
21

Reconfigurable Fault Tolerance: A Comprehensive Framework
for Reliable and Adaptive FPGA-Based Space Computing

ADAM JACOBS, GRZEGORZ CIESLEWSKI, ALAN D. GEORGE, ANN GORDON-ROSS,
and HERMAN LAM, University of Florida

Commercial SRAM-based, field-programmable gate arrays (FPGAs) have the potential to provide space
applications with the necessary performance to meet next-generation mission requirements. However, mit-
igating an FPGA’s susceptibility to single-event upset (SEU) radiation is challenging. Triple-modular re-
dundancy (TMR) techniques are traditionally used to mitigate radiation effects, but TMR incurs substantial
overheads such as increased area and power requirements. In order to reduce these overheads while still
providing sufficient radiation mitigation, we propose a reconfigurable fault tolerance (RFT) framework that
enables system designers to dynamically adjust a system’s level of redundancy and fault mitigation based on
the varying radiation incurred at different orbital positions. This framework includes an adaptive hardware
architecture that leverages FPGA reconfigurable techniques to enable significant processing to be performed
efficiently and reliably when environmental factors permit. To accurately estimate upset rates, we propose
an upset rate modeling tool that captures time-varying radiation effects for arbitrary satellite orbits using
a collection of existing, publically available tools and models. We perform fault-injection testing on a proto-
type RFT platform to validate the RFT architecture and RFT performability models. We combine our RFT
hardware architecture and the modeled upset rates using phased-mission Markov modeling to estimate
performability gains achievable using our framework for two case-study orbits.

Categories and Subject Descriptors: B.8.1 [Performance and Reliability]: Reliability, Testing, and Fault
Tolerance; C.4 [Performance of Systems]: Fault tolerance

General Terms: Reliability, Performance, Design

Additional Key Words and Phrases: FPGA, Reconfigurable fault tolerance, single-event upsets

ACM Reference Format:
Jacobs, A., Cieslewski, G., George, A. D., Gordon-Ross, A., and Lam, H. 2012. Reconfigurable fault tolerance:
A comprehensive framework for reliable and adaptive FPGA-based space computing. ACM Trans. Reconfig.
Technol. Syst. 5, 4, Article 21 (December 2012), 30 pages.
DOI = 10.1145/2392616.2392619 http://doi.acm.org/10.1145/2392616.2392619

1. INTRODUCTION
As remote sensor technology for space systems increases in fidelity, the amount of
data collected by orbiting satellites and other space vehicles will continue to outpace
the ability to transmit that data to other stations (e.g., ground stations, other satel-
lites). Increasing future systems’ onboard data processing capabilities can alleviate
this downlink bottleneck, which is caused by bandwidth limitations and high latency
transmission. Onboard data processing enables much of the raw data to be interpreted,

This work was supported in part by the I/UCRC Program of the National Science Foundation under Grant
No. EEC-0642422. The authors gratefully acknowledge vendor equipment and/or tools provided by various
vendors that helped make this work possible.
Authors’ address: A. Jacobs (corresponding author), NSF Center for High-Performance Reconfigurable Com-
puting (CHREC), University of Florida; email: jacobs@hcs.ufl.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1936-7406/2012/12-ART21 $15.00

DOI 10.1145/2392616.2392619 http://doi.acm.org/10.1145/2392616.2392619

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

21:2 A. Jacobs et al.

reduced, and/or compressed onboard the space system before the results are trans-
mitted to ground stations or other space systems, thus reducing data transmission
requirements. For applications with low data transmission requirements, improved
onboard data processing can enable more complex and autonomous capabilities. Fi-
nally, increased onboard data processing can enable future space systems to keep up
with increasingly stringent real-time constraints. However, increasing the onboard
data processing capabilities requires high-performance computing, which has largely
been absent from space systems.

In addition to the high performance requirements of these enhanced future systems,
space environments impose several other stringent, high-priority design constraints.
System design decisions must consider the system’s size, weight, and power (SWaP)
and heat dissipation, which are dictated by the system’s physical platform configura-
tion. The satellite’s physical dimensions restrict the system’s size, the photovoltaic so-
lar array’s capacity restricts the power generation, and all heat dissipation must occur
from passive, radiative cooling, which can be slow. In addition to SWaP requirements,
system designers must consider system component reliability and system availability
because faulty space systems are either impossible or prohibitively expensive to ser-
vice. Radiation-hardened devices, with increased protection from long-term radiation
exposure (total ionizing dose), provide system reliability. While device-level radiation
hardening increases component lifetimes and reliability, these hardened devices are
expensive and have dramatically reduced performance as compared to nonhardened
commercial-off-the-shelf (COTS) components.

In order to design an optimal system, the performance, SWaP, and reliability re-
quirements of future space applications must be considered together. System design
philosophy must consider the worst-case operating scenario (e.g., typically worst-case
radiation), which may dramatically limit the overall system performance even though
the worst-case scenario may be infrequent (e.g., radiation levels typically change based
on orbital position). However, if components used for redundancy and reliability can be
dynamically repurposed to perform useful, additional computation, future space sys-
tems could meet both high-performance and high-reliability requirements. Future sys-
tems could maintain high reliability during worst-case operating environments while
achieving high performance during less radiation-intensive periods. Current design
methodologies do not account for this type of adaptability. Therefore, in order for
future space systems to achieve high levels of performance, more sophisticated and
adaptive system design methodologies are necessary.

One approach for adaptive high-performance space system design leverages
hardware-adaptive devices such as field-programmable gate arrays (FPGAs), which
provide parallel computations at a high level of performance per unit size, mass, and
power [Williams et al. 2010]. Fortunately, many space applications, such as synthetic
aperture radar (SAR) [Le et al. 2004], hyperspectral imaging (HSI) [Hsueh and Chang
2008], image compression [Gupta et al. 2006], and other image processing applica-
tions [Dawood et al. 2002], where onboard data processing can significantly reduce
data transmission requirements, are amenable to an FPGA’s highly parallel architec-
ture. Since reconfiguration enables FPGAs to perform a wide variety of application-
specific tasks, these systems can rival application-specific integrated circuit (ASIC)
performance while maintaining a general-purpose processor’s flexibility. An SRAM-
based FPGA can be reconfigured multiple times within a single application, allowing a
single FPGA to be used for multiple functions by time-multiplexing the FPGA’s hard-
ware resources, reducing the number of concurrently active processing modules when
an application does not require all processing modules all of the time. Thus, FPGA
reconfiguration facilitates small, lightweight, yet powerful systems that can be opti-
mized for a space application’s time-varying hardware requirements.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

Reconfigurable Fault Tolerance 21:3

In order to leverage FPGAs in space systems, the FPGA must operate correctly
and reliably in high-radiation environments, such as those found in near-Earth orbits.
Currently, most radiation-hardened FPGAs have antifuse-based configuration memo-
ries that are immune to single-event upsets (SEUs). However, these hardened FPGAs
have reconfiguration limitations and small capacities, reducing the primary perfor-
mance benefits offered by COTS SRAM-based FPGAs. Fortunately, when combined
with special system design techniques, SRAM-based FPGAs can be viable for space
systems. An SRAM-based FPGA’s primary computational limitation is the possibility
of SEUs causing errors within the FPGA user logic and routing resources, which can
manifest as configuration memory upsets or logic memory (e.g., flip-flops, user RAM)
upsets (resulting in deviations from the expected application behavior). Fault-tolerant
techniques, such as triple-modular redundancy (TMR) and memory scrubbing, can
protect the system from most SEUs and significantly decrease the SEU-induced er-
rors, but designing an FPGA-based space system using TMR introduces at least
200% area overhead for each protected module. Depending on the expected upset
rates for a given space system, other lower-overhead fault tolerance methods could
be used to provide sufficient reliability while maximizing the resources available for
performance.

When designing a traditional space system, system designers estimate the expected
worst-case upset rates and include an additional safety margin. However, since single-
event upset (SEU) rates vary based on orbital position and the majority of orbital
positions experience relatively low upset rates, a system designed for the worst-case
upset-rate scenario contains processing resources that are wasted during the frequent
low-upset-rate periods. In order to provide the necessary reliability during high-upset-
rate periods and reduce the processing overhead incurred during low-upset-rate pe-
riods, the fault tolerance method must change based on the current upset rate. We
propose a reconfigurable fault tolerance (RFT) framework that enables FPGA-based
systems to dynamically adapt the amount of fault tolerance based on the current upset
rate. For example, during high-upset-rate periods, the system can be reconfigured to
provide high reliability at the expense of reduced processing capabilities, while during
low-upset-rate periods the system can be reconfigured to provide higher performance
by reprovisioning the excess hardware (used for high reliability during high-upset-rate
periods) to application functionality. This upset-rate-based adaptability provides high
performance while maintaining reliability. We present an RFT hardware framework
for run-time support of multiple fault-tolerance methods on Xilinx FPGAs, along with
several use scenarios. We leverage dynamic partial reconfiguration (PR) to change the
fault-tolerance method during run-time without interrupting complete system execu-
tion (the regions not under reconfiguration remain active). We develop a fault-rate
modeling tool to estimate the upset-rate variations during specific orbits, which is then
used to provide more accurate modeling parameters for a Markov-based RFT system
performability model. Modeling and performability analysis of the RFT framework is
shown in the context of two relevant case studies.

The remaining sections of this article are organized as follows. Section 2 surveys
previous work related to this topic. Section 3 describes the RFT hardware architec-
ture, the RFT fault-rate model, and the RFT performability model. Section 4 analyzes
results obtained using our RFT fault-rate and RFT performability models with one
fault-injection case study and two orbital case studies. Finally, Section 5 presents con-
clusions and outlines directions for future research.

2. BACKGROUND AND RELATED WORK
In this section, we motivate the need for SRAM-based FPGAs in space systems. The
FPGAs used in space systems must be able to withstand the amount of accumulated

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

21:4 A. Jacobs et al.

ionizing dose, measured as total ionizing dose (TID), expected during the mission to
ensure long-term device functionality. Single-event effects (SEEs), caused by collisions
with high-energy protons and heavy ions (radiation), are the primary short-term re-
liability concerns in space systems. In order for FPGA-based systems to maintain
reliability, a combination of radiation-hardened FPGAs and complex fault-tolerance
techniques are required to mitigate errors. Since many of the common fault-tolerance
techniques require substantial temporal or spatial area overhead, new, low-overhead
techniques allow more reconfigurable logic to be used for actual useful computation
instead of for redundancy.

2.1. FPGA Performance and Power Efficiency
SRAM-based FPGAs offer a very large amount of configurable logic and have the abil-
ity to modify portions of a design during run-time, giving these FPGAs the ability to
efficiently perform a wide range of applications by using a high degree of parallelism
while running at low clock rates. Williams et al. [2010] developed computational den-
sity metrics to quantify and predict performance of SRAM-based FPGAs for specific
types of algorithms and applications. Their analysis showed that FPGAs were capa-
ble of providing between 3 and 60 times more performance per unit power than many
conventional general-purpose processors, depending on the types of operations being
considered. The performance and power efficiency of FPGAs is extremely desirable for
the small power budgets of space systems.

2.2. Partial Reconfiguration
Partial reconfiguration (PR) enables a user to modify a portion of an FPGA’s config-
uration while the remainder of the FPGA remains operational. PR time-multiplexes
mutually exclusive application-specific processing modules on the same hardware so
that only the modules that need to be reconfigured halt operation, which makes PR
attractive for real-time systems. Currently, Xilinx supports PR for the Virtex-4 and
newer devices [Xilinx 2010a], while Altera has recently announced PR support for
Stratix-V devices [Altera 2010].

During the system design phase, designers define the FPGA’s partially reconfig-
urable regions (PRRs) and partially reconfigurable modules (PRMs) and route signals
to/from the PRRs through bus macro PR primitives (Xilinx 9.2 PR tool flow) or parti-
tion pins (Xilinx 12.1 PR tool flow). Partial bitstreams, communicated through exter-
nal configuration interfaces (e.g., SelectMAP, JTAG), are used to reconfigure the PRRs
with the PRMs. On Xilinx devices, the Internal Configuration Access Port (ICAP) is
an internal configuration interface, allowing user logic to directly reconfigure PRRs,
removing the need for additional external configuration support devices. Additionally,
since partial bitstreams are typically much smaller than full bitstreams (which are
used to configure the entire FPGA), PR reduces bitstream storage requirements. Par-
tial bitstreams may be significantly smaller than full bitstreams, depending upon the
size of each PRR.

2.3. Single-Event Effects
SEEs occur when high-energy particles, such as protons, neutrons, or heavy ions, col-
lide with silicon atoms on a device, depositing the ion’s electric charge into the de-
vice’s circuit. Protons and electrons are trapped within the Earth’s Van Allen belts,
while heavy ions are mainly produced by galactic cosmic rays and solar flares. When
a high-energy particle collides with a silicon device, the energy of the collision can
cause the logical values stored in sequential memory elements to be inverted [Karnik

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

Reconfigurable Fault Tolerance 21:5

and Hazucha 2004]. Errors caused by these particles are often referred to as soft er-
rors, or SEUs, as there is no permanent circuitry damage and any affected memories
can be corrected by rewriting the correct values. Single-event functional interrupts
(SEFIs), another type of SEE, can cause a semipermanent fault that requires a circuit
to be power-cycled to restore correct operation. Single-event latchups (SELs) are de-
structive SEEs that occur when a particle causes a parasitic forward-biased structure
within the device substrate that can allow destructively high amounts of current to
flow through the substrate, potentially damaging the device. SELs can be avoided by
using appropriate device manufacturing processes, and devices produced using silicon-
on-insulator (SOI) processes are largely immune. SEL immunity is an important prop-
erty when selecting devices for many space systems.

2.4. FPGAs in Space Systems
FPGA configuration memories can be constructed using several different technologies
(e.g., antifuse, flash, and SRAM), each with performance and reliability tradeoffs. Tra-
ditionally, antifuse-based FPGAs have been used in space systems to provide simple
processing capabilities and glue logic to interconnect multiple peripherals or to com-
bine/replace the functionality of multiple ASICs. Antifuse-based FPGAs are one-time
programmable, where the configuration process creates/fixes the FPGA’s physical rout-
ing interconnect structure. This configuration process provides an inherent level of
fault tolerance from SEUs since the antifuse-based routing cannot be reversed. Addi-
tionally, many commercially available antifuse-based FPGAs (e.g., [Actel 2010a]) in-
clude replicated flip-flop cells to prevent upsets in the sequential logic. Additionally,
antifuse devices generally have a high TID threshold and immunity to SELs. Unfortu-
nately, when compared to flash-based or SRAM-based FPGAs, antifuse-based FPGAs
contain a relatively small amount of available logic gates and the fixed-logic structure
limits performance potential.

Flash-based FPGAs (e.g., Actel RT-ProASIC3 [Actel 2010b]) attempt to maintain
an antifuse-based FPGA’s reliability while increasing the amount of configurable logic
(logic available for a system designer to implement application functionality) and al-
lowing reconfiguration. Flash-based FPGA configuration memories are composed of
radiation-tolerant flash cells that provide reliability for combinational logic, however
system designers must insert sequential logic replication to fully protect the FPGA
from faults. Even though flash-based FPGAs can be fully reconfigured to support mul-
tiple applications, flash-based FPGAs do not support the PR capability that is available
on some SRAM-based FPGAs due to a lack of architectural and vendor support for such
a capability. Concerns over the TID effects on flash-based logic (floating-gate transis-
tors) have prevented wide-spread acceptance of flash-based FPGAs in space systems
[Wang 2003].

SRAM-based FPGAs are the most radiation-susceptible type of FPGA since the
design functionality is stored in vulnerable SRAM cells (configuration memory), and
configuration memory upsets cause functional changes to the design’s logic. Tradition-
ally, this vulnerability has prevented SRAM-based FPGAs from being used in highly
critical space applications, however, some space systems use space-qualified SRAM-
based FPGAs for onboard processing. Space-qualified FPGAs are similar to COTS
FPGAs but are produced using epitaxial wafers, use ceramic, hermetically-sealed
packaging, and have been tested to ensure that damaging SEL events will not com-
promise the system. These devices are rated for TID levels high enough to be used
in space systems [Xilinx 2010c]. Even with these reliability techniques, these space
systems must still use several fault-mitigation strategies, such as TMR and config-
uration scrubbing, to ensure that system upsets are detectable and recoverable. (We

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

21:6 A. Jacobs et al.

note that unless specified, all further FPGA references implicitly refer to SRAM-based
FPGAs.)

Traditional FPGA-based space system designs leverage spatial TMR. TMR uses a
reliable majority voter connected to three identical module replicas in order to detect
and mask errors in any one module. In the context of TMR, a module refers to the
functional unit being replicated, which can range from a single logic gate to an entire
device. There are two primary TMR variations: external and internal. External TMR
uses three independent FPGAs working in lockstep, where each FPGA implements a
module replica and the outputs are connected to an external radiation-hardened voter
that compares the results. External TMR requires significant hardware overhead (each
protected module is triplicated and board layout complexity is significantly increased),
but is reliable. The RCC board produced by SEAKR engineering [Troxel et al. 2008]
uses external TMR to provide reliable computation using Xilinx Virtex-4 FPGAs. Al-
ternatively, internal TMR creates three identical modules within a single FPGA, and
the majority voter resides internally or externally [Carmichael et al. 1999]. Internal
TMR can reduce the number of physical FPGAs required to implement a space appli-
cation, but may increase the chance of a common-mode failure, where multiple mod-
ules fail simultaneously from a single fault. For example, a SEFI may cause multiple
internally-replicated modules to fail, whereas externally-replicated FPGAs would be
immune. Several tools assist system designers in incorporating TMR into space sys-
tem designs [Pratt et al. 2006; Xilinx 2004].

In addition to TMR, configuration scrubbing prevents error accumulation in FPGA
configuration memory. While TMR masks individual errors, it does not correct the un-
derlying fault and cannot correct errors that occur in multiple modules. Scrubbing uses
an external device to read back the FPGA’s configuration memory and compares the
read configuration memory to a known good copy. Alternatively, some FPGAs calculate
an error correction code (ECC) during configuration read-back for every configuration
frame, which can be used to detect and correct configuration faults. If a mismatch is
detected, the correct configuration can be written using PR without halting the entire
FPGA operation [Xilinx 2010a]. Traditionally, scrubbing is performed by an external
radiation-hardened microcontroller to ensure reliability of the reconfiguration process.
However, a self-scrubber may be implemented within the FPGA using the ICAP avail-
able in Xilinx Virtex-4 and newer devices.

Despite these drawbacks, SRAM-based FPGAs have been used in many space sys-
tems, including earth-observing science satellites, communication satellites, and satel-
lites and rovers for the Venus and Mars missions. For instance, space-qualified Xilinx
Virtex-1000 (XQVR1000) devices were used on the Mars Exploration Rovers for motor
control functions and four XQR4000XLs were used for the lander pyrotechnics [Ratter
2004]. Configuration read-back and scrubbing were used for detection and correction
of SEUs, and the full system was cycled once per Martian evening to remove persistent
errors. These systems, which contained very little logic as compared to today’s stan-
dards and lacked the ability for PR, were not used for data processing. The increased
logic resources on recent FPGA families enable future systems to use FPGAs for im-
age processing and other computation-intensive applications. The SpaceCube created
at NASA Goddard Space Flight Center uses multiple commercial Xilinx Virtex-4 FP-
GAs along with a radiation-hardened processor to provide onboard processing capabil-
ities for a variety of missions [Flatley 2010]. The SpaceCube provided computational
power for the Relative Navigation Sensors (RNS) experiment during Hubble Servicing
Mission 4 and is currently being used as an on-orbit test platform aboard the Naval
Research Laboratory’s MISSE-7 experiment on the International Space Station (ISS).
Each FPGA in the system contains a self-scrubber module, protected with TMR, to
correct errors and prevent error accumulation.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

Reconfigurable Fault Tolerance 21:7

2.5. Low-Overhead Fault Tolerance Methods
While TMR is the most common fault tolerance method for FPGAs, the high area over-
head due to replicating modules partially negates some FPGA benefits. Therefore,
much research has focused on developing alternative, low-overhead fault-tolerance
methods for low-upset environments, such as replication-based fault tolerance [Laprie
et al. 1990], [Rao and Fujiwara 1989], and application-specific optimizations to provide
low-cost reliability. Many of these alternative techniques can detect errors quickly, but
may require additional processing or complete recomputation to correct the errors.
When the expected upset rates are low, the recomputation rates may be acceptably
low, depending on application throughput requirements.

Replication-based fault tolerance represents the most commonly used type of fault-
mitigation strategy, due to conceptual simplicity and high fault coverage. TMR can
detect single errors and can correct/mask single errors using a majority voter. Dupli-
cation with compare (DWC) is an alternative replication-based method that compares
the outputs of duplicated modules. DWC reduces the resource overhead by one half
as compared to TMR, but DWC cannot correct errors and must fully re-compute data
when errors are detected [Johnson et al. 2008]. Shim et al. [2004] proposed reduced-
precision redundancy (RPR) for numerical computation using either DWC or TMR, but
reduced the resource overhead by only replicating the higher-order bits. RPR reduced
the number of detectable faults (fault coverage), but resulted in significant resource
savings while maintaining sufficient signal-to-noise ratios for many DSP applications.
Morgan et al. [2007] investigated the use of temporal redundancy and quadded logic
as additional methods for providing fault tolerance through redundancy. However, due
to inefficient mapping to the underlying FPGA architecture, their methods did not
provide fault tolerance improvement over TMR and imposed a large area overhead.
The effects of the fault-tolerant methods were offset by the increased cross-sectional
vulnerability of the larger FPGA designs.

Even though these replication-based methods for fault tolerance are suitable for FP-
GAs, several new fault-tolerant FPGA architectures leverage an FPGA’s high capacity
and flexibility while maintaining reliability. Alnajiar et al. [2009] proposed a hypo-
thetical coarse-grained multicontext FPGA architecture that supported TMR, DWC,
and single-context modes. Their work explored the effects of soft errors and aging on
the proposed architecture, with an example Viterbi decoder module mapped to the
hypothetical architecture. Kyriakoulakos and Pnevmatikatos [2009] proposed simple
modifications to the current Virtex-5 and Virtex-6 architectures to allow native sup-
port for DWC and TMR. By adding an XOR-gate between each 5-input LUT within a
larger 6-input LUT, the existing architecture and synthesis tools required only min-
imal changes to support their approach, while incurring only 17.5% to 76% slice uti-
lization overhead for DWC or TMR, respectively.

Algorithm-based fault tolerance (ABFT) is a method that can be used with many
linear algebra operations, such as matrix multiplication or LU decomposition [Huang
and Abraham 1984]. ABFT augments an original data matrix with row and/or column
checksums and the linear algebra operation is performed on the new, augmented ma-
trix. If the linear algebra operation completes successfully, the resulting augmented
matrix will contain valid, consistent checksums. ABFT checksum generation and
comparison has lower computational complexity than the primary linear algebra
operation. ABFT computational overhead is generally low, and as a proportion of
total computation, decreases as the matrix size increases. Methods similar to ABFT
can also protect data in FFT-based algorithms [Wang and Jha 1994], that are fully
comprised of linear operations. Silva et al. [1998] investigated vulnerabilities in tra-
ditional ABFT implementations and proposed methods for improving fault coverage
using a robust ABFT approach. ABFT may be used in FPGA applications to provide

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

21:8 A. Jacobs et al.

datapath protection with low overhead while other fault-tolerance methods, such as
TMR, protect control logic.

3. RECONFIGURABLE FAULT TOLERANCE
RFT leverages COTS components in space systems to achieve high performance and
flexibility while maintaining reliability. Beyond traditional, spatial TMR, alternative
fault-mitigation methods may be appropriate given a particular application’s per-
formance requirements and set of expected environmental factors (e.g., radiation).
Other methods, such as temporal TMR, ABFT, software-implemented fault tolerance
(SIFT), or checkpointing and rollback, may be suitable for system-level protection.
Each alternative fault-mitigation method has tradeoffs between performance, relia-
bility, and overhead, and Pareto-optimal operation may change over a system’s life-
time. Therefore, the main goal of our proposed RFT framework is to enable a system to
autonomously adapt to Pareto-optimal operation based on the current system’s envi-
ronmental situation.

Our RFT framework consists of three main elements: a PR-based hardware ar-
chitecture; a fault-rate model for estimating orbital SEU rates; and a methodology
for modeling RFT system performability. The hardware architecture, described in
Section 3.1, is similar to other traditional SoC architectures used for reconfigurable
computing, with multiple, identical PRRs, which are leveraged for module redundancy.
The hardware architecture allows the system to execute each processing module (PRM)
in several possible fault-tolerance modes, each with differing performance and relia-
bility characteristics. RFT software adapts the amount of per-module redundancy in
accordance with the current environment and temporarily pauses only the reconfig-
ured hardware modules to preserve and record application state while changing the
fault-tolerance mode, allowing the remainder of the system to continue processing.
Additionally, modules with constant state can continue processing during the adapta-
tion process. Section 3.2 presents a model for estimating expected fault rates in po-
tential space-system orbits. Finally, Section 3.3 presents a performability model that
quantifies the RFT benefits in environments with varying upset rates.

3.1. RFT Hardware Architecture
Figure 1 shows the high-level architecture of an FPGA-based SoC design with PRRs
integrated with an RFT controller. The main architectural components include a mi-
croprocessor, a memory controller, I/O ports, PRRs (1 . . . N) for PRMs, and the system
interconnect, which connects all of these components to the microprocessor. Since we
leverage Xilinx FPGAs, the microprocessor is a MicroBlaze (less resource-intensive
processors such as PicoBlaze can also be used) and the system interconnect is a pro-
cessor local bus (PLB). The MicroBlaze orchestrates PRR reconfiguration using the
ICAP, maintains the state of the currently active PRMs, and initiates fault-tolerance
mode switching.

All architectural components except for the PRRs are protected using TMR since
these components’ functionality is crucial to the entire system’s reliability. Although
the ICAP cannot be replicated, the signals to and from the ICAP are also protected
with TMR. Tools such as Xilinx’s TMRTool [Xilinx 2004] or BYU’s EDIF-based TMR
tool [Pratt et al. 2006] automate TMR design creation by applying low-level TMR
voting on the design’s original, unprotected netlist. For additional SEU protection,
FPGA configuration scrubbing should be performed in order to prevent error accumu-
lation. Scrubbing can be performed with an external scrubber and radiation-hardened
configuration storage or with an internal scrubber using the internal configuration
ECC present in Virtex-4 and later devices.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

Reconfigurable Fault Tolerance 21:9

Fig. 1. System-on-chip architecture with RFT controller.

Table I. RFT Fault-Tolerance Modes

Fault-Tolerance Mode Fault-Tolerance Type PRRs Required
Triple Modular Redundancy (TMR) Redundancy 3
Duplication with Compare (DWC) Redundancy 2
High-Performance (HP) - no fault protection Single-Module 1
Algorithm-Based Fault Tolerance (ABFT) Single-Module 1
Internal TMR Single-Module 1

Each PRM uses a PLB-compatible interface that connects to the RFT controller or
directly to the PLB, based on whether the PRM is an RFT-enabled module (a module
replicated/instantiated by the RFT controller) or not, respectively. The RFT controller
instantiates the bus macros or other low-level components required for interfacing
with the PRRs. The RFT controller also contains multiple majority voters and com-
parators (voting logic) that can be used to detect or correct errors by evaluating the
replicated PRMs’ outputs. The RFT-enabled modules are used in parallel to create
redundancy-based, fault-protection modes (e.g., DWC, TMR) by interfacing with the
RFT controller’s voting logic. Additionally, other single-module fault-protection modes,
such as ABFT, can be used for individual PRRs and the RFT controller provides addi-
tional fault tolerance components, such as watchdog timers, to detect hanging condi-
tions within PRMs.

Table I lists the currently supported fault-tolerance modes of RFT and the modes’
fault-tolerance type and PRR requirements. The MicroBlaze evaluates the system’s
current performance requirements and monitors external stimuli (radiation) using
external sensors to determine when the fault-tolerance mode should be switched,
at which time the MicroBlaze reconfigures the appropriate PRRs, and the RFT con-
troller’s internal voting scheme between the PRRs’ outputs for the new fault-tolerance
mode.

3.1.1. RFT Controller Operation. Figure 2 illustrates the interface between PRRs and
the PLB for an RFT controller that can operate in single-module and redundancy-
based fault-tolerance modes. This RFT controller interface routes input signals from
the system interconnect to the appropriate PRRs and routes voting output signals

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

21:10 A. Jacobs et al.

Fig. 2. RFT controller PLB-to-PRR interface.

back to the PLB. The abstraction of this logic into the RFT controller enables preexist-
ing PRMs to leverage the fault-tolerance modes and interface with the RFT controller
with minimum modifications. To communicate data and control signals between the
MicroBlaze, the PRRs, and the RFT controller, at design time, the system designer
assigns a large memory-mapped region of the MicroBlaze’s address space to the
RFT controller. In order to route signals to specified PRRs, the system designer also
subdivides this region into smaller subregions and assigns a subregion to each PRR,
while taking into consideration the memory interface requirements of each potential
PRM. Each PRM must implement the actual memory interface (e.g., dual-port RAM,
FIFO-based interface), which allows preexisting PRMs to interface with the RFT
controller with minor modifications, since no specific interface is required. When
communication data from the MicroBlaze arrives over the PLB, the RFT controller’s
address decoder processes the input address and determines the destination PRR(s)
based on the current fault-tolerance mode. While operating in single-module fault-
tolerance modes, the data is passed directly to the PRR specified by the decoded
address. While operating in redundancy-based fault-tolerance modes, the data is
passed to multiple PRRs, using appropriate enable signals to the PRRs’ interfaces.

The RFT controller routes the outputs from each individual PRR, the outputs from
the voting logic via the FT-mode register, or recorded internal status information,
over the PLB to the MicroBlaze. When the MicroBlaze requests a PRR’s output, the
RFT controller’s output multiplexer (Output Mux in Figure 2) selects the appropri-
ate PRR output to route to the PLB controller based on the decoded address from the
MicroBlaze and the current FT-Mode value. In single-module fault tolerance modes,
the RFT controller’s output multiplexer routes signals directly from the PRRs to the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

Reconfigurable Fault Tolerance 21:11

PLB controller, which bypasses the RFT’s internal voting logic. In redundancy-based
fault-tolerance modes, the output multiplexer routes the verified outputs from the RFT
controller’s voting logic to the PLB controller.

In addition to providing routing and voting logic for redundancy-based fault-
tolerance modes, the RFT controller supports additional fault-tolerance capabilities
that do not require redundant PRMs. If the system is operating in a single-module
fault-tolerance mode, each PRM may use the RFT controller’s watchdog timers or
perform internal fault detection. The RFT controller provides each PRR with an
optional watchdog timer interface using a signal that must be asserted periodically
within a user-defined time interval (usually on the order of seconds). If the PRM does
not assert the watchdog timer reset signal within the time interval, the RFT con-
troller’s interrupt generator asserts an interrupt signal to the MicroBlaze, alerting the
MicroBlaze of a possible failed PRR. Additionally, PRMs that perform internal fault
detection must include an interrupt signal to notify the RFT controller of internally
detected errors, which the RFT controller propagates to the MicroBlaze. A PRM using
ABFT performs self-checking (or self-correction if the ABFT operation permits) on
internally generated checksums and sends an interrupt signal to the RFT controller
when data errors are detected. Similarly, PRMs that use internal TMR can also
signal detected and corrected errors to the RFT controller. PRMs without any specific
fault-tolerance features can also use the RFT controller’s watchdog timer, which still
allows the RFT controller to detect module hang-ups or other operational errors.

3.1.2. MicroBlaze Operation. In an RFT system, the MicroBlaze enables additional op-
erational features, such as fault-tolerance methods to complement the fault-tolerance
modes offered by the RFT controller. Additionally, the MicroBlaze maintains the
system’s fault-tolerance state (e.g., active PRMs, current PRRs’ fault-tolerance modes,
etc.) and orchestrates PRR reconfiguration and the fault-tolerance mode switching
process.

To protect the application state while reconfiguring PRRs, the MicroBlaze provides
support for PRM checkpointing and rollback [Bowen and Pradham 1993; Naeimi and
DeHon 2008]. A checkpoint, which the MicroBlaze stores in external memory, consists
of the minimum set of application state information needed to restore the application’s
current state. In the event of a fault, an application can use the previous checkpoint
to roll back to a known good state, instead of wasting execution time by beginning
execution at an initial starting state. A PRM’s state can be checkpointed if the PRM
can be read and modified by the MicroBlaze. In an RFT system, the state of all PRMs
should be checkpointed periodically in order to reduce wasted computation in the event
of a fault-induced PRM restart. The stored checkpoints can then be used during fault
recovery procedures to improve system availability.

In addition to handling PRM checkpointing, the MicroBlaze also handles fault
recovery and reconfiguration procedures. If the RFT controller’s voting logic detects
faults in the PRMs’ outputs, the RFT controller records fault status information about
the faulty PRM (e.g., error location, time, etc.) in internal FT-status registers and
sends an interrupt to the MicroBlaze, which initiates the reconfiguration procedure.
The FT-status registers record fault status information that may be used by the
MicroBlaze to make fault-tolerance mode decisions or to provide system log informa-
tion to system operators. For single-module fault-tolerance modes, the MicroBlaze
corrects the faulty PRM by reconfiguring the PRR with the PRM’s original bitstream
over the ICAP. For the DWC fault-tolerance mode, both of the associated PRMs must
be reconfigured since the faulty PRM cannot be identified. If checkpoints exist for the
PRMs, the MicroBlaze initializes the new PRMs using these checkpoints. Alterna-
tively, if the RFT system is operating in the TMR fault-tolerance mode, the MicroBlaze

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

21:12 A. Jacobs et al.

checkpoints one of the nonfaulty PRMs while the faulty PRM is reconfigured. After
the nonfaulty PRM has been checkpointed, the RFT controller pauses the nonfaulty
PRMs using clock gating to keep the PRMs synchronized. Once the faulty PRM has
been reconfigured, the MicroBlaze initializes the newly reconfigured PRM from the
most recent checkpoint, and the RFT controller can reenable the clocks for all three of
the replicated PRMs to resume operation.

Finally, the MicroBlaze orchestrates the switching procedure between different RFT
fault-tolerance modes. Fault-tolerance mode switching can be triggered by external
events, by a priori knowledge of the operating environment, or by application-triggered
events, and the fault-tolerance mode switching procedure may vary on a per-system
basis depending on the specific system performance and reliability requirements. The
MicroBlaze can use information from the fault-status registers to make Pareto-optimal
decisions about future fault-tolerance modes. Before fault-tolerance mode switching,
the MicroBlaze ensures that sufficient PRRs are available for the new fault-tolerance
mode. Additional PRRs may be required or PRRs may be freed when switching from
a single-module fault-tolerance mode to a redundancy-based fault-tolerance mode or
vice versa, respectively. The MicroBlaze signals the RFT controller to change fault-
tolerance modes by writing to the RFT controller’s FT-Mode register. The MicroBlaze
reconfigures the PRRs involved in the fault-tolerance mode switching via the ICAP
with partial bitstreams for the appropriate PRM, or a blank partial bitstream if the
PRR is not required for the new fault-tolerance mode. When the reconfiguration pro-
cess is complete, the MicroBlaze signals the RFT controller, by rewriting the FT-Mode
register, to resume PRM operation.

3.1.3. Environment-Based Fault Mitigation. RFT fault-tolerance mode switching can be
triggered by a priori knowledge of the operating environment, by application-triggered
events, or by external events. While a priori knowledge and application-triggered
events are convenient for modeling purposes, real-world systems leverage measure-
ments from attached sensors to determine the system’s current environmental status.
Additionally, due to the unpredictability of space weather conditions, such as solar
flare events, an RFT system must be able to respond dynamically to the changing
environment.

In an RFT system, the current expected fault rate can be estimated either directly
or indirectly. An external radiation sensor can be directly interfaced with the FPGA,
allowing the MicroBlaze to track the current fault rate and predict future fault rates.
Alternatively, the RFT system can indirectly determine fault rates by tracking the
number of data and configuration faults detected during operation. Since an FPGA’s
fabric is composed of large SRAM arrays, these arrays can be used as makeshift radia-
tion detectors. If a fault is detected in the FPGA configuration or data memory, either
through readback during scrubbing or from the RFT controller’s logic, the fault can be
recorded or can be used to make decisions about which RFT fault-tolerance mode to
use. One simple, rule-based method for choosing the RFT fault-tolerance mode is to
use a sliding window approach. For instance, a system may use the following rules.

(1) If there were any faults in the past 5 minutes, use the DWC fault-tolerance mode.
(2) If there were more than 5 faults in the past 5 minutes, use the TMR fault-tolerance

mode.
(3) Only transition from the TMR fault-tolerance mode to a lower-reliability mode

after 5 minutes of fault-free operation.

The size of the sliding window and the RFT fault-tolerance mode choices are system-
and mission-dependent. A larger window size can provide a more conservative
fault-tolerance strategy, while a small window size can more quickly adapt to spikes in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

Reconfigurable Fault Tolerance 21:13

Table II. RFT Controller Resource Usage

Module Name LUTs Used FFs Used Slices Used FPGA Utilization
PLB Controller 479 375 345 1.4%
Address Decoder 238 0 136 0.5%
RFT Registers 82 64 48 0.2%
Watchdog Timers 498 390 366 1.4%
Voting Logic 438 0 234 0.9%
Output Mux 227 0 132 0.5%
Total 1962 829 1261 5.0%

the experienced fault rate. Implementing a rule with hysteresis, such as rule (3), can
produce a more reliable strategy, while requiring a smaller window size. The time re-
quired for transitioning between RFT modes is dominated by the PRR reconfiguration
time, which will be discussed in the next section.

3.1.4. RFT Controller Resource and Performance Overheads. To quantify the RFT con-
troller’s resource overhead, we implemented an RFT-based system on a Virtex-4 FX60-
based platform, similar to the SpaceCube. The design uses six PRRs connected to a
MicroBlaze through a PLB-connected RFT controller and operates at 100 MHz. Each
PRR contains 2000 slices for user logic. Each PRR can operate in high-performance
(HP) mode, DWC-mode with the PRR’s neighboring PRRs, or TMR-mode with two
consecutive, neighboring PRRs. The resources (LUT, FF, and slice) required for the
RFT controller and constituent modules are detailed in Table II. The final column of
Table II shows the percentage of the Virtex-4 FX60 used by each module. The RFT con-
troller logic, excluding the PLB controller that would be required for non-RFT designs,
requires approximately 900 slices. The largest modules within the RFT controller are
the optional watchdog timers and the voting logic. Overall, the complete RFT con-
troller uses approximately 5% of the total FPGA.

Since frequent PRR reconfiguration combined with lengthy PRR reconfiguration
time can impose a performance overhead, we measured the reconfiguration of a single
PRR. The PRR reconfiguration time was measured using timing functions on a Mi-
croBlaze with a PLB-attached ICAP controller running at 100 MHz. We measured the
PRR reconfiguration time for a 2000 slice PRR as approximately 15 ms. Even though
the RFT mode-switching overhead is dominated by this PRR reconfiguration time, the
mode-switching time incurs a negligible performance penalty due to the likely low
frequency of mode-switching. Additionally, the switching overhead only occurs when
increasing the fault tolerance redundancy (switching from DWC to TMR). When de-
creasing the fault tolerance redundancy, the retained modules can continue running
without interruption.

3.2. RFT Fault-Rate Model
In order to analyze RFT’s reliability benefits, a suitable fault-rate model that incorpo-
rates varying fault rates, system performance capabilities, and system fault-tolerance
modes, is required. Traditional reliability analysis focuses on quantifying permanent
hardware failures in systems with long lifetimes. Since many processors and FPGAs
have a high TID and can withstand decades of use in near-Earth environments, perma-
nent hardware failures due to long-term, end-of-life failures can be ignored. Therefore,
reliability analysis for space systems focuses on short-term failure analysis by mod-
eling SEU-induced computational failures. For FPGA-based systems, these failures
can cause either single or multiple data errors through corrupted data or configura-
tion memory. FPGA upset rates for space systems are correlated with the magnetic
field strength of the system’s current orbital position. For example, as a system passes

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

21:14 A. Jacobs et al.

Fig. 3. RFT fault-rate model.

into the Van Allen radiation belt, the trapped charged particles in the belt have a
higher likelihood of interacting with the system. For systems in a low-earth orbit, only
a portion of the orbit passes through the inner Van Allen belt, at a location known as
the South Atlantic Anomaly (SAA). The SAA represents the low-altitude area with a
large number of trapped particles from the inner Van Allen belt’s closest point to the
Earth.

Existing fault-rate modeling generally produces a single, average orbital upset rate,
however this average is not sufficient for RFT. In order for RFT to adapt the fault-
tolerance mode, the fault-rate model must estimate the expected fault rates based on
the instantaneous orbital position. To account for the orbit-dependent, time-varying
fault rates, data from several sources can be combined to form a more accurate esti-
mate than a single average rate. Our fault-rate model combines orbital position and
trajectory, magnetic field strength, and cosmic ray particle interaction data to provide
an accurate estimate of instantaneous fault rates. We use these fault-rate estimates
as input into multiple system-level Markov models in order to calculate reliability,
availability, and performability of RFT systems.

Our RFT fault-rate model combines three existing models to estimate time-varying
fault rates. Figure 3 illustrates the three models used as well as the inputs and
outputs to each model. To generate accurate fault estimates, a system’s time-varying
orbital position must be modeled. Orbital position can be estimated using the SGP4
model, which is a simplified general perturbation modeling algorithm. NORAD,
which is responsible for tracking space objects and space debris, developed SGP4 for
tracking near-earth satellites [Hoots and Roehrich 1980]. SGP4 accurately calculates
a satellite’s position given a set of orbital elements (apogee, perigee, inclination,
etc.) collectively referred to as a two-line element (TLE). Given a system’s TLE, the
RFT fault-rate model uses SGP4 to generate the system’s position information, in
terms of latitude, longitude, and altitude, over the user-defined modeling time period.
Next, the RFT fault-rate model passes the SGP4 positioning information for each
point along a specified orbit to the International Association of Geomagnetism and
Aeronomy’s (IAGA) International Geomagnetic Reference Field (IGRF) model [Maus
et al. 2005], which models the Earth’s magnetosphere. IGRF combines magnetosphere
data collected from satellites and observatories around the world in order to create the
most accurate and up-to-date model possible (the model is updated every five years).
For a given orbital position, IGRF outputs a McIlwain L-parameter, representing the
set of magnetic field lines that cross the Earth’s magnetic equator at a number of
Earth-radii equal to the value of the L-parameter. The inner Van Allen radiation belt
corresponds to L-values between 1.5 and 2.5. The outer Van Allen belt corresponds to
L-values between 4 and 6. In addition to identifying regions with trapped particles,
the McIlwain L-parameter can be used to estimate the effect of geomagnetic shielding

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

Reconfigurable Fault Tolerance 21:15

(cutoff rigidity) from galactic cosmic rays. The estimated L-parameters are then used,
along with the outputs of CREME96, to estimate SEU rates.

The CREME96 model [Tylka et al. 1997], a publically available SEU estimation
tool, generates fault-rate estimates and has been used extensively to predict heavy ion
and proton-induced SEU rates, as well as estimate the expected total ionizing dose
in modern electronics. CREME96 combines orbital parameters, space system physi-
cal characteristics, and silicon device process information, to create a highly accurate
SEU simulation. Traditionally, CREME96 generates an average fault-rate for a par-
ticular orbit, generated by averaging hundreds of orbits together. However, CREME96
can also generate fault rates for orbital segments, which can be segmented using the
McIlwain L-parameter. By running several simulations with very narrow L-parameter
segments, CREME96 can obtain estimated fault rates for each segment. As the width
of each segment decreases, the generated fault rates become more precise and contin-
uous. The L-parameter outputs from the IGRF model are then mapped to the appro-
priate orbital segment and the associated fault rate.

The SGP4, IGRF, and CREME96 models collectively generate a time-varying fault-
rate estimate over the course of a specified orbit. We implemented the RFT fault-
rate model as a C++-based program that connects the separate models together and
passes data between them. SGP4’s algorithms, along with C++/Java reference code,
are publically available via the Internet. A FORTRAN-based implementation of the
IGRF algorithm for calculating position-based McIlwain L-parameters is publically
available from NASA Goddard [Macmillan and Maus 2010]. Fault-rate information
can be generated from the CREME96 model through a Web-based interface, which
is stored for efficient offline use. Orbits described by TLEs can be visualized using
open-source tools, such as JSatTrak [Gano 2010]. The RFT fault-rate model program
accepts TLE data as input and generates time-varying fault-rate estimates as output.
These fault-rate estimates are then used by the RFT performability model.

3.3. RFT Performability Model
System reliability is the probability that a system is operating without faults after a
specified time period. Assuming exponentially-distributed random faults at rate λ, the
system reliability is traditionally defined as

R(t) = e−λt. (1)

Mean-time-to-failure (MTTF) and Mean-time-to-repair (MTTR), are the average
amounts of time before a system encounters a failure (or repair) event. For a fault
rate λ (or repair rate µ), MTTF (or MTTR) is defined as

MTTF =
∫ ∞

0
t · Rλ(t) dt MTTR =

∫ ∞

0
t · Rµ(t) dt. (2)

System availability, which is similar to system reliability, estimates the long-term,
steady-state probability that the system is operating correctly, and is defined as

A =
MTTF

MTTF + MTTR
. (3)

System unavailability is the opposite of availability, and is often used for convenience
when discussing systems with very high availability. Unavailability is defined as

U A = 1 − A =
MTTR

MTTF + MTTR
. (4)

Space system reliability and availability can be accurately modeled using Markov mod-
els. A Markov model is composed of states and transition rates. A state represents the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

21:16 A. Jacobs et al.

current operating state of the system and the transition rates represent the transi-
tions from an operating state to a failure state (failure rates), or from a failure state
to an operating state (repair rates). The Markov model can be transformed into a se-
ries of equations, which can be solved or approximated numerically using tools such as
SHARPE, an open-source fault-modeling tool [Sahner and Trivedi 1987], to determine
probabilities of each state. System reliability and availability can be directly deter-
mined from the calculated state probabilities. For Markov models, the instantaneous
availability of repairable systems measures the probability of being in an available as
opposed failed state at a given point in time. These types of models are frequently
used to estimate the effects of TMR, scrubbing, and other fault-tolerance methods in
FPGAs and other electronics [Dobias et al. 2005; Garvie and Thompson 2004; Pratt
et al. 2007].

Markov reward models, a type of weighted Markov model, can be used to extend
the concept of system availability to measure system performability of adaptable sys-
tems [Ciardo et al. 1990; Meyer 1982]. Performability is a metric that combines system
availability with the amount of work produced by the system and gives a measure of
total work performed. Performability is especially useful for gracefully degradable sys-
tems or other systems that have changing characteristics over time. Assuming that
X (t) is a semi-Markov process with state space Sand is continuous over time t > 0, the
instantaneous performability is defined by

Performability(t) =
∑

a∈S

Perf (a) · P{X (t) = a}, (5)

where Perf (a) is the system performance in state a. System performance can be de-
fined using any desired performance metric (e.g., throughput, execution time, etc.) and
performability is measured similarly. In this context, instantaneous availability can
be viewed as a special case in which Perf (a) = 1 in available states and Perf (a) = 0
otherwise.

For reconfigurable FPGA systems, where the system configuration changes over
time (e.g., our RFT architecture), the system must be modeled as a phased-mission
system. A phased-mission system is described using a set of unique models for each
phase of the mission. The states at the end of a given phase’s model map to the states
of the following phase’s model during phase transitions, and the phase duration can
be modeled as either probabilistic or deterministic [Alam et al. 2006; Kim and Park
1994].

We use the RFT fault-rate model’s generated fault-rate estimates to drive multi-
ple system-level Markov models in order to calculate reliability, availability, and per-
formability of RFT systems. In order to incorporate varying fault rates (due to orbital
position) and varying system topologies (due to RFT), we leverage a phased-mission
Markov approach. We model the RFT system as a collection of individual phases, with
each phase consisting of a period of time where the fault-tolerance mode, failure rates,
and repair rates are constant. The phase lengths are both application-dependent and
orbit-dependent. At the end of each phase, the pretransition state probabilities are
mapped onto initial probabilities for the posttransition Markov model. Figure 4 illus-
trates an example high-level model transitioning from TMR to DWC at time t1, and
then transitioning from DWC back to TMR at time t2. Fault rates (λ) and repair rates
(µ) are represented as directed graph edges between states. At each phase transi-
tion (denoted by the dashed vertical lines), state probabilities are remapped (dashed
arrows). When remapping state probabilities from TMR to DWC, two TMR states are
merged into a single operational state. When remapping from DWC to TMR, the single
operational DWC state maps to the most-similar TMR state. Each fault-tolerance mode

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

Reconfigurable Fault Tolerance 21:17

Fig. 4. Phased-mission Markov model transitioning between TMR and DWC modes.

has an associated Markov model. Each state of the Markov model corresponds to the
number of operational devices in a system (e.g., PRRs in an FPGA-based SoC). Tran-
sitions between states occur when a device changes state from operational to failed, or
vice-versa. FPGA upset rates are estimated using the RFT fault-rate model described
in Section 3.2. The system repair rates are based on the system-designer-specified
scrub rate and checkpointing rate and the system and PRR reconfiguration times,
which can be obtained experimentally. Transitions between fault-tolerance modes are
mission-dependent. State-mapping functions ensure a continuous availability func-
tion, although performability may contain discontinuities at phase transitions.

Figure 5 shows Markov model representations for each fault-tolerance mode in a
system with six PRRs. Figures 5(a) and 5(b) represent systems where each PRR is op-
erating in the HP or ABFT fault-tolerance modes, respectively. Figure 5(c) represents
a system using three independent pairs of PRMs operating in the DWC fault-tolerance
mode. Figure 5(d) represents a system using two independent sets of three PRMs
operating in the TMR fault-tolerance mode. Solid circles represent the Markov model’s
available operating states and dashed circles represent failed operating states. Using
the definition of performability from Eq. (5), each state in a Markov reward model
is assigned a performance throughput value. For this analysis, system performance
is normalized to the work performed by a single PRR. The performance throughput
value of each state is represented in the Markov model by the value in the rectangles.
For example, six independent PRRs running concurrently in the HP fault-tolerance
mode would have a performance throughput value of 6 while a system using six PRRs
with two independent sets of PRRs operating in the TMR fault-tolerance mode would
have a performance throughput value of 2.

The ABFT Markov model is used to demonstrate a generic reliability model
for modules that contain some form of internal fault tolerance and are capable of
self-detecting data errors. In particular, ABFT provides a low-overhead method for
detecting errors in certain linear algebra operations. While hardware-implemented
ABFT may not have 100% fault coverage, hardware-implemented ABFT provides
improvements over the HP model, which cannot detect when corrupt data is returned.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

21:18 A. Jacobs et al.

Fig. 5. Markov models of RFT modes.

In the Markov model for the single-module ABFT mode, we estimate the performance
of a single module as 80% of the default, unprotected module due to the performance
overhead associated with generating and comparing checksums for fault detection
[Acree et al. 1993]. Additionally, ABFT fault rates are modeled as having a 20%
higher fault rate than unprotected modules due to the increased module size from
the ABFT logic. The repair rate for the ABFT model uses the system’s scrubbing rate,
supplying a worst-case repair rate for cases when ABFT logic does not detect (or even
introduces) an error, relying on external scrubbing and configuration readback to
detect errors. Although these numbers are application- and implementation-specific,
the numbers represent overhead costs that must be considered. The ABFT model can
also be used to model other modules by user-implemented fault tolerance techniques.
For a given phased-mission Markov model, a TLE is used to determine the expected
fault rates using the RFT fault-rate model in Section 3.2. These fault rates, along
with a description of the mission-specific criteria for using each fault-tolerance mode,
are used to split a full space mission into distinct phases for Markov modeling. RFT
phases are periods of time with constant fault rates, repair rates, and fault-tolerance
modes. For each phase, the previous phase’s state probabilities are mapped onto the
new phase’s Markov model as initial probabilities. SHARPE processes the new model
to numerically solve the state probabilities and reliability metrics for the current
phase. SHARPE’s results provide the initial probabilities for the next phase. This
process is repeated iteratively for each phase for the entire mission’s duration and
SHARPE’s results are aggregated to produce overall reliability results.

4. RESULTS AND ANALYSIS
In this section, we present one validation case study and two orbital case studies to
evaluate the potential reliability and performance benefits of our RFT framework for
space systems. The validation case study uses FPGA fault injection to estimate fault
rates and error coverage, which can then be used by the other case studies. The orbital

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

Reconfigurable Fault Tolerance 21:19

Table III. Fault-Injection Results for RFT Components

System Faults Data System Vulnerable DVF
Component Injected Errors Hangs Bits (est.) (%)

Matrix Multiply (MM) 100,000 1,501 71 41,497 0.197%
RFT Controller (RFT) 100,000 63 157 4,576 0.022%

MicroBlaze (MB) 100,000 150 1,219 86,584 0.342%
Full FPGA 0.955%

case studies represent FPGA-based space systems operating in two common orbits,
with multiple performance and reliability requirements. The first case study repre-
sents a space system operating in low-Earth orbit (LEO), the Earth Observing-1 (EO-1)
satellite. Space systems in a LEO experience relatively low radiation. The second case
study represents a space system operating in a highly elliptical orbit (HEO), which
is a much harsher radiation orbit. Each case study will compare multiple adaptive
fault-tolerance strategies to a traditional static TMR strategy.

4.1. Validation Case Study
In order to validate our reliability models, faults must be injected into an executing
RFT system. In this section, we present FPGA fault-injection results gathered using
the Simple, Portable Fault Injector (SPFI) [Cieslewski et al. 2010]. SPFI performs fault
injection using both full and partial reconfiguration, which reduces the time required
to modify configuration memory and improves the speed of fault injection. However,
due to the time required to inject and test each fault, testing every bit in the configura-
tion memory may be infeasible. Instead, SPFI uses random sampling and a statistical
approach to estimate design vulnerability. We validate our reliability models by corre-
lating SPFI’s results with analytical Markov model results.

For the validation case study, we implemented a simplified RFT-based system on a
Xilinx ML505 FPGA development platform. The RFT-based system had a 3-PRR RFT
controller that allowed HP and TMR voting and had watchdog timer functionality.
Each PRR contained a matrix multiplication (MM) PRM; a MicroBlaze processor in
the static region streamed data from a UART to an MM PRM and streamed results
back to the UART. The SPFI fault-injection tool enabled individual system components
(e.g., PRMs, RFT controller, MicroBlaze) to be tested independently without modifying
the entire system. Table III shows the RFT systems’ fault-injection results. For each
system component, Table III indicates the number of injections performed and the
number of data errors and system hangs detected. The fault vulnerability for each
component is scaled to the FPGA’s total number of configuration bits to estimate the
components’ design vulnerability factor (DVF). A component’s/device’s DVF represents
the percentage of bits that are vulnerable to faults and can result in observable errors.

Most Xilinx FPGA designs have a DVF that ranges from 1%–10% [Xilinx 2010b]
due to the large amount of configuration memory devoted to routing. The DVF for
each component is calculated by measuring the component’s fault rate, estimating the
number of vulnerable bits by scaling the fault rate to the size of the area occupied
by the component, and dividing the number of vulnerable bits by the total number of
FPGA configuration bits. For the following experiments, 100,000 bits were randomly
selected from each region under test in order to estimate the DVF within a narrow
95% confidence interval. For a single MM PRM with the RFT controller using HP
mode, only 1.6% of faults that occurred in the PRR were found to cause observable
errors in the output. Approximately 41,497 vulnerable bits in each PRR, which occu-
pies approximately one-eighth of the FPGA, results in a DVFMM of 0.197%. In this
case, the majority of the PRR is unused, resulting in very few vulnerable bits and a

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

21:20 A. Jacobs et al.

Fig. 6. RFT validation Markov models.

low DVF. Faults injected into the RFT controller resulted in a DVFRFT of 0.022%. The
MicroBlaze was not protected using TMR or other design techniques and had a DVFMB
of 0.342%. Based on these component fault-injection results, the total FPGA DVF is
estimated to be 0.955% (3DV FMM + DV FRFT + DV FMB).

Figure 6 shows Markov model representations for each fault-tolerance mode in a
system with three PRRs. Figures 6(a) and 6(b) represent systems where each PRR
is operating in the HP or the TMR fault-tolerance mode, respectively. These models
are similar to the models presented in Section 3.3, without additional states for per-
formability, and with the addition of state transitions to account for fault coverage. In
a TMR system, coverage refers to the percentage of faults that cause the system to
immediately enter the failed state. These noncovered faults occur due to designs not
being fully protected by TMR.

Initial fault-injection testing revealed that our system appeared to have two possible
fault scenarios. In the first scenario, a fault could cause the system to remain opera-
tional but produce erroneous data. This state was recoverable using periodic scrubbing.
In the second scenario, a fault could cause the system to hang until a full reconfig-
uration was performed. We expanded the Markov models to include these behaviors
as additional states. Figure 6(a) shows the HP Markov model with two unavailable
states that account for the two fault scenarios. The probabilities of transitioning to
“Faulty Data” or “System Hang” were determined from the component fault-injection
testing. The DVFFPGA was estimated from the sum of each of the components tested.

A similar approach was taken for the TMR Markov model shown in Figure 6(b).
The additional “degraded” state is used to model faults that have been masked by
the TMR protection provided by the RFT controller. The probability of transitioning
to the degraded state is provided by the DVFMM from previous testing. The DVFsys
term represents faults in the RFT controller (DVFRFT) and MicroBlaze (DVFMB). From
fault-injection testing, we estimate the DVFsys to be approximately 0.364%.

By assigning fault rates, repair rates, and coverage to the Markov model, we can
calculate the system availability. Table IV shows the fault and repair rates used in
this analysis. Using a scrub rate of 1 fault per 10 seconds, and a repair rate of 1 scrub
per 5 seconds, the RFT system will have a 98.82% availability in HP mode and 99.31%
availability in TMR mode. When the fault rate to scrub rate ratio is increased, the ben-
efits of TMR become more pronounced. Using a scrub rate of 1 fault per 2 seconds, and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

Reconfigurable Fault Tolerance 21:21

Table IV. RFT Markov Model Validation

Fault Period Repair Period FT-Mode Markov Model Experimental Model
(time/fault) (time/scrub) Availability Availability Error

10s 5s HP 98.82% 98.99% 0.2%
10s 5s TMR 99.31% 99.11% 0.2%
2s 10s HP 92.25% 92.59% 0.4%
2s 10s TMR 95.32% 93.89% 1.5%

a repair rate of 1 scrub per 10 seconds, the RFT system will have a 92.25% availability
in HP mode and 95.32% availability in TMR mode. These high availabilities, even in
HP mode, are due to frequent scrubbing and the very low DVF of the FPGA design.

Finally, we validate the Markov model results using fault injection. In a
continuously-running RFT system, faults are injected at a specified rate, which is ran-
domly varied using a Poisson distribution to simulate the error model used in the
Markov model. Scrubbing, using partial reconfiguration, occurs at user-defined peri-
odic intervals. Full reconfiguration occurs at the next scrubbing cycle after a PRM
error has been detected by the RFT controller. Full reconfigurations also occur if the
external testing program detects that the FPGA system has entered the System Hang
state. Availability can be experimentally determined by the ratio of time the system
is operating correctly to the total experiment run-time. For each run, 10,000 faults
were randomly injected into a running system. Table IV shows the results of the avail-
ability experiment and the relative error from the analytical model. At low fault rates,
the HP and TMR modes both provide approximately 99% availability. With high fault
rates, the system had an availability of 92.59% in the HP-mode and 93.89% in the
TMR-mode.

The Markov model availability methodology provides a simple and effective method
for determining the effects of fault and repair rates on system availability without
exhaustive testing. In general, the HP models predicted slightly lower unavailability
than what was observed during experimental testing, while the TMR models over-
estimated the availability of the system. All availability results were within 1.5%
of the Markov models’ predictions. The Markov model accuracy can be improved
by providing more accurate fault-injection results. The availability values obtained
through experiments can be improved by increasing the length of the testing period.

Fault-injection testing did highlight implementation issues that must be handled in
any high-reliability design. The use of TMR had a lower than expected benefit due to
the unprotected MicroBlaze processor. Since the DVFMB was larger than the DVFMM,
the availability of the system was dominated by the MicroBlaze’s availability. For high
reliability, the MicroBlaze must be protected with TMR or an alternative fault-tolerant
processor (e.g., FT-LEON3).

4.2. Orbital Case Studies
For each orbital case study, the system under test is an FPGA system-on-chip im-
plementation of the RFT hardware architecture described in Section 3.1. In order to
calculate device vulnerability, the parameters for the Xilinx Virtex-4 FX60 will be
used as inputs to the RFT fault-rate model described in Section 3.2. The radiation
susceptibility parameters of the Virtex-4 device family are obtained from the Xilinx Ra-
diation Test Consortium’s (XRTC) published results [Swift et al. 2008]. The generated
fault rate is linearly scaled from a full device to the size of the PRR to produce PRR
fault rates. The RFT controller is connected to 6 PRRs, allowing for several combina-
tions of the TMR, DWC, and ABFT fault-tolerance modes discussed in Section 3.3. The
performability model from Section 3.3 is used to evaluate the effectiveness of each
fault-tolerance strategy.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

21:22 A. Jacobs et al.

Fig. 7. LEO fault rates using the RFT fault-rate model.

4.2.1. Low-Earth Orbit Case Study. Space systems in LEO are commonly used for earth-
observing science applications, such as HSI or SAR. Both HSI and SAR have large
datasets, which can be significantly reduced through onboard processing using a va-
riety of algorithms that are decomposable into basic kernels that can be parallelized
and implemented on an FPGA system for high performance and power efficiency. For
example, HSI can be decomposed into a sequence of matrix multiplications and matrix
inversions, and SAR can be decomposed into vector multiplication and FFTs. Since
these mathematical operations are linear, ABFT can be used to protect the computa-
tion results from SEUs. For applications that cannot be protected with ABFT, TMR or
DWC must be used to provide fault tolerance.

The TLE used to generate the fault rates for this LEO case study is from the
EO-1 satellite. The EO-1 orbit is circular at an altitude of 700 km and a 98.12 ◦

inclination with a mean travel time of 98 minutes. Figure 7(a) shows the orbital track
of EO-1 and the shaded circle represents the EO-1’s field of view. Figure 7(b) shows
the estimated number of upsets per hour that occur in the EO-1 orbit over several
orbital periods. The average fault rate of the Virtex-4 FX60 in the EO-1’s orbit is
16.5 faults per device-day (combined configuration memory and BRAM vulnerability).
Each local maximum occurs when the satellite is closest to the Earth’s magnetic poles.
Figure 7(c) shows the total number of accumulated faults over time. Fault rates in EO-
1’s orbit are low because the orbit is lower than the Van Allen Belts and is fully within
the Earth’s magnetosphere, which deflects a large amount of radiation. We examine
the availability and performability of TMR, DWC, and ABFT fault-tolerance modes in
LEO, as well as three adaptive fault-tolerance strategies to maximize application per-
formability: 10% two-mode, 50% two-mode, and three-mode adaptive strategies. For

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

Reconfigurable Fault Tolerance 21:23

the adaptive fault-tolerance strategies, the fault-tolerance mode switching is deter-
mined by comparing the current upset rate with a fault-rate threshold. The 10% two-
mode adaptive strategy uses the ABFT fault-tolerance mode when upset rate is in the
lowest 10% of the expected fault rates and the TMR fault-tolerance mode otherwise.
The 50% two-mode adaptive strategy uses a similar strategy as the 10% two-mode,
but with a higher fault-rate threshold. The three-mode adaptive strategy uses ABFT
when the upset rate is in the lowest 10% of the expected fault rates, TMR when the
upset rate is in the highest 50% of the expected fault rates, and DWC otherwise. In all
modes, the system performs scrubbing to ensure that configuration memory errors are
removed from the system. For this LEO case study, the system uses a 60-second scrub
cycle, which is also used as the system repair rate for the Markov models. Figure 8(a)
shows the availability of the LEO system while statically using the four fault-tolerance
models described in Figure 5. While the static HP strategy’s availability quickly de-
clines (due to the lack of any fault-tolerance mechanisms), the static TMR, DWC, and
ABFT strategies all maintain availability above 95%. The dynamically changing avail-
ability is directly related to the current fault rate, however, since the repair rate of the
system (through scrubbing) is much larger than the expected fault rates, most config-
uration memory faults are rapidly mitigated. The system availability while using the
three adaptive fault-tolerance strategies is shown in Figure 8(b). The average avail-
ability for each adaptive strategy improves availability over the static ABFT strategy,
and the adaptive strategies can increase the minimum availability to above 99.5%.
Table V displays the availability results for each fault-tolerance strategy in terms of
unavailability, showing the probability of a system failure. The 10% two-mode adap-
tive strategy reduces average unavailability by 88% as compared to the static ABFT
strategy. For extremely high availability, static TMR is required, as the maximum
unavailability for the adaptive strategies is more than 100 times higher than TMR.

The system performability for the static and adaptive fault-tolerance strategies for
a LEO is also shown in Table V. Due to the low overall upset rates and good availability
of the static ABFT strategy, the static ABFT strategy achieves the highest performabil-
ity. The 50% two-mode adaptive strategy achieves an average performability through-
put of 4.01, a 100% improvement over static TMR, while improving unavailability over
the static ABFT strategy by 73%. The 10% two-mode strategy has lower average per-
formability, while maintaining better system availability. The three-mode strategy has
better performability than the static DWC mode, while having better availability than
the static DWC or ABFT modes, but is outperformed by the 50% two-mode strategy.
We point out that the fault-rate threshold for the two-mode strategies can be used to
adjust the availability and performability parameters for a space system. Figure 9 il-
lustrates the effect of changing the threshold of the two-mode adaptive strategy for
the LEO case study. As the threshold is raised, more time is spent using the ABFT
mode, which lowers system availability while increasing performability. For the LEO
case study, most of the performance gains from using ABFT can be obtained by using a
low threshold value because much of the orbit will be under this threshold. With a 10%
threshold, an RFT system would spend an approximately equal amount of time in each
of the ABFT and TMR modes. Raising the adaptive threshold higher than 50%, results
in limited performance gains at the expense of decreased availability. Further analy-
sis of these thresholds in mode-switching strategies can enable optimization toward
Pareto-optimal goals.

4.2.2. Highly-Elliptical Orbit Case Study. The HEO is a common type of orbit used mostly
by communication satellites. From the ground, satellites traveling in an HEO can
appear stationary in the sky for long periods of time. HEOs also offer visibility of the
Earth’s polar regions, where most geosynchronous satellites do not. The HEO used

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

21:24 A. Jacobs et al.

Fig. 8. LEO system availability.

for this case study is a Molniya orbit, named for the communication satellites that
first used this orbit. A TLE for a Molniya-1 satellite was used to generate fault rates
for the HEO case study. This orbit has a perigee of 1100km, an apogee of 39,000km,
and a 63.4 ◦ inclination with a mean travel time of 12 hours. The average amount
of radiation throughout the orbit is much higher than the LEO case study, and
much larger amounts of radiation are encountered when the satellite passes through
the Van Allen belts. The average fault rate in the Molniya-1 orbit is 62 faults per
device-day. For most of the orbit, the fault rate averages 7 faults per device-day, but
the large fault-rate peaks that occur near perigee increases the overall fault rate.
Figure 10(a) illustrates the Molniya-1 orbit and Figure 10(b) shows the estimated
number of upsets per hour that an FPGA might experience in an HEO. Figure 10(c)
shows the total number of accumulated faults over time. Space systems outside of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

Reconfigurable Fault Tolerance 21:25

Table V. Unavailability and Performability for LEO Case Study

Average Maximum Average Minimum
Unavailability Unavailability Performability Performability

TMR 9.8 × 10−6 3.8 × 10−5 2.00 2.00
DWC 3.9 × 10−3 1.1 × 10−2 3.00 2.98
ABFT 1.6 × 10−2 4.7 × 10−2 4.79 4.76
2-Mode (10%) 1.9 × 10−3 4.6 × 10−3 3.51 2.00
2-Mode (50%) 4.4 × 10−3 1.8 × 10−2 4.01 2.00
3-Mode 2.7 × 10−3 5.4 × 10−3 3.69 2.00

Fig. 9. Effects of adaptive threshold on availability and performability.

the Earth’s magnetosphere, either in geosynchronous orbit or in interplanetary space,
experience constant fault rates that vary based on the occurrence of solar flares and
other space weather conditions. Solar flares can send a wave of high-energy particles
into space, causing a brief period of extremely high fault rates. These fault-rate spikes,
while different in origin, look similar to the fault-rate peaks that occur in this case
study. The analysis used in this case study can also be used to estimate RFT system
performance in the presence of different space weather conditions.

We evaluate the availability and performability of TMR, DWC, and ABFT fault-
tolerance modes in an HEO. In order to maximize performability of applications in
an HEO, we also examine two adaptive fault-tolerance strategies. The ABFT/TMR
adaptive strategy uses the ABFT fault-tolerance mode when upset rates are in the
lowest 5% of expected fault rates and the TMR fault-tolerance mode otherwise. The
DWC/TMR adaptive strategy uses the same fault-rate thresholds as ABFT/TMR, but
switches between the DWC and TMR modes. In each mode, the system performs
scrubbing to ensure that configuration memory errors are removed from the system.
For the HEO case study, the system uses a 10-second scrub cycle to account for the in-
creased average fault rates experienced in an HEO, which is used as the system repair
rate for the Markov models. Figures 11(a) and 11(b) show the availability of the HEO
case study system while using three static fault-tolerance strategies and two adaptive
strategies. The static TMR strategy maintains an average availability of 99.93%,
but the availability drops as low as 95.1% while passing through the peak fault-rate

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

21:26 A. Jacobs et al.

Fig. 10. HEO fault rates using the RFT fault-rate model.

periods. While using the static DWC and ABFT strategies, the availability drops
significantly during the peak fault-rate periods, making these strategies unsuitable
for systems that must maintain continuous operation (due to the extremely high upset
rate, many systems shut down operation during peak fault-rate periods). However,
outside of the peak fault-rate periods, the minimum availability for the static DWC
(99.8%) and ABFT (99.3%) strategies are high enough to be tolerable by many applica-
tions. The two adaptive strategies use DWC and ABFT fault-tolerance modes during
low fault-rate periods and TMR fault-tolerance mode during the peak fault-rate pe-
riods. Using the adaptive strategies, the availability never falls below the TMR strat-
egy’s minimum availability of 95.1% during peak fault-rate periods, while maintaining
higher availability at other times. (Note the change of scale in Figure 11(b).) Table VI
shows the unavailability and performability of the fault-tolerance strategies described
in this section. The DWC/TMR adaptive strategy reduces average unavailability by
80% as compared to the static DWC strategy. The ABFT/TMR adaptive strategy
reduces average unavailability by 85% as compared to the static ABFT strategy.

The system performability for the static and adaptive fault-tolerance strategies for
an HEO are shown in Table VI. While the TMR strategy exhibits the lowest per-
formability, it also has the lowest variation in performability and highest availability,
allowing for predictable performance levels. The performability of the static ABFT and
DWC strategies is significantly reduced in the peak fault-rate periods, but quickly
returns to acceptable levels after passing through the peak fault-rate periods. The
maximum unavailability for each of the adaptive strategies occurs during the peak
fault-rate periods. Since the RFT system is using the TMR fault-tolerance mode dur-
ing these segments, the adaptive strategies have the same maximum unavailability

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

Reconfigurable Fault Tolerance 21:27

Fig. 11. HEO system availability.

Table VI. Unavailability and Performability for HEO Case Study

Average Maximum Average Minimum
Unavailability Unavailability Performability Performability

TMR 7.2 × 10−4 4.9 × 10−2 2.00 1.95
DWC 1.4 × 10−2 4.1 × 10−1 2.98 2.46
ABFT 4.9 × 10−2 9.2 × 10−1 4.73 2.62
DWC/TMR 2.6 × 10−3 4.9 × 10−2 2.92 1.95
ABFT/TMR 7.2 × 10−3 4.9 × 10−2 4.56 1.95

as the static TMR strategy. The DWC/TMR adaptive strategy increases performability
over the TMR strategy by 46%. The ABFT/TMR adaptive strategy increases average
performability over the TMR strategy by 128%, or reduces performability by 4% over
the static ABFT strategy, while significantly improving unavailability over the ABFT
strategy.

5. CONCLUSIONS
In this work, we have presented a novel and comprehensive framework for reconfig-
urable fault tolerance capable of creating and modeling FPGA-based reconfigurable
architectures that enable a system to self-adapt its fault-tolerance strategy in accor-
dance with dynamically varying fault rates. The PR-based RFT hardware architecture
enables several redundancy-based fault-tolerance modes (e.g., DWC, TMR) and
additional fault-tolerance features (e.g., watchdog timers, ABFT, checkpointing and
rollback), as well as a mechanism for dynamically switching between modes. The com-
bination of these fault-tolerance features enables the use of COTS SRAM-based FPGAs
in harsh environments. Future work will automate and optimize the creation RFT
controllers for specific system configurations in order to increase developer productiv-
ity, facilitate adoption, and reduce system overhead.

In addition to the hardware architecture, we have demonstrated a fault-rate model
for RFT to accurately estimate upset rates and capture time-varying radiation effects
for arbitrary satellite orbits using a collection of existing, publically available tools and
models. Our model provides important characterization of fault rates for space systems

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

21:28 A. Jacobs et al.

over the course of a mission that cannot be captured by average fault rates. The HEO
case study demonstrated the large range of fault rates experienced in certain elliptical
orbits, and the potential for performance improvements when using RFT.

Using the results from the fault-rate model, our Markov-model-based RFT per-
formability model was used to demonstrate the benefits of using an adaptive fault-
tolerance system architecture. The performability model was validated using FPGA
fault injection on an experimental RFT system and multiple static and adaptive fault-
tolerance strategies for space systems in dynamically changing environments were
evaluated. The RFT performability model demonstrated that while TMR provides a
lower bound on availability, less reliable, low-overhead methods can be used during
low-fault-rate periods to improve performance. We evaluated two case study orbits and
observed that adaptive fault-tolerance strategies are able to improve unavailability by
85% over static ABFT and performability by 128% over traditional, static TMR fault
tolerance. This additional performance can lead to more capable and power-efficient
FPGA-based onboard processing systems in the future.

REFERENCES
ACREE, R., ULLAH, N., KARIA, A., RAHMEH, J., AND ABRAHAM, J. 1993. An object-oriented approach for

implementing algorithm-based fault tolerance. In Proceedings of the 12th Annual International Phoenix
Conference on Computers and Communications. 210–216.

ACTEL. 2010a. Actel product page. http://www.actel.com/products/milaero/rtsxsu/default.aspx.
ACTEL. 2010b. Actel product page. http://www.actel.com/products/milaero/rtpa3/default.aspx.
ALAM, M., SONG, M., HESTER, S., AND SELIGA, T. 2006. Reliability analysis of phased-mission systems: A

practical approach. In Proceedings of the Annual Reliability and Maintainability Symposium (RAMS).
551–558.

ALNAJIAR, D., KO, Y., IMAGAWA, T., KONOURA, H., HIROMOTO, M., MITSUYAMA, Y., HASHIMOTO, M.,
OCHI, H., AND ONOYE, T. 2009. Coarse-grained dynamically reconfigurable architecture with flexible
reliability. In Proceedings of the International Conference on Field Programmable Logic and Applica-
tions (FPL). 186–192.

ALTERA. 2010. Stratix V FPGAs: Ultimate flexibility through partial and dynamic reconfiguration.
http://www.altera.com/products/devices/stratix-fpgas/stratix-v/overview/partial-
reconfiguration/stxv-part-reconfig.html.

BOWEN, N. AND PRADHAM, D. 1993. Processor- and memory-based checkpoint and rollback recovery. Com-
put. 26, 2, 22–31.

CARMICHAEL, C., FULLER, E., BLAIN, P., AND CAFFREY, M. 1999. SEU mitigation techniques for Virtex
FPGAs in space applications. In Proceedings of the 2nd Annual Military and Aerospace Applications of
Programmable Devices and Technologies Conference.

CIARDO, G., MARIE, R., SERICOLA, B., AND TRIVEDI, K. 1990. Performability analysis using semi-Markov,
reward processes. IEEE Trans. Comput. 39, 10, 1251–1264.

CIESLEWSKI, G., GEORGE, A., AND JACOBS, A. 2010. Acceleration of FPGA fault injection through multibit
testing. In Proceedings of the Engineering of Reconfigurable Systems and Algorithms Conference.

DAWOOD, A., VISSER, S., AND WILLIAMS, J. 2002. Reconfigurable FPGAs for real time image processing in
space. In Proceedings of the 14th International Conference on Digital Signal Processing (DSP). Vol. 2,
845–848.

DOBIAS, R., KUBALIK, P., AND KUBATOVA, H. 2005. Dependability computations for fault-tolerant system
based on FPGA. In Proceedings of the 12th IEEE International Conference on Electronics, Circuits and
Systems (ICECS). 1–4.

FLATLEY, T. 2010. Advanced hybrid on-board science data processor - SpaceCube 2.0. In Proceedings of the
Earth Science Technology Forum.

GANO, S. 2010. JSatTrak. http://www.gano.name/shawn/JSatTrak/index.html.
GARVIE, M. AND THOMPSON, A. 2004. Scrubbing away transients and jiggling around the permanent:

Long survival of FPGA systems through evolutionary self-repair. In Proceedings of the 10th IEEE Inter-
national Online Testing Symposium (IOLTS). 155–160.

GUPTA, A., NOOSHABADI, S., TAUBMAN, D., AND DYER, M. 2006. Realizing low-cost high-throughput
general-purpose block encoder for JPEG2000. IEEE Trans. Circuits Syst. Video Technol. 16, 7, 843–858.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

Reconfigurable Fault Tolerance 21:29

HOOTS, F. R. AND ROEHRICH, R. L. 1980. SPACETRACK REPORT NO. 3-Models for propagation of
NORAD element sets. http://celestrak.com/NORAD/documentation/spacetrk.pdf.

HSUEH, M. AND CHANG, C.-I. 2008. Field programmable gate arrays (FPGA) for pixel purity index using
blocks of skewers for endmember extraction in hyperspectral imagery. Int. J. High Perform. Comput.
Appl. 22, 408–423.

HUANG, K.-H. AND ABRAHAM, J. 1984. Algorithm-based fault tolerance for matrix operations. IEEE Trans.
Comput. 33, 6, 518–528.

JOHNSON, J., HOWES, W., WIRTHLIN, M., MCMURTREY, D., CAFFREY, M., GRAHAM, P., AND MORGAN, K.
2008. Using duplication with compare for on-line error detection in FPGA-based designs. In Proceedings
of the IEEE Aerospace Conference.

KARNIK, T. AND HAZUCHA, P. 2004. Characterization of soft errors caused by single event upsets in CMOS
processes. IEEE Trans. Depend. Secure Comput. 1, 2, 128–143.

KIM, K. AND PARK, K. 1994. Phased-mission system reliability under Markov environment. IEEE Trans.
Rel. 43, 2, 301–309.

KYRIAKOULAKOS, K. AND PNEVMATIKATOS, D. 2009. A novel SRAM-based FPGA architecture for efficient
TMR fault tolerance support. In Proceedings of the International Conference on Field Programmable
Logic and Applications(FPL). 193–198.

LAPRIE, J.-C., ARLAT, J., BEOUNES, C., AND KANOUN, K. 1990. Definition and analysis of hardware- and
software-fault-tolerant architectures. IEEE Trans. Comput. 23, 7, 39–51.

LE, C., CHAN, S., CHENG, F., FANG, W., FISCHMAN, M., HENSLEY, S., JOHNSON, R., JOURDAN, M.,
MARINA, M., PARHAM, B., ROGEZ, F., ROSEN, P., SHAH, B., AND TAFT, S. 2004. Onboard FPGA-based
SAR processing for future spaceborne systems. In Proceedings of the IEEE Radar Conference. 15–20.

MACMILLAN, S. AND MAUS, S. 2010. IGRF10 Model Coefficients for 1945-2010.
http://modelweb.gsfc.nasa.gov/magnetos/igrf.html.

MAUS, S., MACMILLAN, S., CHERNOVA, T., CHOI, S., DATER, D., GOLOVKOV, V., LESUR, V., LOWES, F.,
LHR, H., MAI, W., MCLEAN, S., OLSEN, N., ROTHER, M., SABAKA, T., THOMSON, A., AND ZVEREVA,
T. 2005. The 10th generation international geomagnetic reference field. Phys. Earth Planetary Interiors
151, 3–4, 320–322.

MEYER, J. 1982. Closed-form solutions of performability. IEEE Trans. Comput. 31, 7, 648–657.
MORGAN, K., MCMURTREY, D., PRATT, B., AND WIRTHLIN, M. 2007. A comparison of TMR with alternative

fault-tolerant design techniques for FPGAs. IEEE Trans. Nucl. Sci. 54, 6, 2065–2072.
NAEIMI, H. AND DEHON, A. 2008. Fault-tolerant sub-lithographic design with rollback recovery. Nanotech-

nol. 19, 11, 115708.
PRATT, B., CAFFREY, M., GRAHAM, P., MORGAN, K., AND WIRTHLIN, M. 2006. Improving FPGA design

robustness with partial TMR. In Proceedings of the 44th Annual IEEE International Reliability Physics
Symposium. 226–232.

PRATT, B., WIRTHLIN, M., CAFFREY, M., GRAHAM, P., MORGAN, K., QUINN, H., AND SHELLEY, S.
2007. Improving FPGA reliability in harsh environments using triple modular redundancy with more
frequent voting. In Proceedings of the Prentice Hall. Military and Aerospace FPGA Applications
Conference.

RAO, T. AND FUJIWARA, E. 1989. Error-Control Coding for Computer Systems.
RATTER, D. 2004. FPGAs on Mars. Xcell J., 8–11.
SAHNER, R. A. AND TRIVEDI, K. S. 1987. Reliability modeling using SHARPE. IEEE Trans. Rel. 36, 2,

186–193.
SHIM, B., SRIDHARA, S., AND SHANBHAG, N. 2004. Reliable low-power digital signal processing via reduced

precision redundancy. IEEE Trans. VLSI Syst. 12, 5, 497–510.
SILVA, J., PRATA, P., RELA, M., AND MADEIRA, H. 1998. Practical issues in the use of ABFT and a new fail-

ure model. In Proceedings of the 28th Annual International Symposium on Fault-Tolerant Computing.
26–35.

SWIFT, G., ALLEN, G., TSENG, C. W., CARMICHAEL, C., MILLER, G., AND GEORGE, J. 2008. Static upset
characteristics of the 90nm Virtex-4QV FPGAs. In Proceedings of the IEEE Radiation Effects Data
Workshop. 98–105.

TROXEL, I., FEHRINGER, M., AND CHENOWETH, M. 2008. Achieving multipurpose space imaging with the
ARTEMIS reconfigurable payload processor. In Proceedings of the IEEE Aerospace Conference. 1–8.

TYLKA, A., ADAMS, J.H., J., BOBERG, P., BROWNSTEIN, B., DIETRICH, W., FLUECKIGER, E., PETERSEN,
E., SHEA, M., SMART, D., AND SMITH, E. 1997. CREME96: A revision of the cosmic ray effects on
micro-electronics code. IEEE Trans. Nucl. Sci. 44, 6, 2150–2160.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

21:30 A. Jacobs et al.

WANG, J. 2003. Radiation effects in FPGAs. In Proceedings of the 9th Workshop on Electronics for LHC
Experiments.

WANG, S.-J. AND JHA, N. 1994. Algorithm-based fault tolerance for FFT networks. IEEE Trans. Comput.
43, 7, 849–854.

WILLIAMS, J., MASSIE, C., GEORGE, A. D., RICHARDSON, J., GOSRANI, K., AND LAM, H. 2010. Character-
ization of fixed and reconfigurable multi-core devices for application acceleration. ACM Trans. Recon-
figur. Technol. Syst. 3, 1–29.

Xilinx 2004. XTMR Tool User Guide. Xilinx. Xilinx User Guide UG156.
Xilinx 2010a. Partial Reconfiguration User Guide. Xilinx. Xilinx User Guide UG702.
Xilinx 2010b. SEU Strategies for Virtex-5 Devices. Xilinx. Xilinx Application Note XAPP864.
Xilinx 2010c. Space-Grade Virtex-4QV Family Overview. Xilinx. Xilinx Product Specification DS653.

Received May 2011; revised September 2011, February 2012; accepted June 2012

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 4, Article 21, Publication date: December 2012.

