
88

Combining Code Reordering and Cache Configuration

ANN GORDON-ROSS, University of Florida
FRANK VAHID, University of California, Riverside
NIKIL DUTT, University of California, Irvine

The instruction cache is a popular optimization target due to the cache’s high impact on system performance
and power and because of the cache’s predictable temporal and spatial locality. This article is an in depth
study on the interaction of code reordering (a long-known technique) and cache configuration (a relatively
new technique). Experimental results show that code reordering coupled with cache configuration reveals
additional energy savings as high as 10–15% for several benchmarks with reduced cache area as high as
48%. To exploit these additional benefits, we architect and evaluate several design exploration heuristics for
combining these two methods.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Cache memories

General Terms: Design

Additional Key Words and Phrases: Configurable cache, code reordering, code reorganization, code layout,
cache hierarchy, cache exploration, cache optimization, low power, low energy, architecture tuning

ACM Reference Format:
Gordon-Ross, A., Vahid, F., and Dutt, N. 2012. Combining code reordering and cache configuration. ACM
Trans. Embedd. Comput. Syst. 11, 4, Article 88 (December 2012), 20 pages.
DOI = 10.1145/2362336.2399177 http://doi.acm.org/10.1145/2362336.2399177

1. INTRODUCTION AND MOTIVATION

Extensive past research for improving microprocessor performance and power has
focused on the instruction cache, due to the cache’s large impact on those design
factors. Proposed optimization techniques typically exploit an instruction stream’s
spatial and temporal locality. Popular techniques include prefetching, victim buffers
[Zhang and Vahid 2004a], filter caches [Hines et al. 2007; Kin et al. 1997], loop
caches [Gordon-Ross et al. 2002; Gordon-Ross and Vahid 2002; Lee et al. 1999b], code
compression [Benini et al. 1999], cache configuration [Balasubramonian et al. 2000;
Gordon-Ross et al. 2008; Gordon-Ross et al. 2009; Zhang and Vahid 2003, 2004b], and
code reordering [Kalmatianos and Kaeli 1999; Petis and Hanson 1990].

Most optimization techniques are proposed independently of other techniques, and,
with so many techniques available, the interplay of those techniques is important to
study as embedded system designers under tight time-to-market constraints cannot
be expected to undergo this time-consuming examination themselves. Studying the

This research was supported in part by the National Science Foundation under Grant Nos. CNS-0953447,
CCR-0203829, and CCR-9876006.
Authors’ addresses: A. Gordon-Ross (corresponding author), Department of Electrical and Computer Engi-
neering and CHREC, University of Florida 32611; email: ann@ece.ufl.edu; F. Vahid, Department of Computer
Science and Engineering, and Center for Embedded Computing Systems, University of California, Riverside,
CA 92521; N. Dutt, School of Information and Computer Science, University of California, Irvine, CA 92697.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1539-9087/2012/12-ART88 $15.00

DOI 10.1145/2362336.2399177 http://doi.acm.org/10.1145/2362336.2399177

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

88:2 A. Gordon-Ross et al.

interplay may demonstrate that one technique dominates over another technique, per-
haps making the second technique unnecessary. If two techniques are complementary,
then finding the most effective combination of the techniques is useful. In this article,
we examine the interplay of a major software-based approach, code reordering, and a
major hardware-based approach, cache configuration.

Code reordering/reorganization/layout at the basic block-level is a mature technique
developed in the late 1980’s to tune an instruction stream to the instruction cache
in order to improve cache hit rates and improve the cache’s utilization. This widely
researched technique increases performance on average, but decreases performance
for some benchmarks. Code reordering places an application’s hot-path instructions
(frequently executed instructions) contiguously in memory, thus moving infrequently
executed instructions so that they are not inadvertently fetched into the cache (via
cache prefeteching techniques or simply as apart of the same cache line as a hot-region
instruction). Code reordering also reduces conflict misses through procedure placement.
Initial code reordering techniques were non-cache-aware, meaning these techniques did
not consider the specific cache configuration when applying code transformations. En-
hanced code-reordering techniques are cache-aware and provide improved performance
over non-cache-aware techniques, but cache-aware techniques require a priori knowl-
edge of the target cache configuration. Typically, code reordering is a compile-time or
link-time optimization requiring profile information to determine an applications hot
path. Runtime/dynamic methods for code reordering also exist [Chen and Leupen 1997;
Huang et al. 2006a, 2006b; Scales 1998], resulting in a simpler tool flow, but they in-
cur some runtime overhead. Several previous works evaluate code reordering impacts,
such as the impact of the instruction set [Chen and Zhang 2007] and instruction fetch
architectures [Ramirez et al. 2001] on code reordering, the impact code reordering has
on branch prediction [Ramirez et al. 2000], code placement for improving branch pre-
diction accuracy [Ramirez et al. 2005], and the combined effects of code ordering and
victim buffers [Bahar et al. 1998].

Due to new hardware technologies and core-based design methodologies, cache con-
figuration is a more recently developed technique that tunes a cache’s parameters,
such as total size, associativity, and line size, to an application’s instruction stream
for decreased energy consumption and/or increased performance. Applications have
distinct execution behaviors that warrant distinct cache requirements [Zhang et al.
2003]. Reducing a cache’s size or associativity just enough, but not too much, can min-
imize an application’s energy consumption. Tuning the line size, larger for localized
applications, smaller for non-localized applications, can reduce energy and also im-
prove performance. Caches may be configured in a core-based methodology in which a
designer synthesizes a customized cache along with a microprocessor [Altera 2010; Arc
2010; Arm 2010]; Mips 2010; Tensilica 2010]. On the other hand, caches in predesigned
chips may be hardware configurable, with configuration occurring by setting register
bits during system reset or during runtime [Albonesi 2002; Malik et al. 2000; Zhang
and Vahid 2004b]. To determine the lowest energy and/or best performance as defined
by the system optimization goals, the cache configuration design space can be explored
exhaustively or a search heuristic can be used.

Code reordering and cache configuration can be applied at different times during
application design. Code reordering is typically carried out during design time as a
designer guided step, while cache configuration can be applied at design time or easily
applied during runtime. For code reordering, the designer must compile and profile
the code and then generate an optimized executable by either recompiling the code
or using a link-time code optimizer. Sanghai et al. [2007] presented a framework to
provide code layout assistance for embedded processors with configurable memories.
Dynamic procedure placement [Scales 1998] is possible but has received little attention

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

Combining Code Reordering and Cache Configuration 88:3

due in part to potentially significant runtime overhead. Cache configuration can also
be applied as a designer-guided step, however, recent research focuses on cache con-
figuration during runtime to eliminate the need for designer intervention [Zhang and
Vahid 2004b] with little to no runtime overhead. Designer-guided optimization steps
increase the complexity of the design task, whereas runtime optimization requires no
special design efforts and also ensures optimizations use an application’s real dataset.

The methods of code reordering and of cache configuration were largely researched
independently in the past, due in part to the fact that the methods were developed
by distinct research communities. However, the interaction between the two tuning
approaches, that is, whether they complement, degrade, or obviate the need for each
other, has not been considered before and needs to be addressed. In this article, we
perform a compressive study of the interplay of both non-cache-aware and cache-aware
code reordering and cache configuration. While results show that cache configuration
largely dominates code reordering, particular benchmarks benefit from applying both
techniques in terms of increased energy consumption reduction and cache area re-
duction as compared to cache configuration alone. Since highly constrained embedded
systems would benefit from the combined savings, we developed and compared vari-
ous design exploration heuristics for combining cache-aware code reordering and cache
configuration.

2. INSTRUCTION CACHE OPTIMIZATIONS

In this section, we provide background on both non-cache-aware and cache-aware code
reordering, cache configuration, and motivate the combined study of these interrelated
techniques.

2.1. Non-Cache-Aware Code Reordering Background And Code Reordering Example

Much previous research exists in the area of code reordering (also referred to as
code layout and code reorganization in the literature) at the basic-block-, loop-, and
procedure-level reordering. Code reorganization at the basic-block-level dates back to
early work in 1988 by Samples and Hilfinger [1988]. Early work by McFarling [1989]
used basic block execution counts to reorder code at the basic-block-level and exclude
infrequently used instructions from the cache. Pettis and Hansen [1990] and Hwu and
Chang [1989] presented similar methods for both basic block and procedural reordering
using edge profile information showing performance benefits of nearly 15%. The work
by Pettis and Hanson [1990] serves as the basis for the majority of all modern code
reordering methodologies.

Many modern tools implement the Pettis and Hanson [1990] code reordering method-
ology directly or in a manner [Cohn et al. 1997; Cohn and Lowney 2000; Gloy et al.
1997; Lee et al. 1999a; Muth et al. 2001; Ramirez et al. 2005]. Much research focuses
on improving the Pettis and Hanson methodology to include cache line coloring to re-
duce conflict misses [Aydin and Kaeli 2000; Hashemi et al. 1997; Kalmatianos and
Kaeli 1999, 2000] by placing popular procedures in the memory such that the num-
ber of overlapping cache lines in minimized. Also, various production tools offer Pettis
and Hanson-based code reordering as an optimization option such as Compaq’s Object
Modification Tool (OM) [Srivastava and Wall 1992], its successor Spike [Cohn et al.
1997], and IBM’s FDPR [Schmidt et al. 1998]. Other works provide methodologies for
applying code reordering to commercial applications [Ramirez et al. 2002].

For several of the experiments presented in this article, we use the Pentium Link-
Time Optimizer (PLTO) [Scharz et al. 2001], which performs code reordering using
an improved Pettis and Hanson algorithm. In the Pettis and Hanson algorithm, basic
blocks are reordered to reduce the number of taken branches and to reduce the number
of misses in the instruction cache by increasing instruction locality. For example, loop

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

88:4 A. Gordon-Ross et al.

A

B

C

D E

F G H

I J

K

L

1000

4116

334

76

76

258

258

3782

3416

3400

3400

16

366

1000

334

K B C D F I

E G

A

H

L

4116
J

Fig. 1. Edge weighted control flow graph and resulting basic block chains.

bodies frequently contain an error condition that is checked in each loop iteration and
the error code is infrequently executed. The error handling code is loaded into the
instruction cache, polluting the instruction cache with code that may never be fetched.
Code reordering moves infrequently executed code out of the loop body, replacing the
code with a jump to the relocated code. Additionally, a jump is inserted at the end of
the relocated code to transfer control back to the loop body.

Basic block reordering uses profile information to guide placement of basic blocks.
The goal is to form chains of basic blocks that are to be placed as straight-line code.
More successful code reordering methods use edge profiling as opposed to basic block
profiling. Edge profiling counts the number of times each arc in a control flow graph is
taken, while basic block profiling simply counts the number of times each basic block
is executed. Edge profiling supplies more information on the flow of execution through
the control flow graph so basic blocks that are frequently executed in sequence (have a
high arc weight) can be grouped together in the final code layout.

The basic block reordering methodology used in this article is based on the bottom-
up positioning algorithm as described by Pettis and Hanson [1990]. Initially, a control
flow graph is created for the application with arcs annotated with their corresponding
execution frequency. Figure 1 shows a sample control flow graph for a loop. The bottom-
up algorithm begins with each basic block as the head and tail of a basic block chain.
Next, each arc in the graph is processed from largest to smallest. The basic blocks at
the source and destination of the arc are merged to form a new chain if either of the
basic blocks is the tail of one chain and the other basic block is the head of different
chain. If either the source or the destination basic block is not a head or tail of a chain,
the basic blocks may not be connected. In this case, a new chain is formed.

Figure 1 shows the basic block chains that are formed after applying the bottom-up
algorithm to the control flow graph. After the set of chains are determined, the chains
are ordered in the executable based on the heaviness of the interconnecting edges.
Additionally, unconditional branches are added to the code to maintain correctness.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

Combining Code Reordering and Cache Configuration 88:5

PLTO implements a variation of the Pettis and Hanson bottom-up algorithm. PLTO
improves upon the original Pettis and Hanson algorithm in two ways. The first im-
provement addresses minor modifications needed to address problems identified by
Calder et al. [1994]. The improvements deal with branch alignment to benefit the un-
derlying fetch architecture and branch predictor. The second improvement deals with
the formation of the basic block chains. The basic blocks are grouped into three differ-
ent sets: the hot set, the zero set, and the cold set. The hot set contains basic blocks that
account for a threshold percentage of the execution time of the application. The zero
set contains all basic blocks that are never executed, and all remaining basic blocks are
placed in the cold set. Basic block chains from each set are determined using the Pettis
and Hanson bottom-up algorithm. The chains from each set are then concatenated to
form the final layout.

2.2. Cache-Aware Code Reordering

The Pettis and Hanson bottom-up algorithm was designed to exploit a single-level
direct-mapped cache. Basic block reordering is performed without any attention paid to
how the ordering may cause contention in a set associative cache or how code reordering
effects conflicts in the other levels of the cache hierarchy. More complex algorithms
extend code reordering to include cache-aware code placement [Bartolini and Prete
2005] and multiple levels of cache [Gloy et al. 1997]. For our study, we use one of
the most advanced cache-aware code reordering tools, developed by [Kalmatianos and
Kaeli 1999, 2000], which performs procedure reordering and cache line coloring. Using
an instruction trace file of the application, the tool constructs a conflict miss graph,
which is an undirected graph where each node represents a procedure. Every edge
between two procedures is weighted with an estimation of the worst-case number of
conflict misses between those two procedures. Conflict misses can only occur if the two
procedures are simultaneously live, that is, both procedures occupy the cache at the
same time. Next the tool prunes the conflict miss graph to remove unpopular edges
and removes procedures from the graph with no edges remaining after pruning. Then
the tool applies cache line coloring to place the procedures into the cache such that the
number of conflict misses between simultaneous live procedures is minimized. Pairs
of nodes are processed from the graph by decreasing edge weights. During this step,
the tool is conscious of the placement of the procedures in main memory to keep the
memory footprint as small as possible.

2.3. Cache Configuration/Tuning

Su and Despain [1995] showed in early work that the memory hierarchy is very im-
portant in determining the power and performance of an application. Recently, Zhang
and Vahid [2004b] showed the vastly different cache configurations required to achieve
minimal energy consumption by the cache. If a cache does not reflect the requirements
of an application, excess energy may be consumed. For example, if the cache size is too
large for an application, excess energy will be consumed fetching from the large cache.
If the cache size is too small, excess energy may be consumed due to thrashing—the
working set of an application is constantly being swapped in and out of the cache.
Tunable parameters normally include cache size, line size, and associativity. However,
other parameters such as the use of a victim buffer, instruction/data encoding, bus
width, etc. could also be included as tunable parameters

Recent advances in research and technology have made the configurability of cache
parameters possible. The availability of a tunable cache enables designers to specify
cache parameters in a tunable core-based design for custom system synthesis [Altera
2010; Arc 2010; Arm 2010; Mips 2010; Tensilica 2010]. Additionally, predesigned chips

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

88:6 A. Gordon-Ross et al.

may contain hardware that supports cache configuration during system reset or even
during runtime [Albonesi 2002; Malik et al. 2000; Zhang and Vahid 2004b].

Platune [Givargis and Vahid 2002] used an exhaustive method to search the cache
configuration design space for reduced energy consumption. Whereas an exhaustive
method produces optimal results, the time needed to exhaustively search the design
space may not be available. To decrease exploration time, heuristic methods exist
to explore the design space. Palesi and Givargis [2002] presented an extension to
Platune that explored the design space using a genetic algorithm and produced near-
optimal results in a fraction of the time. Ghosh and Givargis [2003] presented a method
for directly computing cache parameters given design constraints. Balasubramonian
et al. [2000] presented a runtime method for redistributing the cache size between the
various cache levels. Zhang and Vahid [2003] presented a prototyping methodology for
level-one cache configuration exploration for Pareto-optimal points trading off energy
and performance. Further work by Zhang and Vahid [2004b] showed a methodology for
runtime configuration of the cache for reduced energy consumption resulting in energy
savings of 45% to 55% on average. Gordon-Ross et al. [2009] developed a heuristic for
quickly searching a two-level configurable cache hierarchy for separate instruction and
data caches showing energy savings averaging 53%

In this article, we use the configurable cache tuning methodology described by Zhang
et al. [2003] and Zhang and Vahid [2003] and extended by Gordon-Ross et al. [2009] for
a single-level cache configuration. Zhang’s method is designed with runtime applica-
tion in mind but is also applicable to a design time simulation environment. We chose
to use Zhang’s method so as not to rule out future work on code reordering and cache
configuration during runtime. Zhang’s heuristic quickly explores the design space pro-
ducing near-optimal results. Tuning methods exist for exploration of two levels of cache,
but we chose to explore only a single level of cache because many embedded systems
contain only a single level of cache. Additionally, cache configuration at design time is
applicable to an embedded environment where many systems run a single application
for the lifetime of the device.

The cache configuration heuristic utilized in this article efficiently explores the cache
parameters based on their impact on total system energy and miss rate, and it is based
on the heuristic originating with Zhang and Vahid [2004b]. The heuristic explores cache
parameters having a larger impact on system energy and miss rate before parameters
having a smaller impact. The heuristic is summarized in the following text. Each
parameter is explored from smallest to largest.

—Holding the cache line size and associativity at their smallest values, determine the
cache size yielding the lowest energy consumption.

—Fixing the cache size at the size determined in the previous step and the associativ-
ity at the smallest value, determine the cache line size yielding the lowest energy
consumption.

—Fixing the cache size and the cache line size at the values determined in the previous
steps, determine the cache associativity yielding the lowest energy consumption.

This heuristic searches 7 of the 18 possible configurations given the cache parame-
ters we have chosen. We found that this heuristic determines the optimal cache con-
figuration in most cases. From this point forward, the heuristically determined cache
configuration will be referred to as the best cache configuration.

To enable the cache tuning heuristic to tune during runtime, a tunable cache is
necessary. Zhang et al. [2003] describe tunable cache hardware and present verification
of the hardware layout of this configurable cache. Figure 2(a) shows the configuration
cache tuning architecture. Figure 2(b) shows the base cache for four separate banks
that may be turned on, concatenated with another bank (Figure 2(c)), or turned off

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

Combining Code Reordering and Cache Configuration 88:7

M
ic

ro
pr

oc
es

so
r I-cache

D-cache

$ Tuner

M
ai

n
M

em
or

y

(a)

2
K

B

2
K

B

2
K

B

2
K

B

2
K

B

2
K

B

2
K

B

2
K

B

2
K

B

2
K

B

(b) (c) (d)

2
K

B

2
K

B

Fig. 2. (a) Configurable cache architecture; (b) 8KB 4-way base cache with for 2KB sub banks; (c) 8KB 2-way
cache using way concatenation; (d) 4KB 2-way cache using way shutdown.

(Figure 2(d)) via a configuration register. Due to the use of configurable banks, certain
cache configurations are not possible. For instance, if a base cache size of 8KB is desired,
four banks of 2KB each will be utilized. An 8KB direct-mapped, 2-way, and 4-way set
associative cache is available. To reduce the cache size to 2KB, three of the banks must
be shut down leaving one remaining bank of 2KB. Since banks are used to increase
associativity and there is only one bank available in a 2KB cache, only a direct-mapped
cache is available for 2 KB. Further details are available in Zhang et al. [2003].

2.4. Code Reordering and Cache Configuration Tradeoffs

For completeness in our study, we explore both non-cache-aware and cache-aware code
reordering techniques. Whereas cache-aware code reordering is state-of-the-art and
typically produces increased performance benefits as compared to non-cache-aware
code reordering, cache-aware code reordering can significantly increase system design
time as system designers are required to perform cache configuration (cache configu-
ration requires numerous simulations, while code reordering only requires one simu-
lation). For non-cache-aware code reordering, the system designer may use a runtime
cache configuration technique to eliminate design time cache configuration.

While we evaluate the two methods with respect to performance and energy, other
trade-offs exist between the two methods. The hardware-based cache configuration has
the advantage of being applicable to any binary, requiring no special compiler or linker,
but it requires either a configurable cache architecture or a custom-synthesized cache
design. The software method of code reordering has the advantage of being applicable
to any off-the-shelf microprocessor cache. But the software method requires a special
compiler and/or linker, which may disrupt standard tool flows. Both methods, in their
commonly proposed forms, require software profiling, a common, but not universally-
used, step in software development. Both methods have been proposed in dynamic and
hence transparent forms, though dynamic code reordering involves the more complex
task of dynamic binary modification.

3. NON-CACHE-AWARE CODE REORDERING AND CACHE CONFIGURATION

First, we explore the interplay of non-cache-aware code reordering and cache config-
uration. In this section, we describe our evaluation framework (which is similar to
the framework used for our study using cache-aware code ordering in Section 4.1) and
evaluate our results.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

88:8 A. Gordon-Ross et al.

3.1. Evaluation Framework

To determine the combined effects of code reordering and cache configuration, we used
26 benchmarks: twelve benchmarks from the Powerstone benchmark suite [Malik et al.
2000], three benchmarks from the MediaBench benchmark suite [Lee et al. 1997],
and eleven benchmarks from the EEMBC benchmark suite [EEMBC 2010]. For each
benchmark suite, we report data for every benchmark that successfully ran through
the compilation and simulation tools we utilized. Some benchmarks would not compile,
would not run through the tools, or would not execute correctly after code reordering
was applied. For all benchmarks, we used the provided input vectors.

We used PLTO [Scharz et al. 2001] to perform code reordering on the applications.
PLTO is similar to the popular ALTO [Muth et al. 2001] tool but works with the x86
architecture instead of the Alpha architecture. We performed the following steps to
produce code reordered executables.

(1) Compile the code with flags specifying the inclusion of the symbol table and relo-
cation information and to not patch any of the instructions. Libraries are statically
linked.

(2) Invoke PLTO to instrument the executable to gather edge profiles.
(3) Run the instrumented executable to produce a file containing the edge counts.
(4) Rerun PLTO with edge profiles and perform code reordering.

PLTO offers many other link-time optimizations. To ensure that we only explored
code reordering, we turned off all other optimizations at the command line. Additionally,
for comparison purposes, we created executables without code reordering using the
same steps as just described except that in step 4, we turned off the code reordering
optimization.

We used Perl scripts to drive the cache tuning heuristic along with an instruction
cache simulator to determine cache statistics. Most x86 cache simulators are trace
driven, requiring an instruction trace file for execution. Due to the long execution time
of some of the benchmarks studied, trace-driven cache simulation would be cumber-
some. To alleviate the need for instruction traces, we obtained a trap-based profiler
from the University of Arizona to perform execution-driven cache simulation [Moseley
2003]. The trap-based profiler combines the trace cache simulator Dinero IV [Dinero
2010] and PLTO to create an execution-driven cache simulation. The trap-based pro-
filer executes the application using PLTO, traps instruction addresses, and passes the
instruction addresses to Dinero.

We determine energy consumption for a cache configuration for both static and dy-
namic energy using the following model.

total energy=stat i c energy+dynamic energy
dynamic energy=cache hits ∗hit energy+cache misses∗miss energy
miss energy=of f ch ip access energy+miss cycles ∗CPU stall energy+c a c he f i l l e n e r g y
miss cycles=cache misses∗miss latency+cache misses∗memory bandwidth
stat i c energy= t o t a l c y c l e s ∗ s ta t i c energy per cyc l e
s ta t i c energy per cyc l e=energy per Kbyte∗ cache size in Kbytes
energy per Kbyte = ((dynamic energy of base cache ∗10%)/ base cache size in Kbytes)

We used Cacti [Reinman and Jouppi 1999] to determine the dynamic energy con-
sumed by each cache fetch for each cache configuration using 0.18-micron technology.
The trap profiler provided us with the cache hits and cache misses for each cache
configuration. Miss energy determination is quite difficult because it depends on the
off-chip access energy and the CPU stall energy, which are highly dependent on the
actually system configuration used. We could have chosen a particular system configu-
ration and obtained hard values for the CPU stall energy, however, our results would
only apply to one particular system configuration. Instead, we examine the stall energy
for several microprocessors and estimate the CPU stall energy to be 20% of the active

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

Combining Code Reordering and Cache Configuration 88:9

energy of the microprocessor for this study. We obtain the offchip access energy from
a standard low-power Samsung memory. To obtain miss cycles, the miss latency and
bandwidth of the system is required. We estimate a cache miss to take 40 times longer
than a cache hit to transfer the first block (16 bytes) and subsequent blocks (each ad-
ditional 16 bytes) would transfer in 50% of the time it took to transfer the first block.
Previous work [Gordon-Ross et al. 2009] showed that cache tuning heuristics remain
valid across different configurations of miss latency and bandwidth. We determine the
static energy per Kbyte as 10% of the dynamic energy of the base cache divided by the
base cache size in Kbytes.

We chose cache parameters to reflect those available in typical embedded processors.
We explore cache sizes of 2, 4, and 8 Kbytes, cache line sizes of 16, 32, and 64 bytes,
and set associativities of direct-mapped, 2-way, and 4-way.

For comparison purposes, we generated cache statistics for every cache configuration
for every benchmark, with and without code reordering, to determine the optimal
cache configuration. We found that, in every case, the tuning heuristic determined the
optimal cache configuration. From this point forward, we will refer to the heuristically
determined cache configuration as the optimal cache configuration given that the two
yield identical results for every benchmark.

To determine cache energy savings due to cache configuration, normally a large cache
is used as a base cache for comparison purposes. The cache size reflects a common
configuration likely to be found in a platform to accommodate a wide range of target
applications. However, research shows that code reordering is most effective for small
to medium cache sizes [McFarling 1989] because an application may entirely fit into
too large of a cache; only in a small cache do we see large numbers of conflict misses.
To best show the benefits of code reordering, we have chosen the smallest cache as our
base cache configuration, a 2Kbyte direct-mapped cache with a line size of 16 bytes.
This small cache size is not too small as to be dominated by capacity misses. Using the
smallest cache possible is also a goal of many cost-constrained embedded systems.

3.2. Experiments

We explore the interplay of code reordering and cache configuration by producing
four energy and performance results for each benchmark. The results include energy
and performance values for the base cache configuration for each benchmark without
code reordering and for each benchmark after code reordering has been performed.
Additionally, we apply cache configuration to each benchmark without code reordering
and for each benchmark after code reordering has been applied.

3.2.1. Energy and Performance Evaluation. Figure 3 shows the energy savings and
Figure 4 shows the performance impact of cache configuration both with and without
code reordering. All values have been normalized to the base cache configuration
without code reordering for each benchmark. Overall, results show a similar trend
for both energy and performance as expected, since code reordering simply reduces
the number of cache misses. For code reordering alone, average energy savings and
execution time reduction are approximately 3.5% over all benchmarks. However, the
averages include two benchmarks, CACHEB and CANRDR where code reordering
performs very poorly. Removing these two benchmarks from the average increases
the average energy savings and execution time reduction to approximately 9%, closely
reflecting results obtained in previous research [Muth et al. 2001]. (Ultimately,
a designer would hopefully be able to detect the decreased performance of code
reordering on a program and then choose to not apply reordering on that program).

When cache configuration is applied to the benchmarks, Figure 3 and Figure 4
show that on average both the energy savings and performance benefits are nearly

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

88:10 A. Gordon-Ross et al.

Fig. 3. Energy consumption with code reordering and cache configuration. Energy for each benchmark is
normalized to the energy consumption of the base cache without code reordering.

Fig. 4. Execution time with code reordering and cache configuration. Execution time for each benchmark is
normalized to the execution time of the base cache without code reordering.

identical for cache configuration without code reordering and cache configuration
with code reordering. Energy savings in the instruction cache obtained due to cache
configuration is on average 15% without code reordering and 17% with code reordering
over all benchmarks, a minor difference. Likewise, execution time reduction with cache
configuration averages 17% without code reordering and 18.5% with code reordering
over all benchmarks, again, a minor difference. From these results, we might conclude
that the benefits due to code reordering are nearly negated when cache configuration

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

Combining Code Reordering and Cache Configuration 88:11

is used. A designer can thus eliminate the special tools, profiling setup, and time
required to perform code reordering if runtime cache configuration is available. The
additional savings due to adding code reordering to cache configuration are nominal
and probably not worth the extra design effort required by the designer. Runtime
cache configuration produces the benefits without designer effort.

Additionally, we observed a very interesting trend across all benchmarks. As Figure 3
and Figure 4 show, in a few benchmarks, both energy and execution time are increased
when code reordering is applied. However, when cache configuration is applied along
with code reordering, there is no execution time degradation for any benchmark.
Execution time for each application is either as good or better than the base cache
configuration with no code reordering. Cache configuration thus alleviates some of the
negative performance impacts some applications incur due to code reordering.

3.2.2. Change in Cache Requirements Due to Code Reordering. Table I1 shows the optimal
cache configuration for each benchmark without code reordering and with code
reordering, and the change in cache area due to code reordering. Cache area numbers
were obtained using Cacti [Reinman and Jouppi 1999]. This information shows the
effectiveness of code reordering in increasing the spatial locality of an application. In
30% of the benchmarks, code reordering results in an optimal cache having a larger
line size. These cases are marked in bold in the With Code Reordering column. A larger
line size in the optimal cache means that the configurable cache tuning algorithm
found that a larger line size improved the cache hit rate, which in turn means that code
reordering successfully placed linearly-executed blocks next to one another spatially.

Table I also shows that code reordering successfully increases the overall effective-
ness of the optimal cache in 22% of the benchmarks, resulting in a smaller cache size.
These cases are underlined in the With Code Reordering column. In only one case, en-
gine, did code reordering actually increase the size of the optimal cache. The Change in
Area column in Table I shows the overall change in optimal instruction cache area due
to code reordering. Positive change denotes an increase in cache size, while a negative
change denotes a decrease in cache size. Overall, we observed a 4% decrease in optimal
instruction cache area due to code reordering. The decrease in cache size reveals an
optimization available for small custom synthesized embedded systems with very tight
area constraints. From this data, we can conclude that code reordering and cache con-
figuration can be used to reduce the area devoted to the instruction cache by as much
as 48%.

4. CACHE-AWARE CODE REORDERING AND CACHE CONFIGURATION

Next, we explore the interplay of cache-aware code reordering and cache configuration.
We present our evaluation framework, associated design exploration heuristics, and
evaluate our results.

4.1. Evaluation Framework

Our evaluation framework is similar to that described in Section 3.1, thus we limit
our discussion here to the differences. Due to the use of a different tool suite, our
benchmark suite is slightly different and included 30 embedded system benchmarks:
eleven benchmarks are from the Powerstone benchmark suite [Malik et al. 2000], three
benchmarks are from the MediaBench benchmark suite [Lee et al. 1997], and sixteen
benchmarks are from the EEMBC benchmark suite [EEMBC 2010]. We could only

1The results in Table I differ from those published in “A First Look at the Interplay of Code Reordering and
Configurable Caches” at the ACM Great Lakes Symposium on Very Large Scale Integration (GLSVLSI),
2005. In the previous article, the Change in Area column presented the increase in cache area requirements
if cache configuration was not used, and that calculation was inadvertently labeled.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

88:12 A. Gordon-Ross et al.

Table I. Optimal Cache Configuration For All Benchmarks with Code Reordering and without Code Reordering
Configurations are noted as cache size followed by associativity followed by line size. Bold configurations denote
cases where code reordering resulted in a larger line size. Underlined configurations denote cases where code
reordering resulted in a smaller cache size.

Without Code Reordering With Code Reordering Change in Area
adpcm∗ 4k1w32 4k1w64 10%
bcnt∗ 2k1w64 2k1w64 0%
bilv∗ 2k1w32 2k1w64 17%
blit∗ 2k1w64 2k1w64 0%
brev∗ 2k1w64 2k1w64 0%
crc∗ 2k1w64 2k1w64 0%
des∗ 8k1w16 4k1w16 −44%
engine∗ 4k1w16 8k1w16 78%
fir∗ 2k1w16 2k1w32 10%
matmul∗ 4k1w16 2k1w16 −48%
pocsag∗ 2k1w16 2k1w32 10%
ucbqsort∗ 2k1w64 2k1w64 0%
g721∗∗ 8k1w16 8k1w32 8%
gsm-decode∗∗ 2k1w16 2k1w64 27%
gsm-encode∗∗ 2k1w16 2k1w16 0%
A2TIME∗∗∗ 4k1w16 2k1w32 −42%
BaseFP∗∗∗ 2k1w32 2k1w64 17%
BITMNP∗∗∗ 4k1w64 4k1w32 −9%
CACHEB∗∗∗ 2k1w64 2k1w64 0%
CANRDR∗∗∗ 4k1w64 2k1w32 −41%
IIRFLT∗∗∗ 8k1w64 8k1w64 0%
PNTRCH∗∗∗ 2k1w64 2k1w64 0%
PUWMOD∗∗∗ 4k1w64 2k1w32 −41%
RSPEED∗∗∗ 2k1w64 2k1w64 0%
TBLOOK∗∗∗ 2k1w64 2k1w64 0%
TTSPRK∗∗∗ 8k1w64 4k1w32 −45%

avg −4%
∗Powerstone ∗∗Mediabench ∗∗∗EEMBC.

explore three benchmarks from the MediaBench benchmark suite because the other
benchmarks produced trace files too large to process in a reasonable amount of time by
the code reordering tool.

The code reordering tool we used [Kalmatianos and Kaeli 1999, 2000] required as
input an instruction trace of the application to gather profile information, the location
of all procedures in the application, a list of all active procedures in the application, and
the cache configuration. To obtain the instruction trace file, we modified the sim-cache
portion of SimpleScalar [Burger et al. 2000] to output each instruction address during
execution. We obtained location information of all active and inactive procedures using
Looan [Villarreal et al. 2001], a loop analysis tool that takes as input an application
binary and the instruction trace and outputs the location of all loops and procedures
in the application along with execution frequencies. A header file provides the cache
configuration information to the code reordering tool.

The code reordering tool first performs code reordering for the cache configuration
and then simulates the instruction cache to obtain cache statistics. For tests that
involved reordering the code for a configuration other than the current cache config-
uration being explored, we modified the tool so that both the cache configuration to
reorder for and the actual cache configuration to simulate could be different.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

Combining Code Reordering and Cache Configuration 88:13

Code Reordering
For base cache

Cache Configuration
For reordered

instruction stream

Cache
configuration

Cache Configuration

Code Reordering
For configured cache

Cache Configuration
For reordered

instruction stream

Cache
configuration

(a) (b)

Explore Size
Code Reordering

Perform code reordering
for current cache

configuration to explore

Simulate

Done

Increase size

Explore Line Size
Code Reordering

Perform code reordering
for current cache

configuration to explore

Simulate

Done

Increase line size

Explore Associativity
Code Reordering

Perform code reordering
for current cache

configuration to explore

Simulate

Done

Increase assoc

Cache
configuration

(c)

Fig. 5. Flow charts depicting optimization methods for the (a) reorder-configure heuristic, (b) the configure-
reorder-configure heuristic, and (c) the reorder-during configuration heuristic.

4.2. Design Exploration Heuristics to Combine Cache-Aware Code Reordering
and Cache Configuration

We also sought to develop the best heuristic for combining the two methods and to com-
pare that heuristic to each method applied alone. We considered three possible explo-
ration heuristics—reorder-configure, configure-reorder-configure, and reorder-during-
configuration—which we now describe.

4.2.1. Reorder-Configure. Figure 5(a) shows the reorder-configure heuristic. This
heuristic first performs code reordering and then applies cache configuration to the
reordered code. However, since cache-aware code reordering must have the cache con-
figuration as input, difficulty arises in choosing which cache configuration to reorder for
before the best cache configuration is known. We chose to perform code reordering for
the base cache configuration since our results will be compared to the base cache config-
uration. After code reordering, the cache configuration heuristic configures the cache for
optimal energy consumption given the reordered instruction stream. With one code re-
ordering round and one cache configuration round, this heuristic is the fastest to apply.

4.2.2. Configure-Reorder-Configure. The drawback of the reorder-configure heuristic
is that the cache configuration must be arbitrarily chosen for cache-aware code
reordering. The second heuristic we developed addresses this issue. Figure 5(b) shows
the configure-reorder-configure heuristic. Instead of applying code reordering first,

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

88:14 A. Gordon-Ross et al.

Fig. 6. Results for each benchmark showing energy consumption normalized to the base cache configuration.
Underlined benchmarks highlight those that benefit exceptionally well from cache configuration combined
with code reordering.

the configure-reorder-configure heuristic configures the cache given the original in-
struction stream. This cache configuration is then used as input to the code reordering
phase, and the code is reordered for the best cache. However, after the code reordering
phase, the cache may be in need of further tuning to the new optimized instruction
stream. To account for this, the configure-reorder-configure heuristic applies another
round of cache configuration to tune the cache to the optimized instruction stream.
With one round of code reordering and two rounds of cache configuration, the
configure-reorder-configure heuristic takes nearly twice as long to perform as the
reorder-configure heuristic.

4.2.3. Reorder-During-Configuration. The final heuristic we develop represents the near-
optimal search where code reordering is performed during the cache configuration loop.
This method does not perform an exhaustive search of all possible code reordering situa-
tions for all possible cache configurations but searches only the most interesting cases.
Figure 5(c) shows the reorder-during-configuration heuristic. This heuristic incorpo-
rates code reordering into the cache configuration loop by performing code reordering
for each cache configuration before the configuration is simulated. Since the reorder-
during-configuration heuristic performs code reordering for each cache configuration,
this heuristic may take as much as seven times longer to simulate than the reorder-
configure heuristic (seven cache configurations are explored and code reordering is
applied to all seven configurations).

4.3. Experiments

4.3.1. Cache-Aware Code Reordering Verses Cache Configuration. Figure 6 shows the energy
consumed by each benchmark for the code reordering method and the cache configu-
ration method. The x-axis shows each benchmark studied and the y-axis represents
the energy consumption of the instruction cache for each heuristic normalized to the
energy consumption of the base cache configuration without any code reordering or
cache configuration (shown as 1.0). The first bar shows the energy consumption of
the base cache configuration with code reordering. The second bar shows the energy
consumption of the best cache configuration with no code reordering applied.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

Combining Code Reordering and Cache Configuration 88:15

Fig. 7. Results for each benchmark showing execution time each normalized to the base cache configuration.
Underlined benchmarks highlight those that benefit exceptionally well from cache configuration combined
with code reordering.

The results show that code reordering yields weak improvements of only 6.5% on
average. Furthermore, code reordering actually worsens energy in some examples, as
much as by 12% in rawcaudio. Previous work [Muth et al. 2001] also observed such
worsening. Of course, one could eliminate code reordering for worsened benchmarks,
but that would improve the average only by a few percent. On the other hand, for
some benchmarks code reordering obtains good energy savings, for instance, up to 60%
savings for RSPEED01.

Cache configuration, on the other hand, yields energy savings of 36.5% on average.
This number closes matches results obtained by Zhang [2004b], even though their base
cache was a high-performance configuration rather than a small size configuration.
The results show that cache configuration yields energy savings as much as 90%
for bliv. Cache configuration also yields nearly equal or better savings than code
reordering for every benchmark. Stated another way, for applications for which code
reordering obtained substantial energy savings, cache configuration could achieve
nearly equal or better, savings. Thus, one may conclude that, among the two methods,
the hardware approach of cache configuration is superior, assuming either method
is possible. Figure 7 shows similar data comparing benchmark performance results,
yielding similar conclusions.

4.3.2. Combined-Methods Heuristics. Although cache configuration is clearly superior to
code reordering alone, combining the two methods may still yield improvement for some
benchmarks. We therefore compared the energy obtained by each of three heuristics
described in Section 4.2 on the 30 benchmarks, with the results shown in Figure 6.
The third, fourth, and fifth bars show the energy resulting from the reorder-configure,
configure-reorder-configure, and reorder-during-configuration heuristics, respectively.

The results show that the three combined-method heuristics perform about the same
on average. More significantly, the results show that combining code reordering and
cache configuration only slightly improves the average energy compared to cache con-
figuration alone, by about 6%. Thus, if a designer is concerned with reducing average
energy savings across a variety of benchmarks, the hardware solution of a configurable
cache may be sufficient.

The results also show that, for particular benchmarks, the combined-method heuris-
tics do obtain a respectable additional 10% to 15% energy savings compared to cache

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

88:16 A. Gordon-Ross et al.

configuration alone. Thus, combining the methods may still be useful for applications
with tight energy constraints. The performance data in Figure 7 shows similar results,
yielding similar conclusions.

With regards to comparing the three heuristics, we see they perform about the same
on average and that all three heuristics perform equally well for nearly every bench-
mark. These results were rather surprising to us, as we expected the “optimal” search
performed by the reorder-during-configuration heuristic to achieve better results. In-
stead, the results show that the far more computationally efficient reorder-configure
heuristic obtains near-optimal results.

We explain these results by first pointing out that, in most cases, the majority of
energy and performance benefits come from cache configuration alone. Even if code
reordering is applied to a suboptimal configuration, cache configuration will still deter-
mine the lowest energy cache for the instruction stream. Second, for both the reorder-
configure and the configure-reorder-configure heuristics, code reordering is applied to
wisely chosen cache configurations. For the reorder-configure method, code reorder-
ing is applied to the base cache configuration, which is the smallest available cache
configuration. Research shows that code reordering is most effective at small cache
sizes [McFarling 1989]. For the configure-reorder-configure method, code reordering is
applied to the cache determined by applying cache configuration to the original instruc-
tion stream, again, a wise cache for which to perform reordering because that cache
closely reflects the needs of the application. The goal of code reordering is twofold:
to increase the spatial locality of code by placing hot paths through the application in
contiguous memory, thus increasing the benefits of a larger line size, and to reduce con-
flict misses through cache line coloring. We manually observed that in the cases where
code reordering was beneficial, the only change from the configured cache without code
reordering to the configured cache with code reordering was a larger line size.

4.3.3. Non-Cache-Aware Code Reordering Verses Cache-Aware Code Reordering. In order to
highlight the benefits gained by cache-aware code reordering, we compare the results
presented in Sections 3.2 and 4.3.2. We note that the instruction set used for the
results in Section 3.2 was the x86 instruction set, whereas the instruction set used
in Section 4.3.2 was the PISA instruction set. Thus, direct normalization between the
results is not possible (as even the instruction counts for the base cache’s differ due
to the different instruction set architectures), however, savings magnitudes can be
compared. In addition, due to different tool chains and thus different benchmark sets,
we can only compare benchmarks that successfully completed both tool chains.

Figure 8 compares (a) energy savings and (b) performance impacts for non-cache-
aware code reordering with cache configuration and cache-aware code reordering with
cache configuration for the best average heuristic as determined in Section 4.3.2.
Results reveal the importance of considering the actual cache configuration while
performing code reordering. Non-cache-aware code reordering with cache configura-
tion reveals a 17% reduction in average energy consumption and a 19% reduction in
average execution time. Cache-aware code reordering with cache configuration reveals
a 47% reduction in average energy consumption and a 56% reduction in average
execution time. Cache-aware code reordering with cache configuration increases
the energy savings and reduces the execution time 2.8x and 2.9x, respectively.
However, when looking at individual benchmarks, results reveal that cache-aware
code reordering increases energy consumption and execution time as compared to
non-cache-aware code reordering with cache configuration for six benchmarks and
five benchmarks, respectively, out of eighteen benchmarks. Out of these benchmarks,
only two benchmarks, TTPPRK01 and IIRFLT01, show a large increase in energy
consumption and execution time (all other benchmarks show a negligible difference).

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

Combining Code Reordering and Cache Configuration 88:17

Fig. 8. Comparing non-cache-aware code reordering and cache-aware code reordering: (a) Energy consump-
tion and (b) execution time normalized to the base cache configuration without code reordering.

We attribute these differences to the general uncertainty of code reordering benefits
with respect to application particulars, however, overall, cache-aware code reordering
with cache configuration help to alleviate most of this uncertainty.

4.3.4. Exploration Speedup. The reorder-configure heuristic we present provides near-
optimal results and provides significant design space exploration speedup over an
exhaustive method. Since code reordering is typically a link-time optimization, a de-
signer applying both code reordering and cache configuration would likely perform
cache configuration exploration in a simulation-based environment. In a simulation
environment, the application is executed for each cache configuration to gather cache
statistics. Simulation of complex systems can be quite time-consuming, easily requiring
many hours or perhaps days to run just a single cache configuration, making develop-
ment of an efficient heuristic essential to reducing design space exploration time.

The exhaustive reorder-during-configuration approach explores eighteen possible
cache configurations, applying code reordering to each of the eighteen configurations
before simulation. The reorder-configure heuristic explores only seven cache configu-
rations and only performs code reordering once, reducing the number of cache config-
urations explored by 62% and reducing the number of code reorderings by 95%.

5. CONCLUSIONS AND FUTURE WORK

We provided a detailed study of the interplay between two optimization methods for
instruction cache, namely, the software method of code reordering, and the hardware

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

88:18 A. Gordon-Ross et al.

method of a configurable cache. We found that the configurable cache method yields
much better energy savings and performance on average and is always better or nearly
equal to code reordering on every benchmark examined. We did observe particular ap-
plications where combining the two methods yielded additional savings—as much as
15%. We found that a simple heuristic that applies reordering once, followed by cache
configuration, yielded near-optimal results. Furthermore, we show the importance of
cache-aware code reordering. Cache-aware code reordering with cache configuration
reveals an addition 2.8x and 2.9x increase in energy savings and reduction in execu-
tion time, respectively, as compared to non-cache-aware code reordering with cache
configuration.

We plan to further investigate the interplay of the two methods for two-level cache
hierarchies, which provide an exploration space orders of magnitude greater than a sin-
gle level of cache (with tens of thousands of possible cache configurations rather than
dozens). In addition, these results indicate that examining the interplay of previously
introduced stand-alone optimization methods is an important step towards developing
an effective system-level hardware/software design framework for embedded systems,
thus we are currently exploring the interplay of code compression and cache config-
uration. Finally, since the magnitude of energy and performance benefits varies for
different benchmarks, we plan to further study these benchmarks and classify charac-
teristics that suggest the level of additional savings possible.

ACKNOWLEDGMENTS

We would like to thank Professor Saumya Debray and Patrick Moseley from the University of Arizona for
providing PLTO and the trap profiler.

REFERENCES

ALBONESI, D. H. 2002. Selective cache ways: on demand cache resource allocation. J. Instruction Level Parallel.
ALTERA. 2010. Nios embedded processor system development. http://www.altera.com/corporate/news room/

releases/products/nr-nios delivers goods.html.
ARC INTERNATIONAL 2010. www.arccores.com.
ARM. 2010. www.arm.com.
AYDIN, H. AND KAELI, D. 2000. Using cache line coloring to perform aggressive procedure inlining. ACM

SIGARCH News 28, 1, 62–71.
BAHAR, I. CALDER, B., AND GRUNWALD, D. A. 1998. Comparison of software code reordering and victim buffers.

In Proceedings of the 3rd Workshop of Interaction Between Compilers and Computer Architecture.
BALASUBRAMONIAN, R., ALBONESI, D., BUYUKTOSUNOGLU, A., AND DWARKADAS, S. 2000. Memory heirarchy recon-

figuration for energy and performance in general-purpose processor architecture. In Proceedings of the
33rd International Symposium on Microarchitecture.

BARTOLINI, S. AND PRETE, C. A. 2005. Optimizing instruction cache performance of embedded systems. ACM
Trans. Embedd. Comput. Syst. 4, 4, 934–965.

BENINI, L., MACII, A., MACII, E., AND PONCINO, M. 1999. Selective instruction compression for memory energy
reduction in embedded systems. In Proceedings of the International Symposium on Low Power Emedded
Systems.

BURGER, D., AUSTIN, T., AND BENNET, S. 2000. Evaluating future microprocessors: The simplescalar toolset.
Tech. rep. CS-TR-1308. Computer Science Department, University of Wisconsin-Madison.

CALDER, B. AND GRUNWALD, D. 1994. Reducing branch costs via branch alignment. In Proceedings of the 6th
International Conference on Architectural Support for Programming Languages and Operating Systems.

CHEN, J. AND LEUPEN, B. 1997. Improving instruction locality with just-in-time code layout. In Proceedings of
the USENIX Windows NT Workshop.

CHEN, Y. AND ZHANG, F. 2007. Code reordering on limited branch offset. ACM Trans. Architec. Code Optimz. 4,
2.

COHN, R., GOODWIN, P., LOWNEY, G., AND RUBIN, N. 1997. Spike: An optimizer for Alpha/NT executables. In
Proceedings of the USENIX Windows NT Workshop.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

Combining Code Reordering and Cache Configuration 88:19

COHN. R. AND LOWNEY, P. G. 2000. Design and analysis of profile-based optimization in Compaq’s compilation
tools for Alpha. J. Instruction Level Parallelism 2.

DINERO I. 2010. http://www.cs.wisc.edu/∼markhill/DineroIV/.
EEMBC. 2010. The Embedded Microprocessor Benchmark Consortium. www.eembc.org.
GHOSH, A. AND GIVARGIS, T. 2003. Cache optimization for embedded processor cores: an analytical approach.

In Proceedings of the International Conference on Computer Aided Design.
GIVARGIS, T. AND VAHID, F. 2002. Platune: a tuning framework for system-on-a-chip platforms. IEEE Trans.

Comput. Aid. Design.
GLOY, N., BLACKWELL, T., SMITH, M. D., AND CALDER, B. 1997. Procedure placement using temporal ordering in-

formation. In Proceedings of the 30th Anual ACM/IEEE International Symposium on Microarchitecture.
303–313.

GORDON-ROSS, A., COTTERELL, AND VAHID, F. 2002. Exploiting fixed programs in embedded systems: A Loop
cache example. Comput. Architec. Letters 1.

GORDON-ROSS, A., LAU, J., AND CALDER, B. 2008. Phase-based cache reconfiguration for a highly-configurable
two-level cache hierarchy. In Proceedings of the 18th ACM Great Lakes Symposium on VLSI (GLSVLSI).

GORDON-ROSS, A. AND VAHID, F. 2002. Dynamic loop caching meets preloaded loop caching—a hybrid approach.
In Proceedings of the International Conference on Computer Design.

GORDON-ROSS, A., VAHID, F., AND DUTT, N. 2009. Fast Configurable-Cache Tuning with a Unified Second-Level
Cache. IEEE Trans. VLSI.

HASHEMI, A., KAELI, D., AND CALDER, B. 1997. Efficient procedure mapping using cache line coloring. In
Proceedings of the International Conference on Programming Language Design and Implementation.

HINES, S., WHALLEY, D., AND TYSON, G. 2007. Guaranteeing hits to improve the efficiency of a small instruction
cache. In Proceedings of the IEEE/ACM International Symposium on Microarchitecture.

HUANG, X., BLACKBURN, S., GROVE, D., AND MCKINLEY, K. 2006a. Fast and efficient partial code reordering:
taking advantage of a dynamic recompiler. In Proceedings of the International Symposium on Memory
Managment.

HUANG, X., LEWIS, T., AND MCKINLEY, K. 2006b. Dyanmic code management: improving whole program code
locality in managed runtimes. In Proceedings of the ACM International Conference on Virtual Execution
Environments.

HWU, W. W. AND CHANG, P. 1989. Achieving high instruction cache performance with an optimizing compiler.
In Proceedings of the 16th Annual Intl. Symposium on Computer Architecture.

KALMATIANOS, J. AND KAELI, D. 1999. Code reordering for multi-level cache hierarchies. Northeeastern Uni-
versity Computer Architecture Research Group. http://www.ece.neu.edu/info/architecture/publications.
html.

KALMATIANOS AND J., KAELI, D. 2000. Accurate simulation and evaluation of code reordering. In Proceedings
of the IEEE International Symposium on the Performance Analysis of Systems and Software.

KIN, J., GUPTA, M., AND MANGIONE-SMITH, W. The filter cache: an energy efficient memory structure. In Pro-
ceedings of the IEEE Micro.

LEE, D., BAER, J., BERSHAD, B., AND ANDERSON, T. 1999a. Reducing startup latency in web and desktop applica-
tions. In Proceedings of the Windows NT Symposium.

LEE, L. H., MOYER, W., AND ARENDS, J. 1999b. Low cost Embedded Program Loop Caching – Revisited. Tech.
rep. N CSE-TR-411-99, University of Michigan.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. 1997. MediaBench: a tool for evaluating and synthesizing
multimedia and communication systems. In Proceedings of the 30th Annual International Symposium
on Microarchitecture.

MALIK, A., MOYER, W., AND CERMAK, D. 2000. A low power unified cache architecture providing power and
performance flexibility. In Proceedings of the International Symposium on Low Power Electronics and
Design.

MCFARLING. S. 1989. Program optimization for instruction caches. In Proceedings of the 3rd International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS III).

MIPS TECHNOLOGIES. 2010. www.mips.com.
MOSELEY, P., DEBRAY, S., AND ANDREWS, G. Checking program profiles. In Proceedings of the 3rd IEEE Interna-

tional Workshop of Source Code Analysis and Manipulation.
MUTH, R., DEBRAY, S., WATTERSON, S., AND DE BOSSCHERE, K. 2001. Alto: a link-time optimizer for the Compaq

Alpha. Softw. Pract. Exper. 31, 6, 67–101.
PALESI, M. AND GIVARGIS, T. 2002. Multi-objective design space exploration using genetic algorithms. In Pro-

ceedings of the International Workshop on Hardware/Software Codesign.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

88:20 A. Gordon-Ross et al.

PETTIS, K. AND HANSEN, R. 1990. Profile guided code positioning. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation.

RAMIREZ, A. 2005. Code placement for improving dynamic branch prediction accuracy. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

RAMIREZ, A., LARRIBA-PAY, J. NAVARRO, C., VALERO, M., AND TORRELLAS, J. 2002. Software trace caches for com-
merial applications. Int. J. Parallel Program. 30, 5.

RAMIREZ, A., LARRIBA-PEY, J., AND VALERO, M. 2000. The effect of code reordering on branch predition. In Pro-
ceedings of the International Conference on Parallel Architectures and Compilation Techniques (PACT).

RAMIREZ, A., LARRIBA-PEY, J., AND VALERO, M. 2001. Instruction fetch architectures and code layout optimiza-
tions. Proc. IEEE 89, 11.

RAMIREZ, A., LARRIBA-PAY, J., AND VALERO, M. 2005. Software trace caches. IEEE Trans. Comput. 54, 1.
REINMAN, G. AND JOUPPI, N. P. 1999. Cacti2.0: An integraded cache timing and power model. Tech rep.,

COMPAQ Western Research Lab.
SAMPLES, A. D., AND HILFINGER, P. N. 1988. Code reorganization for instruction caches. Techn. rep. UCB/CSD

88/447, University of California, Berkeley.
SANGHAI, K., KAELI, D., RAIKMAN, A., AND BUTLER, K. 2007. A code layout framework for embedded processors

with configurable memory hierarchy. In Proceedings of the Workshop on Optimizations for DSP and
Embedded Systems (ODES).

SCALES, D. 1998. Efficient dynamic procedure placement. Tech. rep. WRL-98/5, Compaq WRL Research Lab.
SCHARZ, B., DEBRAY, S., ANDREWS, G., AND LEGENDRE, M. 2001. PLTO: a link-time optimizer for the Intel IA-32

architecture. In Proceedings of the Workshop on Binary Translation (WBT).
SCHMIDT, W. J., ROEDIGER, R. R., MESTAD, C. S., MENDELSON, B., SHAVIT-LOTTEM, I., AND BORTNIKOV-AND SITNITSKY,

V. 1998. Profile-directed restructuring of operation system code. IBM Syst. J. 37, 2.
SRIVASTAVA, A., AND WALL, D. W. 1992. A practical system of intermodule code optimization at link-time. J.

Program. Lang. 11, 1, 1–18.
SU, C. AND DESPAIN, A. M. 1995. Cache design trade-offs for power and performance optimization: a case study.

Proceedings of the International Symposium on Low Power Electronics and Design.
TENSILICA. 2010. Xtensa processor generator. http://www.tensilica.com/.
VILLARREAL, J., LYSECKY, R., COTTERELL, S., AND VAHID, F. 2001. Loop analysis of embedded applications. Tech.

rep. UCR-CSR-01-03, University of California Riverside.
ZHANG, C. AND VAHID, F. 2003. Cache configuration exploration on prototyping platforms. In Proceedings of

the 14th IEEE International Workshop on Rapid System Prototyping (RSP- 03).
ZHANG, C., VAHID, F., AND NAJJAR, W. 2003. A highly-configurable cache architecture for embedded eystems. In

Proceedings of the 30th Annual International Symposium on Computer Architecture.
ZHANG, C. AND VAHID, F. 2004a. Using a victim buffer in an application-specific memory hierarchy. In Proceed-

ings of the Design, Automation and Test (DATE) Conference in Europe.
ZHANG, C. AND VAHID, F. 2004b. A self-tuning cache architecture for embedded systems. In Proceedings of the

Design, Automation and Test (DATE) Conference in Europe.

Received September 2009; revised February 2010; accepted June 2010

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 88, Publication date: December 2012.

