for the main tasks being performed. This simulation 
method can provide relatively accurate timing information while 
requiring significantly less time for simulation.  

Both transaction-level modeling and SystemC have been 
utilized to develop simulation frameworks specifically targeting 
sensor networks. In [19], a SystemC-based simulation environment 
originally targeted at modeling System-on-Chip (SoC) systems 
was adapted for modeling and simulating a sensor network. 
Modeling efforts primarily focused on modeling each sensor node 
as a set of tasks – both for processing and I/O – executing on a 
real-time OS, with significant attention directed at modeling the 
various states of each task to facilitate efficient scheduling. In 
addition, the physical environment model tightly coupled nodes’ 
sensors and actuators – each sensor node’s radio was modeled as a 
sensor for receiving and actuator for transmission – with the 
simulated physical location and sensor data.  

In [15], SpecC was utilized to model various aspects of a 
specific sensor network application. SpecC is a system-level 
design language that provides transaction-level modeling 
capabilities allowing designers to independently design individual 
components within the target application. The resulting sensor 
network model utilized pre-existing SpecC communication 
functionality to provide the basic mechanisms needed to model 
both handshaking and controlled access to shared radio resources. 
This case study demonstrated the feasibility of utilizing 
transaction-level modeling for sensor network applications, but the 
focus was not on developing a generic simulation framework that 
could be quickly and efficiently adapted to different applications. 

III. ARIZONA TRANSACTION-LEVEL SIMULATOR FOR 
SENSOR NETWORKS (ATLES-SN) 

The Arizona Transaction-Level Simulator for Sensor Networks 
(ATLeS-SN) is a simulation framework built using SystemC and 
transaction-level modeling that emphasizes modular design for 
modeling various components both within sensor nodes and across 
a sensor network. This modularity, which is inherent in a 
transaction-level implementation, allows designers to focus on 
specific modeling tasks, such as application development, 

networking protocols, or even the physical environment in which 
the sensor network is deployed. 

Figure 2 provides an overview of the ATLeS-SN framework, 
specifically identifying the components, interfaces, ports, and 
connections that provide the underlying foundation for modeling 
and simulating various sensor network applications. Each Sensor 
Node consists of an App component for modeling or implementing 
a node’s functionality, a Sensor component for modeling the 
sensor (or sensors) available within each node, and a NetStack 
component for modeling the network-level communication. In 
addition, all nodes connect to a PhysChannel component that 
models the physical medium, e.g. wired or wireless, by which the 
nodes are connected.  

In the ATLeS-SN framework, components can either be active 
or passive. A passive – or synchronous – component will block 
execution of the calling component until the specific transaction is 
complete. On the other hand, an active – or asynchronous – 
component is an independent component that accepts the 
information needed to perform a transaction without requiring the 
calling component to wait for the operation to complete. Instead, 
the result of the operation may come at any time, typically via a 
separate callback transaction or callback interface defined within 
the calling component.  

As further annotated in Figure 2, each component with the 
ATLeS-SN framework contains one or more interfaces that define 
the transactions – or functions – by which the connected 
components can interact. The following section provides a detailed 
overview of the various components, their interfaces, and their 
connections to other components with the proposed modeling and 
simulation framework. 

A. Sensor Node-level Modeling 
The ATLeS-SN framework provides a virtual Sensor Node 

component that encapsulates the App, NetStack, and Sensor 
components within each node along with any shared data items 
needed by multiple components. This shared information includes 
the node identifier (i.e. a unique numeric identifier utilized for 
addressing nodes), a node’s physical coordinates, and execution 
statistics including the number of packets sent, the number of 
packets received, number of packets retransmitted, etc. A designer 
can extend this shared data object to incorporate additional 
information. The sensor node’s shared data object provides a 
designer with an area typically represented by a block of physical 
shared memory within the sensor node that can be directly 
accessed by multiple components.  

Figure 2. Overview of Arizona Transaction-Level Simulator for Sensor Networks (ATLeS-SN) highlighting the underlying components, interfaces, and 
transactions needed to model various elements with a sensor network. 
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1) Application-level Modeling (App): The App is an active 
component that provides the underlying foundation needed to 
implement the functionality for a specific sensor network 
application. This component is analogous to the user-level 
application software that will execute on the processor within a 
physical sensor node. However, this abstraction does not include 
the device drivers necessary to interface with physical sensors or 
network-level communication.  

The App component defines the packet_recv_if interface that 
allows the application to receive packets from other nodes within 
the network. The packet_recv_if interface defines a single 
transaction Receive that provides the application with packets 
specifically being sent to a particular node. As described later, the 
NetStack component is responsible for implementing the network-
level communication – which may receive additional packets that 
need to be re-transmitted or forwarded through the node – but the 
application within a sensor node will only receive those packets 
specifically sent to the node. This modularity and separation of 
concerns allows an application developer to focus on the specific 
functionality of the sensor node without the need to understand the 
corresponding low-level network protocols.   

Each App component contains a port that will be connected to 
an interface for transmitting packets (typically its NetStack 
component) and one or more ports connected to Sensor 
components. Note that the simplest implementation of an App 
component would neither read sensor values nor transmit packets, 
but would still be required to receive packets as it must implement 
the Receive function of the packet_recv_if interface. 

Within ATLeS-SN, the functionality of the application can be 
modeled at various levels of abstraction. At the cycle-accurate 
level, the App component can also be implemented as an 
instruction set simulator for the processor incorporated within the 
target sensor nodes, which executes the compiled application 
binary for the software application. The advantage of this approach 
would be the ability to accurately measure sensor node 
performance and energy consumption. 

Alternatively, the App can be abstractly modeled as a C/C++ 
implementation within the App component. While this abstraction 
lacks the low-level details of an instruction set simulation, a 
designer can directly incorporate analysis and estimation methods 
within the App component. As most computational events within a 
sensor node are performed periodically, the energy consumption of 
a specific computation can be modeled as the average energy 
consumption [17]. Hence, an App component in our model 
includes a computation event counter that should be incremented 
by the application designer whenever any energy expensive 
computations occur. Such an energy-approximate model will 
provide sufficient accuracy for monitoring microprocessor energy 
consumption or implementing a battery model to analyze sensor 
node lifetime, as highlighted in Section IV.B. 

2) Sensor-level Modeling (Sensor): A Sensor component 
provides the underlying foundation for modeling physical sensors, 
e.g. temperature sensor, accelerometer, connected to the sensor 
node. In ATLeS-SN, sensors can be modeled at various 
abstractions ranging from a generic sensor interface that reads 
sensor values from an input file to a detailed model of a specific 
sensor incorporating the device driver code needed to interface 
with the sensor within a specific physical sensor node.  

Each Sensor component must implement the sensor_read_if 
interface. This interface consists of a single transaction Read that 
returns the sensor reading as an unsigned data value. Although 

sensor measurements may correspond to real numbers – such as 
measurement from an accelerometer – the raw sensor data received 
by a processor must be converted according to the specific sensor 
being utilized. As such, the sensor_read_if interface provides a 
similar abstraction in that the values read from the sensor are 
provided as unsigned integers and may need to be processed by the 
sensor node’s software application.  

Currently, all reads from a sensor are blocking synchronous 
transactions, in which the Read function will block until the 
sensor reading is available. Alternatively, a non-blocking 
asynchronous interface could be implemented by adding a callback 
interface to the App component to receive the sensor readings 
directly from the Sensor component asynchronously.  

The Sensor component also incorporates a sensor read event 
counter that allows a designer to monitor sensor activity. Similar to 
the computation event counter, the sensor read event counter could 
be utilized to estimate the energy consumption of activating and 
reading values from the physical sensor. For nodes with active 
sensors, such as the Crossbow IRIS [3], this estimation method can 
provide an accurate estimate of energy consumption, as the sensors 
are inactive – or powered off – before and after each sensor access. 

3) Network-level Modeling (NetStack): The NetStack is an 
active component that provides the foundation for modeling and 
implementing both the software and hardware components needed 
for the network stack and physical radio interface. Hence, the 
NetStack bridges the high-level software commands from the 
application to the physical transmission and reception of packets 
within the network. The implementation of network details such as 
Media Access Control (MAC), error correction, and retransmission 
are encapsulated away from the application as much as possible. 

The NetStack component defines the packet_send_if interface 
consisting of a single Send transaction. The Send transaction is 
called from an App component to transmit packets to other nodes 
within the network utilizing the specific network protocol 
implemented by the NetStack component. As such, the NetStack is 
responsible for implementing a packet buffer so that multiple 
packets sent by the App are stored until they can be transmitted to 
the physical channel via the NetStack’s port connected to a 
PhysChannel. 

The NetStack also implements radio_listen_if that defines the 
Hear transactions. The Hear transaction is called whenever the 
current node can hear a transmission from another node and 
provides the received packet along with the signal strength of the 
transmission. The NetStack component is responsible for 
implementing any MAC protocols, as well as ensuring the App 
does not receive packets addressed to other recipients. In addition, 
the NetStack handles retransmissions, packet forwarding, 
fragmentation, and other network-level details supported by the 
platform. As the network stack typically contains some software 
elements, a designer can increment the computation event counter 
as needed to account for this software execution. 

Packets transmitted within the ATLeS-SN framework are 
dynamically constructed objects containing a destination ID, link 
source identifier, handler identifier, payload, as well as any other 
protocol specific information needed by the NetStack. The 
destination identifier is the identifier of the node to which the 
packet is being transmitted. The link source identifier is the 
identifier of the node that last transmitted the packet. The handler 
identifier is an application specific identifier that typically defines 
the type of data carried within the packet, and how it should be 
handled. The Packet object provides a generic object that can be 



 
 

readily extended to include additional information needed by the 
application via the payload and the network protocol via additional 
header fields. 

B. Physical Channel-level Modeling (PhysChannel) 
The PhysChannel component provides a method for modeling 

the physical channel through which the sensor nodes communicate 
by modeling the real life propagation medium over which the 
sensor nodes transmit packets. The PhysChannel defines a single 
channel_if to which all nodes connect to transmit packets. The 
channel_if interface defines the Transmit transaction called 
from a sensor node’s NetStack that provides the packet to be 
transmitted along with the transmission strength at the point of 
origin. The PhysChannel also consists of one port for each sensor 
node within the system, where each port connects to a specific 
node’s NetStack component.  

The PhysChannel emulates inter-node communication issues 
such as collisions. Depending on the implementation, a collision 
may result in a jam resulting in no packets getting through, or the 
corresponding network protocol may contain a backoff or 
negotiation method ensuring that the transmission with the highest 
priority is always received. 

The PhysChannel determines whether a packet transmission is 
heard by each sensor node’s NetStack. As sensor nodes typically 
communicate via radios, the ATLeS-SN framework incorporates 
specific fields for specifying and modeling transmission and 
reception strengths, which can be ignored for other media. Using 
radio propagation models, the PhysChannel determines the signal 
strength at each receiver in dBm. If a particular node can hear a 
packet transmission, the PhysChannel will call the Hear function 
of the node’s NetStack radio_listen_if interface. The dBm 
parameter allows the network stack to calculate its received signal 
strength for that packet transmission if needed. For example, the 
transmission and reception strengths may be used by nodes to 
determine their nearest neighbors for distributed clustering or to 
dynamically determine an optimal spanning tree for routing 
packets within the network.  

A designer can implement various radio propagation models 
within the PhysChannel component. The model might include 
deflection or echoes from obstacles and terrain, integrate active 
interference objects, utilize ground reflection models [6], or use a 
simple equation based on distance in free space. Additionally, the 
PhysChannel model might also discard a certain percentage of 
packets depending on received signal strength or introduce bit 
errors as a function of the reception strength. In an ideal case, the 
PhysChannel implementation may simply assume that each node 
can hear all other nodes equally with zero packet loss. 

IV. CASE STUDIES AND EXPERIMENTAL RESULTS 
We utilized ATLeS-SN to develop and simulate two sensor 
network applications: a building monitoring system, and a forest 
fire detection and propagation tracking system. For both systems, 
we primarily focus on utilizing the ATLeS-SN simulation 
framework to develop and test application functionality. 
Additionally, we further demonstrate how a designer can leverage 
the modularity of ATLeS-SN to incorporate additional 
functionality by integrating a profiling component within each 
node of the forest fire detection and propagation tracking 
application to analyze various application statistics. The resulting 
profiling methodology allows us to efficiently and non–intrusively 
monitor the sensor network during simulation as well as evaluate 
the potential overhead of utilizing such profiling at runtime within 
a deployed system to monitor the status and health of the network. 

A. Building Monitor Application 
The building monitor application is designed to monitor 

movement within a building using periodic sampling of 
motion/vibration sensors. As the need to monitor activity varies 
with the time of day, nodes may operate in a low-power mode in 
which the sensor and radio components are turned off.  

Figure 3 presents an overview of the building monitor 
application implement within ATLeS-SN. The building monitor 
application consists of a single base station node and several 
vibration monitor nodes. In the base station node, the App 
component is implemented as a BaseStation component. However, 
as the base station does not directly detect movement, the base 
station does not require a Sensor component. Within the remaining 
sensor nodes, the App component is implemented as a vibration 
monitor, VibMonitor. Within these sensor nodes, an accelerometer 
connected to a floor plate is utilized to detect vibrations and 
movement within the affected room.  These Sensor components are 
implemented using a generic FileSensor component that reads 
simulated data from a designer specified input file for each sensor.  

One of the advantages of the modularity supported by ATLeS-
SN is the ability to utilize simplistic models and methodologies 
within early design phases. In developing the building monitor 
application, we developed basic implementations for the 
PhysChannel and NetStack components. Rather than utilize a 
dynamic routing scheme for routing packets, we developed an 
Airspace component for the PhysChannel that creates a spanning 
tree during the initialization of the simulation that is then utilized 
by the NetStack components when routing packets. This initial 
abstraction allowed us to reduce both simulation and development 
time, as our current focus is not on modeling and implementing a 
dynamic routing protocol. However, the ATLeS-SN framework 

Figure 3. Building monitor application highlighting the specific implementations of the underlying components with the ATLeS-SN simulation framework. 
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would allow a designer to incorporate this functionality at a later 
time if necessary. In addition, we developed a SlottedStack 
component for the NetStack within each sensor node that 
implements a time-multiplexed network protocol with schedule 
arbitration.  

 As sensor nodes are not equipped with GPS, each node must 
synchronize its time with the base station on startup. If the node 
cannot synchronize with the base station to determine the current 
time and operating mode, those nodes will still monitor activity 
and attempt to transmit messages whenever movement is detected. 
Upon receiving a synchronization request, the base station node 
broadcasts to all nodes the current time along with the current 
operating mode. 

During the normal monitoring mode, if the standard deviation 
of the last four samples is greater than a user defined threshold, the 
sensor node will transmit a message to the base station indicating 
movement was detected along with the time at which the 
movement was detected. Otherwise, nodes mostly remain silent.  

When operating in the low-power mode, sensor nodes turn off 
the radio and sensors for prolonged durations to reduce power 
consumption. However, each node will wake up once per hour to 
communicate with the base station to verify the node is still 
functional as well as respond to requests from the base station to 
change operating modes. 

The base station node receives movement messages from all 
nodes and determines if the movement is within acceptable 
designer specified ranges. The acceptable movement ranges can be 
defined both as a maximum level of movement within specific 
rooms or as a maximum level of movement across multiple  rooms. 
For example, a night watchman mode could be defined where low 
levels of movement by a patrolling guard within a single room is 
acceptable, but too much movement within one room or movement 
within more than one room is not. If this movement threshold is 
exceeded, the base station can sound an alarm, notify appropriate 
personnel, or take other necessary actions. 

The initial application development and testing for the building 
monitor application with eight sensors only required two man-

hours. This rapid application development was enabled by the 
high-level of abstraction and modularity provided by ATLeS-SN. 
However, we note the development time does not include the 
initial learning curve a designer would face when first using 
ATLeS-SN – although we anticipate this learning curve to be 
marginal.  

We simulated the building monitor application using a 3.2 
GHz quad-core Xeon server running Red Hat Linux 2.6. 
Simulating the initial eight-node system required only 15 seconds 
for each hour of simulated time. In addition, we evaluated the 
simulation speed of ATLeS-SN for sensor networks with 
increasing number of nodes. Figure 5 presents the simulation 
execution time for one hour of simulated time with 2 to 512 sensor 
nodes. As the number of nodes within the system increases, the 
simulation time increases linearly. With 512 sensor nodes, a one-
hour simulation of the building monitor application required just 
over 21 minutes. 

B. Forest Fire Detection and Propagation Tracking 
Application 

The forest fire detection and propagation tracking application 
is designed to detect and track fires in remote forest areas by 
observing and monitoring extreme temperatures. Figure 4 presents 
an overview of the forest fire detection and propagation tracking 
application implemented within ATLeS-SN. This application 
consists of a single base station node and several temperature 
sensor nodes. In the base station node, the App component is 
implemented as a BaseStation component. The App components of 
the remaining sensor nodes are implemented as fire monitor 
components, called FireMonitor. 

During the normal fire detection operation, the sensor nodes 
within the system will periodically monitor temperatures and 
transmit the temperature readings every five minutes to the base 
station. In the event that a node detects an elevated temperature for 
the previous two temperature samples, that node issues an alert to 
nearby nodes and transitions to a fire-tracking mode. Whenever a 
node receives an alert message from a nearby node, the node will 
also enter the fire-tracking mode to ensure that the fire’s 
propagation can be efficiently tracked with reduced latency. In the 

Figure 4. Forest Fire Detection and Propagation Tracking sensor network application highlighting the Profiler interface (profile_if), the addition of a packet 
insertion profiler (PIProfiler) within each sensor node, a profile aggregator (ProfileAggr) incorporated within the base station node, and the Simulation 

Control Code needed to control the profiling and analyze profile results. 

… 

… 

profile_if: 
    void Start(); 
    void Stop(); 
    string Query(); 
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fire-tracking mode, each node will sample and report the 
temperature every ten seconds.  

The base station node aggregates the reported temperature 
sensor, displays the reported data with appropriate timestamps, and 
issues alerts whenever a node enters the fire-tracking mode or a 
sensor node suffers an abrupt node failure. 

The Sensor components within each sensor node are 
implemented as ExpSensor components that model the increase in 
temperature of a given sensor node as an exponential function 
based on the node’s physical location – or X and Y coordinates – 
and the current time. The ExpSensor component initially returns a 
semi-constant nominal temperature reading until a specific time 
dependent on the node’s X and Y coordinates, after which the 
temperature increases exponentially. Using the fire simulation data 
presented in [12], we model a forest fire with linear spatial 
propagation, i.e. we model a forest fire starting at the origin (0,0) 
for which a node detects no fire until 

 

t = 5 x 2 + y 2 , after which its 
temperature readings begins to increase. Note that the ExpSensor 
component not only models a physical temperature sensor but also 
models the physical environment that affects the temperature at 
each node. While the exponential increase in temperature due to a 
forest fire is not an accurate model of a real fire’s actual 
temperatures, the spreading of the fire based on a node’s physical 
location could be accurately modeled from historical forest fire 
data. Alternatively, more accurate forest fire propagation models, 
such as [8], could be efficiently integrated into the Sensor 
components. 

For the forest fire detection and propagation tracking 
application, we extended the SlottedStack and Airspace 
components to provide a basic priority-based packet queue, so that 
the base station could quench packet floods and override sampling 
rates for specific nodes. A packet priority field was added to each 
Packet. A packet’s priority is based on both the direction a packet 
is being transmitted and the packet’s message. For instance, 
packets being transmitted downstream from the base node are less 
frequent but have a higher priority. In addition, sensor data is not 
as important as an alert message and therefore has a lower priority. 
We modified the SlottedStack by adding multiple packet queues, 
and we implemented a simple arbitration scheme to select which 
queue would send the next packet. 

The initial application development and testing for the forest 
fire detection and propagation tracking application required 
approximately five man-hours. 

We further utilized the ATLeS-SN framework to integrate a 
profiler within the forest fire detection and propagation tracking 
application in order to analyze various application statistics. 
Profiling and analysis of a sensor network application is typically 
necessary to enable designers to optimize the sensor network by 
adjusting node operating parameters, e.g. sampling rates or 
transmission power, or allow them to modify network level 
protocols to increase reliability or fault tolerance. 

While the simulation environment provides simple methods to 
externally monitor sensor network activity, we directly 
incorporated a Profiler component within each sensor node that 
provides a dedicated profiling interface, profile_if, allowing a 
designer to profile individual nodes in isolation or to profile the ent 
ire system from the aggregated profile data available at the base 
station. Using other simulation approaches, incorporating profiler 
support would require direct modifications to the target 
application, which could potentially affect the execution behavior 
of the target application. With ATLeS-SN, the Profiler component 
can be easily incorporated as a shim between the App and NetStack 
components without requiring any modifications to the existing 
code. 

The base Profiler component defines a single profile_if 
consisting of three transactions, Start, Stop, and Query, where 
the Start and Stop transactions enable and disable the profiling 
operation across the entire system, and Query returns the current 
profile data.  

As highlighted in Figure 4, for the forest fire detection and 
propagation tracking application, we implemented a packet 
insertion profiler, PIProfiler, within each sensor node and a profile 
aggregator, ProfileAggr, within the base station node. When 
profiling is disabled, the PIProfiler component simply forwards 
packets between the App and NetStack without modification. When 
profiling is enabled, the PIProfiler will transmit additional 
profiling-specific packets.  

The base station node’s Profiler is implemented as a profiler 
aggregator that intercepts and extracts the transmitted profile 
packets. In addition, the base station ProfileAggr component 
transmits profiling-specific packets to all nodes when profiling is 
enabled or disabled by the Start and Stop transactions. These 
profiling-specific packets are intercepted by the PIProfiler within 
each sensor node, thereby completely separating the profiling 
functionality from the App components.  

This profiling strategy offers several advantages. First, the 
packet insertion profiler allows designers to efficiently monitor the 
system within the simulation environment without affecting the 
sensor network application simulation and without requiring 
changes to any components within the original application 
implementation. Secondly, this profiler implementation could be 
later utilized within a deployed system to allow designers to 
monitor the health of the sensor network or optimize the sensor 
network operation at runtime. If profiling will be incorporated 
within a deployed system, a designer must carefully balance the 
need for accurate – and up-to-date – profiling information with the 
overhead of transmitting and processing profiling packets.  

For the forest fire detection and propagation tracking 
application, we utilized the Profiler components to monitor 
common node-level operating statistics, including packets 
received, packets transmitted, computation events, battery voltage, 

Figure 5. ATLeS-SN simulation ex ecution for one hour of simulated time 
using building monitor sensor network application consisting of 2 to 512 

nodes.  



 
 

and local link quality. Furthermore, we utilized this profile data to 
model and analyze the power consumption and battery lifetime of 
physical implementation of the application using Crossbow IRIS 
sensor nodes. We implemented the forest fire detection and 
propagation tracking application on an IRIS system and analyzed 
the power consumption of radio communication and temperature 
sampling. The power consumption for radio communication 
consists of the power consumed for transmission and reception, 
including packet transmissions, packet receptions, and packet 
retransmissions. The power consumption of temperature sampling 
includes interfacing with the physical temperature sensor along 
with processing the temperature data.  

With the power consumption data and profiling information, 
we utilized the ATLeS-SN simulator to monitor and analyze the 
battery discharge of each sensor node in order to estimate the 
lifetime of a deployed system within the current application 
specification. For a nine node system, our analysis estimates that 
the sensor network would have a lifetime of only one week during 
the normal operating mode when no fire is detected and a lifetime 
of six hours once the alert mode is activated. The total simulation 
runtime required for these scenarios was less than 40 minutes.  

During an actual forest fire, a six hour lifetime for a sensor 
node should be appropriate enough to track a fire through the area 
monitored by a single node – or at least until the node is destroyed 
in the fire. However, our analysis indicates that the current 
implementation and/or platform are not suitable because the nodes’ 
lifetime during normal operation is inadequate to last even for a 
single fire season. Nevertheless, ATLeS-SN quickly allowed us to 
identify this shortfall in the early design phases in order for future 
modifications and optimizations to be applied.  

V. CONCLUSIONS AND FUTURE WORK 
The Arizona Transaction-Level Simulator for Sensor Networks 

provides a modular framework for modeling and simulating 
components of a sensor network. This flexible approach allows 
designers to focus on modeling, simulating, analyzing, and 
optimizing specific sensor network components without requiring 
a detailed time accurate implementation across all levels while 
retaining the capability to holistically analyze an entire sensor 
network. We demonstrated the efficiency of ATLeS-SN to quickly 
design and test sensor network applications through two case 
studies, illustrating how transaction level modeling can facilitate 
sensor network simulation and simplify incorporation of additional 
functionality.  

While ATLeS-SN provides a foundation upon which designers 
can integrate advanced functionality, our immediate future work 
will focus on extending the ATLeS-SN framework to provide 
NetStack and PhysChannel implementation using standard 
networking protocols available within existing sensor networks 
along with incorporating more advanced signal propagation 
models.  Future work also should include developing a framework 
to directly support modeling the physical environment as a 
separate component and providing a robust interface with which 
Sensor components can interact. By modeling the environment as 
an independent but synchronized component, existing simulation 
tools for modeling physical stimuli such as fire propagation models 
can be efficiently incorporated into our framework. As many 
sensor networks include actuators such as LEDs, speakers, and 
motors, we plan to extend the sensor node model to include an 
Actuator component that designers can utilize to model and test 
various output devices for physical sensor nodes. These actuators 
would also interface with the physical environment model in order 
to allow for analyzing systems with feedback loops. Finally, in 

order to provide a foundation upon which other researcher can 
leverage the benefits of ATLeS-SN, we anticipate that a basic 
library of common sensor network components are needed, 
including but not limited to protocols, sensors, actuators, and 
processor models. 
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