
28

Dynamic Cache Reconfiguration for Soft Real-Time Systems

WEIXUN WANG, PRABHAT MISHRA, and ANN GORDON-ROSS, University of Florida

In recent years, efficient dynamic reconfiguration techniques have been widely employed for system opti-
mization. Dynamic cache reconfiguration is a promising approach for reducing energy consumption as well
as for improving overall system performance. It is a major challenge to introduce cache reconfiguration into
real-time multitasking systems, since dynamic analysis may adversely affect tasks with timing constraints.
This article presents a novel approach for implementing cache reconfiguration in soft real-time systems by
efficiently leveraging static analysis during runtime to minimize energy while maintaining the same service
level. To the best of our knowledge, this is the first attempt to integrate dynamic cache reconfiguration in
real-time scheduling techniques. Our experimental results using a wide variety of applications have demon-
strated that our approach can significantly reduce the cache energy consumption in soft real-time systems
(up to 74%).

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Cache memories; C.3
[Computer Systems Organization]: Special-Purpose and Application-Based Systems—Real-time and
embedded systems

General Terms: Design, Performance

Additional Key Words and Phrases: Real-time systems, low-power, embedded systems, cache

ACM Reference Format:
Wang, W., Mishra, P., and Gordon-Ross, A. 2012. Dynamic cache reconfiguration for soft real-time systems.
ACM Trans. Embed. Comput. Syst. 11, 2, Article 28 (July 2012), 31 pages.
DOI = 10.1145/2220336.2220340 http://doi.acm.org/10.1145/2220336.2220340

1. INTRODUCTION
Various research efforts in recent years have focused on design and optimization of
real-time systems. These systems require unique design considerations due to timing
constraints placed on the tasks. Tasks in hard real-time systems must complete execu-
tion by their deadlines in order to ensure correct system behavior. Due to these strin-
gent constraints, real-time scheduling algorithms must perform task schedulability
analysis based on task attributes, such as priorities, periods, and deadlines [Buttazzo
1995; Liu 2000]. A task set is considered schedulable if there exists a schedule that
satisfies all timing constraints. As embedded systems become ubiquitous, real-time
systems with soft timing constraints (missing certain deadlines are acceptable) are
gaining widespread acceptance. Soft real-time systems can be found everywhere, in-
cluding gaming and housekeeping as well as multimedia applications and devices.
Tasks in these systems remain effective even if their deadlines are not guaranteed

This work was partially supported by NSF grant CCF-0903430 and SRC grant 2009-HJ-1979.
Authors’ address: W. Wang and P. Mishra, Department of Computer and Information Science and Engi-
neering, University of Florida; email: wewang@cise.ufl.edu; A. Gordon-Ross, Department of Electrical and
Computer Engineering, University of Florida.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1539-9087/2012/07-ART28 $15.00

DOI 10.1145/2220336.2220340 http://doi.acm.org/10.1145/2220336.2220340

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

28:2 W. Wang et al.

to be met. Minor deadline misses may result in temporary service or quality degrada-
tion but will not lead to incorrect behavior. For example, users of video streaming on
mobile devices can tolerate occasional jitters caused by dropped frames, which has a
minimal effect on the quality of service and user experience.

One of the most important optimizations in real-time embedded systems is energy
consumption reduction, since most of these systems are battery-operated devices. Pro-
cessor idle time (also known as slack time) provides a unique opportunity to reduce
the overall energy consumption by putting the system into sleep mode using dynamic
power management (DPM) techniques [Benini et al. 2000]. Alternatively, dynamic volt-
age scaling (DVS) [Hong et al. 1999] methods can be used to achieve the same goal by
reducing the clock frequency such that the tasks execute slowly but do not violate their
deadlines [Jejurikar and Gupta 2006; Quan and Hu 2007].

Reconfigurable computing provides the unique ability to tune the system during
runtime (dynamically reconfigure) to meet optimization goals by changing tunable sys-
tem parameters. The primary aspect of reconfigurable computing research emphasizes
tuning algorithms, which determine how and when to dynamically reconfigure tunable
parameters to achieve higher performance, lower energy consumption, or balance over-
all system behavior. One such tunable component is the cache hierarchy. Research has
shown that the cache subsystem has become comparable to other components in the
processor with respect to the contribution in overall energy consumption [Malik et al.
2000; Segars 2001]. Therefore, since different programs have distinct cache configu-
ration requirements during execution, we can achieve significant energy efficiency as
well as performance improvements by employing dynamic cache reconfiguration in the
system.

Although reconfigurable caches are highly beneficial in desktop and embedded sys-
tems, currently, reconfigurable caches have not been considered in real-time systems
due to several fundamental challenges. For example, how to employ and make efficient
use of reconfigurable caches in real-time systems remains unsolved. Determining the
appropriate cache configuration typically requires some amount of runtime evaluation
of different candidate configurations. Furthermore, any change in cache configuration
on-the-fly may arbitrarily alter task execution time. In hard real-time systems, the
benefit of reconfiguration is limited, since both of these facts can make scheduling de-
cisions difficult and eventually may lead to unpredictable system behavior. However,
on the other hand, soft real-time systems offer much more flexibility which can be ex-
ploited to achieve considerable energy savings at the cost of minor impacts to the user
experience. Our proposed research focuses on real-time systems with soft real-time
constraints.

This article presents a novel methodology for using reconfigurable caches in real-
time systems with preemptive task scheduling. Our proposed methodology provides
an efficient scheduling-aware cache-tuning strategy based on static profiling for both
statically and dynamically scheduled real-time systems. Generally speaking, our tech-
nique is broadly applicable to any multitasking system. The goal is to optimize energy
consumption with performance considerations via reconfigurable cache tuning while
ensuring that the majority of the task deadlines are met. In this article, we consider
level one (L1) cache reconfiguration only. As shown in Varma et al. [2005], L1 cache
energy consumption can play a significant role in overall energy optimization. In fact,
many small embedded systems executing light-weight kernels do not have a level two
(L2) cache. While the L1 caches we evaluate are small, given that the entire system is
also small, L1 caches can still be a significant contributor to overall power consump-
tion. For example, Gordon-Ross et al. [2007] reports a 25% reduction in overall system
power by considering L1 cache reconfiguration only. Also, our approach is indepen-
dent of the actual cache sizes and is applicable as well as beneficial for both larger

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 28:3

systems with large L1 caches and smaller systems with small L1 caches. Our follow-
up research on dynamic cache reconfiguration for a two-level cache hierarchy in soft
real-time systems [Wang and Mishra 2009] considered L2 caches together with L1
caches to achieve overall energy reduction. In that paper, we investigated the inter-
action between reconfiguration of L1 and L2 caches. The approaches proposed in this
article are valid in the context of multi-level cache hierarchy, as shown in Wang and
Mishra [2009].

The remainder of this article is organized as follows. Section 2 surveys the
background literature addressing both dynamic cache reconfiguration and real-time
scheduling techniques. Section 3 describes our proposed research on scheduling-aware
cache reconfiguration in soft real-time systems. Section 4 presents our experimental
results. Finally, Section 5 concludes this article.

2. RELATED WORK
Nacul and Givargis [2004] proposed an initial work on combining dynamic voltage
scheduling and cache reconfiguration on workloads with time constraints. However,
their work is applicable in a very restricted scenario where systems do not support
task preemption. There are no prior works on dynamic cache reconfiguration in real-
time systems that support task preemption. Our proposed research is the first attempt
in this direction. This section surveys the background literature in the following three
related domains: real-time scheduling techniques, caches in real-time systems, and
reconfigurable cache architectures.

2.1 Real-Time Scheduling Techniques
Based on task properties and associated systems, scheduling algorithms can be classi-
fied into various types [Liu 2000]. Earliest deadline first (EDF) scheduling [Buttazzo
1995] and rate monotonic (RM) scheduling [Liu 2000] are the most frequently ref-
erenced fundamental scheduling algorithms in the real-time systems community.
Periodic tasks, which usually have known worst-case execution time (WCET), period,
and deadline, are scheduled using such methods. Sporadic tasks are accepted into the
system only if the task passes acceptance tests when it arrives. Since sporadic tasks
normally have hard time constraints, all accepted tasks are guaranteed to meet their
deadlines and are thus treated as periodic tasks. Aperiodic tasks are scheduled when-
ever enough slack time is available. Hence, aperiodic tasks normally have soft dead-
lines and can only be scheduled as soon as possible. Scheduling algorithms for tasks
with unknown properties, like aperiodic and sporadic tasks, can be found in Liu [2000],
Sprunt [1990], and Andersson et al. [2008].

Derived from RM and EDF are energy-aware task scheduling algorithms using
energy-optimization techniques and aiming at various objectives, although optimal
scheduling has been proved to be an NP-hard problem [Zhang et al. 2007]. DVS and
DPM are the most prominent techniques, which exploit variable voltages and power
supplies at runtime to reduce energy consumption. Jejurikar and Gupta [2006] ad-
dressed the problem in the presence of task mutual controls based on both EDF and
RM scheduling. Jejurikar et al. [2004] also proposed in a DVS-enabled scheduling al-
gorithm that is aware of leakage power. Leung et al. [2005] introduced a novel static
voltage scheduling algorithm which can result in an energy-optimized slack distribu-
tion by relaxing the WCET constraints. Their algorithm compromises average and
worst-case execution times of a task to achieve greater energy savings. Quan and
Hu [2007] presented a low-complexity voltage scheduling method with fixed priority
assignment systems. Since creating additional slack is essential for revealing larger
energy savings, Jejurikar and Gupta [2005] deferred task execution in the interest of

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

28:4 W. Wang et al.

slack reclamation, further extending low-voltage intervals. Our approach can be used
in tandem with any of these state-of-the-art scheduling techniques. In other words,
energy-aware scheduling can freely incorporate reconfigurable cache tuning using our
methodology to further minimize energy consumption in real-time systems.

2.2 Caches in Real-Time Systems
Cache systems are included in nearly all computing systems to temporarily store fre-
quently accessed instructions and data. Since caches have a much faster access time
as compared to that of main memory, caches effectively alleviate the increasing per-
formance disparity between the processor and memory by exploiting the temporal and
spatial locality properties of programs. However, historically, incorporating caches
into real-time embedded systems faces serious difficulties due to the unpredictability
imposed on the system. Caches affect the data access pattern and hence create varia-
tions in the data access time. For example, in a preemptive system, since a task may
be interrupted by a higher-priority task and resumed again at a later time, the data
associated with preempted tasks may be evicted from the cache. This may result in a
period of cold-start compulsory cache misses, many of which may have been cache hits
if the task had not been preempted. This makes it difficult to calculate a task’s worst-
case execution time (WCET), which is a prerequisite for most traditional scheduling
algorithms.

Since caches introduce intra-task interference so that a specific task’s execution
time becomes variable at runtime, a great deal of research efforts are directed at em-
ploying caches in real-time systems, either by proving schedulability through WCET
analysis or avoiding hazardous compulsory miss uncertainty altogether. Cache-aware
WCET analysis is a static, design-time analysis of tasks in the presence of caches to
predict cache impact on task execution times [Puant 2002]. Cache locking [Puant and
Decotigny 2002] is a technique in which useful cache lines are “locked” in the cache
when a task is preempted so that these lines will not be evicted to accommodate the
new incoming task. Through cache line locking, the WCET and cache behavior be-
comes more predictable, since the major delay from data replacement and access is
avoided. Cache partitioning [Wolfe 1993] is a similar but more aggressive approach in
which the cache is partitioned into reserved regions, each of which can only cache data
associated with a dedicated task. However, a potential drawback to both cache locking
and cache partitioning is per-task reduction of cache resources. To alleviate this lim-
itation, cache-related preemption delay analysis [Tan and Mooney 2007; Staschulat
et al. 2005] features tight delay estimation so that prediction accuracy is higher than
traditional WCET analysis. This improved accuracy can in turn result in a durable
task schedule. Scratch-pad memories, like caches, are also on-chip RAMs but map into
the processor’s address space at a specified range. Puant and Pais [2007] proposed an
offline content-selection algorithm for both scratch-pad memory and caches with line-
locking ability to improve both predictability and WCET estimation. Our approach is
applicable to real-time systems that employ caches.

2.3 Reconfigurable Cache Architectures
As mentioned in Section 1, in power-constrained embedded systems, nearly half of the
overall power consumption is attributed to the cache subsystem [Malik et al. 2000;
Segars 2001]. Fortunately, since applications require vastly different cache require-
ments in terms of cache size, line size, and associativity [Zhang et al. 2004], research
shows that specializing the cache to an application’s needs can reduce energy consump-
tion by 62% on average [Gordon-Ross and Vahid 2004].

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 28:5

Fig. 1. Cache configurability: (a) base cache bank layout, (b) way concatenation, (c) way shutdown, and (d)
configurable line size.

There are many existing general or application-specific reconfigurable cache archi-
tectures. Motorola’s M*CORE processor [Malik et al. 2000] provided way shutdown
and way management, which is the ability to specify the content of each specific way
(instruction, data, or unified way). Kim et al. [2000] presented an FPGA-based config-
urable cache architecture in which part of the cache could serve as a computing unit.
Modarressi et al. [2006] developed a cache architecture that could be dynamically par-
titioned and resized to improve the performance of object-oriented embedded systems.
Settle et al. [2006] proposed a dynamically reconfigurable cache specifically designed
for chip multiprocessors. The reconfigurable cache architecture proposed by Zhang
et al. [2005] imposes no overhead to the critical path, thus cache access time does
not increase. Furthermore, the cache tuner consists of a small custom hardware or a
lightweight process running on a coprocessor, which can alter the cache configuration
via hardware or software configuration registers. The underlying cache architecture
consists of four separate banks, as shown in Figure 1(a), each of which acts as a sepa-
rate way. Way concatenation shown in Figure 1(b), which logically concatenates ways
together, enables configurable associativity. Way shutdown shown in Figure 1(c) ef-
fectively shuts down ways to vary cache size. Configurable line size in Figure 1(d) is
achieved by setting a physical unit-length baseline size and then fetching subsequent
physical lines if the logical line size increases.

Given a runtime reconfigurable cache, determining the best cache configuration is
a difficult process. Dynamic and static analysis are two possible techniques. With dy-
namic analysis, cache configurations are evaluated in-system during runtime to de-
termine the best configuration. Two methods are possible for runtime cache analysis.
The first method is intrusive and physically changes the cache to each configuration in
the design space, examines the effects of each configuration, and chooses the best cache
configuration. This method is inappropriate for real-time systems, since it imposes un-
predictable performance overhead during exploration. To eliminate this performance

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

28:6 W. Wang et al.

overhead, another method employs an N-experts-based analysis [Gordon-Ross et al.
2007]. In this technique, an auxiliary structure evaluates all cache configurations si-
multaneously. The best cache configuration is determined by inspecting this auxiliary
structure, allowing the cache to change to the best configuration in one shot without
incurring any performance overhead. Even though this method is nonintrusive, the
auxiliary data structure is too power hungry to continuously evaluate the system and
thus can only operate periodically.

With static analysis, various cache alternatives are explored, and the best cache
configuration is selected for each application in its entirety [Gordon-Ross et al. 2005],
that is, application-based tuning, or for each phase of execution within an applica-
tion [Sherwood et al. 2003], that is, phase-based tuning. Since applications tend to
exhibit varying execution behavior throughout their execution, phase-based tuning al-
lows for the cache configuration to be specialized to each particular phase, resulting
in greater energy savings than application-based tuning. Regardless of the tuning
method, the predetermined best cache configuration (based on design requirements)
could be stored in a lookup table or encoded into specialized instructions. The static
analysis approach is most appropriate for real-time systems due to its nonintrusive
nature. Previous methods focus solely on energy savings or Pareto-optimal points
trading off energy consumption and performance. However, none of these methods
consider task deadlines, which are imperative in real-time systems. In other words,
the existing approaches were designed for desktop and embedded applications but not
applicable for real-time systems.

3. SCHEDULING-AWARE CACHE RECONFIGURATION
A major challenge for cache reconfiguration in real-time systems is that tasks are con-
strained by their deadlines. Even in soft real-time systems, task execution time can-
not be unpredictable or prolonged arbitrarily. Our goal is to realize maximum energy
savings while ensuring the system only faces an innocuous amount of deadline viola-
tions (if any). Our proposed methodology—scheduling-aware cache reconfiguration—
provides an efficient and near-optimal strategy for cache tuning based on static pro-
gram profiling for both statically and dynamically scheduled systems. Our approach
statically executes, profiles, and analyzes each task intended to run in the system. The
information obtained in the profiling process is fully utilized to make reconfiguration
decisions dynamically. The remainder of this section is organized as follows. First,
we present an overview of our approach using simple illustrative examples. Next, we
present our static analysis technique for cache configuration selection. Finally, we
describe how the static analysis results are used during runtime for statically- and
dynamically-scheduled real-time systems.

3.1 Overview
This section presents a simple illustrative example to show how reconfigurable caches
benefit real-time systems. This example assumes a system with two tasks, T1 and T2.
Traditionally if a reconfigurable cache technique is not applied, the system will use a
base cache configuration Cachebase, which is defined in Definition 3.1.

Definition 3.1 (Base Cache). The term refers to the configuration selected as the op-
timal cache for tasks in the target system with respect to energy, as well as perfor-
mance, based on static analysis. Caches in such systems are chosen to ensure durable
task schedules, and their configurations are fixed throughout all task executions.

In the presence of a reconfigurable cache, as shown in Figure 2, different opti-
mal cache configurations are determined for every phase of each task. For ease of

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 28:7

Fig. 2. Cache configurations selected based on task phases.

Fig. 3. Dynamic cache reconfiguration for tasks T1 and T2.

illustration, we divide each task into two phases: phase1 spans the entire execution
from beginning to end, and phase2 spans from the half way point of the dynamic
instruction flow (midpoint) to the end of execution. The terms Cache1

T1, Cache2
T1,

Cache1
T2, and Cache2

T2 represent the optimal cache configurations for phase1 and
phase2 of task T1 and T2, respectively. These configurations are chosen statically to be
more energy efficient (with the same or better performance), in their specific phases,
than the global base cache, Cachebase.

Figure 3 illustrates how energy consumption can be reduced by using our approach
in real-time systems. Figure 3(a) depicts a traditional system, and Figure 3(b) depicts a
system with a reconfigurable cache (our approach). In this example, T2 arrives (at time
P1) and preempts T1. In a traditional approach, the system executes using Cachebase

exclusively. With a reconfigurable cache, the first part of T1 executes using Cache1
T1.

Similarly, Cache1
T2 is used for execution of T2. Note that the actual preemption point of

T1 is not exactly at the same place where we precomputed the optimal cache configu-
ration (midpoint), since tasks may arrive at any time. When T1 resumes at time point
P2, the cache is tuned to Cache2

T1 since the actual preemption point is closer to the
midpoint as compared to the starting point. The overall energy consumed using a re-
configurable cache results in energy savings due to the use of different energy-optimal
caches for each phase of task execution as compared to using one global base cache in
the traditional system. Our experimental results suggest that the proposed approach
can significantly reduce energy consumption of the memory subsystem with very little
performance penalty.

3.2 Phase-Based Optimal Cache Selection
This section describes our static analysis approach for determining the optimal cache
configurations for various task phases. In a preemptive system, tasks may be inter-
rupted and resumed at any point in time. Each time a task resumes, cache perfor-
mance for the remainder of task execution will differ from the cache performance for

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

28:8 W. Wang et al.

Fig. 4. Task partitioning at n potential preemption points (Pi) resulting in n phases. Each phase comprises
execution from the invocation/resumption point to task completion. Ci denotes the cache configuration used
in each phase.

the entire application due to its own distinguishing behaviors as well as cold-start com-
pulsory cache misses. Therefore, the optimal cache configuration for the remainder of
the task execution may be different.

Definition 3.2 (Phase). Phase is defined as the execution period between one poten-
tial preemption point (also called a partition point) and task completion. The phase
that starts at the ith partition point is denoted as phase pi

n, where n is the total num-
ber of phases of that task.

Figure 4 depicts the general case in which a task is divided by n − 1 predefined
potential preemption points (P1, P2 ... Pn−1). P0 and Pn are used to refer to the start and
end points of the task, respectively. Here, C0, C1 ... Cn−1 represent the optimal cache
configuration (either energy or performance) for each phase, respectively. To observe
the variation in cache requirements for each phase, Table I shows the variation in
energy-optimal and performance-optimal instruction and data caches for each phase.
For example, the energy-optimal cache configuration for the phase starting from the
midpoint to completion (C2) of benchmark cjpeg has a 2048-byte capacity, a 16-byte
line size, and two-way associativity.

During static profiling, a partition factor is chosen that determines the number of
potential preemption points and resulting phases. Partition granularity is defined as
the number of dynamic instructions between two partition points and is determined
by dividing the total number of dynamically executed instructions by the partition
factor. Intuitively, the optimal partition granularity should be a single instruction,
potentially leading to the largest amount of energy savings. However, such a tiny
granularity would result in a prohibitively large look-up table, which is not feasible
due to area as well as searching time constraints. Due to cache locality over time,
the optimal performance cache tends to be the largest cache [Hennessy and Patterson
2003], and the optimal energy cache is not necessarily the smallest dynamic energy
cache [Gordon-Ross and Vahid 2004]. Thus, a trade-off should be made to determine
a reasonable partition factor based on energy-savings potential and acceptable over-
heads. An important question one can raise is whether a larger partition factor (finer
granularity) always reveals more energy savings. However, to answer this question,
we need to address the following two issues.

The first issue is how the optimal cache configuration for each phase varies when
the partition factor increases. We noticed that for each task, once the partition fac-
tor is larger than a certain threshold, more and more neighboring partitions share
the same optimal cache configuration. We explored how the partition factor could af-
fect the variation of optimal (both energy and performance) cache configurations for

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 28:9

Table I. Optimal Cache Configurations for Task Phases

CJPEG
I-Cache D-Cache

Energy Performance Energy Performance
Optimal Optimal Optimal Optimal

C0 4KB 2W 16B 4KB 4W 16B 4KB 4W 16B 4KB 4W 16B
C1 4KB 2W 16B 4KB 4W 32B 4KB 4W 16B 4KB 4W 16B
C2 2KB 2W 16B 4KB 4W 16B 2KB 2W 32B 4KB 4W 16B
C3 2KB 2W 16B 4KB 4W 16B 2KB 2W 32B 4KB 4W 16B

RAWCAUDIO
I-Cache D-Cache

Energy Performance Energy Performance
Optimal Optimal Optimal Optimal

C0 1KB 1W 16B 4KB 2W 64B 2KB 2W 16B 2KB 2W 16B
C1 1KB 1W 16B 2KB 2W 16B 2KB 2W 16B 4KB 4W 16B
C2 1KB 1W 16B 4KB 4W 16B 2KB 2W 16B 4KB 4W 16B
C3 1KB 1W 16B 4KB 2W 16B 2KB 2W 32B 4KB 4W 16B

A2TIME01
I-Cache D-Cache

Energy Performance Energy Performance
Optimal Optimal Optimal Optimal

C0 4KB 4W 16B 4KB 4W 16B 4KB 2W 32B 4KB 4W 16B
C1 4KB 4W 16B 4KB 4W 16B 2KB 2W 32B 4KB 4W 16B
C2 4KB 4W 16B 4KB 4W 16B 2KB 2W 16B 4KB 4W 16B
C3 4KB 4W 16B 4KB 4W 16B 2KB 2W 16B 2KB 2W 16B

Note: Each configuration is denoted by the total cache size in kilobytes (KB),
followed by the associativity in number of ways (W), followed by the line size
in bytes (B).

each benchmark in MediaBench [Lee et al. 1997] and EEMBC [EEMBC 2000]—the
two benchmark suites we use in Section 4. Figure 5 shows the results for some of the
benchmarks (cjpeg, epic, and rawdaudio) using partition factors 6, 12, and 18. For the
same benchmark, the optimal cache configuration for each phase varies in a consistent
pattern across different partition factors. For example, the energy-optimal instruction
cache configuration for benchmark cjpeg (cjpeg I$ E) is 4096B 2W 16B1 for the first
several phases and then changes to 2048B 2W 16B starting from approximately one
third of the program: phase p2

6, phase p4
12, and phase p6

18 when the partition factor is 6,
12, and 18, respectively. In other words, a larger partition factor makes more and more
phases share the same optimal cache configuration with their neighboring phases. Dif-
ferent optimal cache configurations can be found when the partition factor increases.
For example, the performance-optimal instruction cache configuration for benchmark
cjpeg (cjpeg I$ P in Figure 5(b)) with partition factor 12 differs at phase p3

12, compared
to the similar position when the partition factor is 6 (Figure 5(a)). Our experimen-
tal results show that though discrepancies do happen, their impact on energy savings
is normally negligible, because the energy/performance difference between the newly
selected cache configuration and the original one is usually very small. From this ob-
servation, one can derive the fact that application behavior can sufficiently be captured
by a certain partition factor. This is evident due to the well-established 90/10 rule of

1A cache configuration with a 4096-byte capacity, 16-byte line size, and two-way associativity.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

28:10 W. Wang et al.

Fig. 5. Optimal cache configuration variation under different partition factors. (In this figure, I$ represents
the instruction cache, ‘E’ stands for energy-optimal, and ‘P’ stands for performance-optimal.)

execution—90% of the execution time is spent in only 10% of the code—in which the
90% of the time is typically spent executing loops. For each loop iteration, except the
first and last iterations, execution behavior is typically similar, thus resulting in the
same optimal cache configuration for all other iterations. For a loop with N iterations,

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 28:11

Fig. 6. Effective range in which a higher partition factor makes a difference.

the partition factor only needs to be large enough to capture all dynamic instructions
of iterations two through (N−1), as any smaller granularity would capture a subset of
iterations, each of which may have the same optimal configuration. Thus, we define a
stage of execution as a range of consecutive dynamic instructions in which a common
optimal cache configuration exists.

The second issue is whether a finer partition granularity always results in more
energy savings than a coarser granularity. With a finer granularity, if there is no
extra variation in the optimal cache configuration across phases, there will be no addi-
tional energy savings, since the same cache configurations are being used. If variations
can be observed, according to our experiments, they only happen at stage boundaries,
which is a very limited portion in the entire program. Figure 6 gives an example ex-
plaining why this is the case. Suppose there are two tasks T1 and T2 in the system,
and the partition factor (p) can be chosen as four or eight. A valid schedule for these
tasks is shown in Figure 6. Since T2 is executed as a whole, the cache configuration
used is the optimal one for the entire task, which is the same as both partition factors.
T1 is preempted by T2. When T1 resumes, a different cache configuration should be
picked based on the preemption point as well as the partition factor. As discussed in
the first issue, a higher partition factor shows a consistent variation pattern in optimal
cache configuration with only minor exceptions. Suppose when the partition factor is
four, for task T1, the cache configuration picked for phase p0

4, phase p1
4, phase p2

4, and
phase p3

4 are CA , CA , CB, and CB, respectively. And when partition factor is eight,
they are CA , CA , CA , CC, CB, CB, CB, and CB for phase p0

8 to phase p7
8, respectively.

Using the nearest-neighbor technique, as discussed in Section 3.4.1, the advantage of
using a partition factor of eight over four becomes effective only when the preemp-
tion happens within the range from 5/16 to 7/16 of T1 (effective area), since CC will
be chosen instead of CA or CB. Note that CC may be more energy/performance effi-
cient for the remaining part of T1 than CA and CB. From the entire system’s point
of view, a higher partition factor (i.e., eight) does not help for T2 as well as T1 if the
application does not get preempted or the preemption does not happen in the effective
area. Based on our experiments, energy savings increases by 3–8% (for that one task)
only when the preemption occurs within the effective area of the dynamic instruction

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

28:12 W. Wang et al.

flow. Empirically, the effective area is typically 5–8% of the task. Due to these two
small probabilities multiplied together, 0.4% on average, a finer-granularity partition
can realize only minor benefits.

Thus, the goal of a system designer is to find a partition factor that maximizes the
energy reduction and minimizes the number of partition points that need to be stored.
The rule of thumb is to find a partition factor minimizing the number of neighboring
partitions that share the same optimal cache configuration. It could be a local optimal
factor for each task if a varying number of table entries for different tasks is allowed, or
it could be a global optimal factor for the task set. Based on our experience, a partition
factor ranging from four to seven is sufficient to make our technique work efficiently.

Static profiling generates a profile table that stores the potential preemption points
and the corresponding optimal cache configurations for each task. Sections 3.3 and 3.4
describe how this profile table is used during runtime in statically and dynamically
scheduled systems.

3.3 Statically Scheduled Systems
With static scheduling, arrival times, execution times, and deadlines are known a pri-
ori for each task, and this information serves as scheduler input. The scheduler then
provides a schedule detailing all actions taken during system execution. According to
this schedule, we can statically execute and record the energy-optimal cache configu-
rations that do not violate any task’s deadline for every execution period of each task.
For soft real-time systems, global (system-wide) energy-optimal configurations can be
selected, as long as the configuration performance does not severely affect system be-
havior. After this profiling step, the profile table is integrated with the scheduler so
that the cache reconfiguration hardware (cache tuner) can tune the cache for each
scheduling decision.

3.4 Dynamically Scheduled Systems
With dynamic scheduling (online scheduling), scheduling decisions are made during
runtime. In this scenario, task preemption points are unknown, since new tasks may
enter the system at any time with any time constraint. In this section, we present two
versions of our technique based on the target system’s characteristics.

3.4.1 Conservative Approach. In some soft real-time systems where high service qual-
ity is required and time constraints are pressing, only an extremely small number of
violations are tolerable. The conservative approach could ensure that given a care-
fully chosen partition factor, almost every task could meet their deadlines with only a
few exceptions. To ensure the largest task schedulability, any reconfiguration decision
will only change the cache into a lowest energy configuration whose execution time
is not longer than that of the base cache. In other words, to maintain a high quality
of service, only cache configurations with equal or higher performance than the base
cache are chosen for each task phase. Note that the chosen energy-optimal configura-
tion may not be the global lowest energy configuration but is the configuration with
the lowest energy consumption given a specific time constraint. We denote them as
deadline-aware energy-optimal cache configurations.

The scheduler chooses the appropriate cache configuration from the generated pro-
file table that contains the energy-optimal cache configurations for each task phase.
Table II(a) shows the profile table for task i with a partition factor p. EOi(n/p)
represents the energy-optimal cache configuration for phase pn

p of task i. Here, n/p
represents the nth phase out of p phases. The total dynamic instruction count (TIN)
refers to the number of dynamic instructions executed in a single run of that task.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 28:13

Table II(a). Static Profile Table for the
Conservative Approach

Task ID: i Partition Factor: p
Total Instruction Number (TIN)

EOi(0/p)
EOi(1/p)
EOi(2/p)

......
EOi(p-1/p)

Table II(b). Task List Entry for Task i for the
Conservative Approach

Task ID: i Partition Factor: p
Arrival time (Ai) Deadline (Di)
Total Instruction

Number (TIN)
Executed Instruction

Number (EIN)
EOi(0/p)
EOi(1/p)
EOi(2/p)

......
EOi(p-1/p)

During system execution, the scheduler maintains a task list keeping track of
all existing tasks, as shown in Table II(b). In addition to the static profile table of
Table II(a), runtime information, such as arrival time (Ai), deadline (Di), and the num-
ber of already executed dynamic instructions (EIN), are also recorded. This informa-
tion is stored not only for the scheduler but also for the cache tuner. When a newly
arrived task2 begins execution for the first time, the deadline-aware energy-optimal
cache configuration EOi(0/p) is obtained from the task list entry, and the cache tuner
adjusts the cache appropriately. If preemption happens, the number of the preempted
task’s executed instructions (EIN) is calculated and stored in its task list entry.

As indicated in Section 3.2, potential preemption points are predetermined during
the profile table generation process. However, it is highly unlikely that the actual pre-
emptions would occur precisely on these potential preemption points. Hence, a nearest-
neighbor method is used to determine which cache configuration should be used.
Essentially, if the preemption point falls between partition points n/p and (n + 1)/p,
the nearest point would be used to select the current cache configuration. Algorithm 1
illustrates the cache-tuning algorithm for our conservative approach. This algorithm
is called when a previously preempted task resumes its execution. It runs in a time
complexity of O(p), where p is the partition factor. Note that the returned cache con-
figuration information is sent to the cache tuner.

As our experimental results show, the conservative approach obtains significant en-
ergy savings with little or no impact on the quality of service. A minor number of
time-constraint violations are caused by cache behaviors in which the optimal cache

2To be more specific, we actually mean “jobs” (execution instances of tasks). For simplicity, a more general
term “task” is used in this article.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

28:14 W. Wang et al.

ALGORITHM 1: Cache Configuration Selection for a Resumed Preempted Task in the Conser-
vative Approach

Input: Task list entry
Output: A deadline-aware cache configuration for the resumed task Tc.
for i = 0 to p − 2 do

if TINTc × i/p ≤ EINTc < TINTc × (i + 1)/p then
if (EINTc − TINTc × i/p) < (TINTc × (i + 1)/p − EINTc) then

PH A SETc = i/p;
else

PH A SETc = (i + 1)/p;
end if

end if
end for
if EINTc ≥ TINTc × (p − 1)/p then

PH A SETc = (p − 1)/p;
end if
CacheTc = EOi(PH A SETc);
Return: CacheTc

configuration for the period from one preemption point to another preemption point
and for the pre-decided phase differ greatly. In other words, the chosen cache con-
figuration may happen to be inefficient for the execution period between two actual
preemption points such that the lost time is not reparable by the subsequently se-
lected cache configurations in that task. Fortunately, this kind of behavior is relatively
rare.

3.4.2 Aggressive Approach. For soft real-time systems in which only moderate service
quality is needed, a more aggressive version of our approach can reveal additional
energy savings at the cost of possibly violating several future task deadlines, but the
number of missed deadlines would remain in an acceptable range.

Similar to the conservative approach, a profile table is associated with every task
in the system; however, this profile table contains the performance-optimal cache con-
figuration (whose execution time is the shortest) in addition to the energy-optimal
configuration (the configuration with the lowest energy consumption among all of the
candidates) for every task phase. In order to assist dynamic scheduling, the profile
table also includes the corresponding phase’s execution time (in cycles) for each config-
uration. Table III(a) shows the profile table for task i with a partition factor of p. The
terms EO, EOT, PO, and POT stand for the energy-optimal cache configuration, the
energy-optimal cache configuration’s execution time, the performance-optimal cache
configuration, and the performance-optimal cache configuration’s execution time, re-
spectively. Notice that the performance and energy efficiency of a cache configuration
is not inversely proportional. The energy-optimal configuration does not necessarily
have the worst performance. Compared to the base cache, the energy-optimal configu-
ration could have both better energy efficiency and performance.

Table III(b) shows the task list entry for the aggressive approach. The difference
from the conservative approach (shown in Table II(b)) is that every task list entry also
holds a current phase identifier (CPi). CPi denotes the partition point that this task’s
execution just passed and is useful for cache reconfiguration upon task resumption.
Note that a newly inserted task’s CP is initialized to 0. In addition to the task list,
the scheduler also maintains another runtime data structure called the ready task list

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 28:15

Table III(a). Static Profile Table for the Aggressive Approach

Task ID: i Partition Factor: p
Total Instruction Number (TIN)

EOi(0/p) EOTi(0/p) POi(0/p) POTi(0/p)
EOi(1/p) EOTi(1/p) POi(1/p) POTi(1/p)
EOi(2/p) EOTi(2/p) POi(2/p) POTi(2/p)

......
EOi(p-1/p) EOTi(p-1/p) POi(p-1/p) POTi(p-1/p)

Table III(b). Task List Entry for Task i for the
Aggressive Approach

Task ID: i Partition Factor: p
Arrival time (Ai) Deadline (Di)
Total Instruction

Number (TIN)
Executed Instruction

Number (EIN)
Current Phase (CP)

EOi(0/p) EOTi(0/p) POi(0/p) POTi(0/p)
EOi(1/p) EOTi(1/p) POi(1/p) POTi(1/p)
EOi(2/p) EOTi(2/p) POi(2/p) POTi(2/p)

......
EOi(p-1/p) EOTi(p-1/p) POi(p-1/p) POTi(p-1/p)

Fig. 7. Task set and sample scheduling.

(RTL), which contains an identifier for each existing task currently ready to execute in
the system.

To explain the aggressive approach, we use an illustrative example in which there
are three tasks (jobs), T1, T2, and T3, with absolute deadlines DT1, DT2, and DT3,
where DT2 < DT1 < DT3. According to EDF, the priority sequence is simply the op-
posite of the deadlines, which is Pri2 > Pri1 > Pri3. Figure 7 shows a schedule for
these tasks. Note that P0, P1, P2, and P3 represent the time instances when any
event (arrival, completion, etc.) occurs. At time point P0, T1 arrives and the scheduler
generates the task list entry for T1 and adds T1 to the RTL. Since T1 is currently the
only task in the system, the scheduler instructs the cache tuner to configure the cache
to EOT1(0/p) if and only if P0 + EOT1(0/p) < DT1, otherwise the cache will be tuned to
POT1(0/p), which ensures that T1’s deadline will be met. At time point P1, T2 arrives
with priority higher than the currently active task T1. The scheduler calculates T1’s
current phase CPT1 and updates T1’s task list entry. Note that T1’s deadline may be
violated if the following inequality holds.

P1 + POTT1((CPT1 + 1)/p) + POTT2(0/p) > DT1. (1)

This is obviously an underestimation of the execution time that the remaining portion
of T1 would take and thus more aggressive, but it favors tasks with higher prior-
ity (T2). However, if we use POTT1(CPT1/p) in Equation (1), T2 may have a lower

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

28:16 W. Wang et al.

chance of being accepted, but the lower priority task T1 would more likely meet its
deadline.

If Equation (1) does not hold, the scheduler determines T2’s cache configuration
CT2 as follows (assuming Pi + POTi(0/p) < Di for all tasks i, otherwise task i is not
schedulable in any situation).

if (P1 + EOTT2(0/p) > DT2) then
CT2 = POT2(0/p);

else if (P1 + EOTT2(0/p) + POTT1((CPT1 + 1)/p) < DT1) then
CT2 = EOT2(0/p);

else if (P1 + EOTT2(0/p) + POTT1((CPT1 + 1)/p) > DT1) then
CT2 = POT2(0/p).

At time point P2, T2 completes and T1 resumes, since it is the only ready task. The
scheduler utilizes CPT1 to determine the appropriate partition for choosing a cache
configuration. This technique is similar in principle to the nearest-neighbor method
used in Section 3.4.1 except that a decision should be made whether to use the energy-
optimal or performance-optimal configuration based on the remaining time budget. At
some point during T1’s execution, T3 arrives, but since T3 has a lower priority than
T1, T3 begins execution after T1 completes execution. By this time, T3 is the only
task, and its cache configuration decision is made using the same method as task T1
at time P0.

Algorithm 2 illustrates the general cache configuration selection algorithm for pre-
empted tasks for our aggressive approach. This algorithm is called either when a
new task with a higher priority than the current executing task arrives or when the
current task finishes execution. In the former case, Step 1 uses the executed instruc-
tion number (EIN) to calculate the current phase (CP) for the preempted task. While
in the latter case, this step should be omitted. Step 2 selects the highest priority3

task Tc from RTL. In the former case, the newly arrived task is inserted into RTL
and, obviously, Tc refers to that task. Step 3 checks the schedulability of all of the
tasks in RTL by iteratively checking whether each task can meet its deadline if all the
preceding tasks, including itself, use performance-optimal cache configurations. This
process is done in decreasing order of task priority to achieve the smallest number of
discarded tasks. In Step 4, the appropriate cache configuration for Tc is selected based
on whether it is safe to use the energy-optimal cache configuration. This algorithm
runs in time of O(max(p,m)), where p is the partition factor and m is the total number
of tasks in RTL.

3.5 Impact of Storing Multiple Cache Configurations
This section investigates the extent to which individual cache configuration candidates
are required during scheduling. In the approaches proposed in Sections 3.4.1 and 3.4.2,
the scheduler only considers either the energy-optimal cache in the conservative ap-
proach or the energy- and performance-optimal caches in the aggressive approach,
for each task phase. As justified by our experiments, we can achieve a considerable
amount of energy savings at the cost of very low system overheads simply by stor-
ing these cache configurations in the static profile table. However, there exists other
configurations that offer Pareto-optimal trade-off points. Simply because the energy-
optimal cache cannot satisfy a particular task’s deadline, it does not mean that there
is no cache configuration for that task that can meet the deadline and consume less

3Here, priority means the dynamic scheduling priority decided using EDF.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 28:17

ALGORITHM 2: Cache Configuration Selection for the Aggressive Approach
Input: Task list entry, ready task list and preemption point
Output: A appropriate cache configuration
Step 1: Calculate CP for the preempted task Tp. Insert Tp to RTL.
for i = 0 to p − 1 do

if TINTp × i/p ≤ EINTp < TINTp × (i + 1)/p then
CPTp = i/p;

end if
end for
Step 2: Remove the task with maximum priority Tc from RTL.
Step 3: Sort all tasks in RTL by priority, T1 to Tm, from highest to lowest. C represents the
current time instant.
for j = 1 to m do

if C + POTTc(CPTc/p) +
j∑

i=1

POTTi((CPTi + 1)/p) > DTj then

Task DTj is subject to be discarded;
end if

end for
Step 4: Select cache configuration for Tc. Let m′ be the number of tasks in RTL left after
Step 3.
if C + EOTTc(CPTc/p) > DTc then

CacheTc = POTc;
else

EO OK = true;
for j = 1 to m′ do

if C + EOTTc(CPTc/p) +
j∑

i=1

POTTi((CPTi + 1)/p) > DTj then

EO OK = false;
end if

end for
end if
if EO OK == true then

CacheTc = EOTc;
else

CacheTc = POTc;
end if
Return: CacheTc

energy than the performance-optimal cache. For example, as described in Algorithm 2,
when the scheduler finds that using the energy-optimal cache for a task is unsafe, it
has no choice but to select the performance-optimal cache, but if the second energy-
optimal cache is also available to the scheduler and is able to meet the time constraint
(has higher performance), the scheduler can select that cache configuration to poten-
tially save more energy. Figure 8(a) illustrates this extension of the profile table.

Note that we use the phrase second beneficial energy-optimal cache and second bene-
ficial performance-optimal cache in Figure 8(a). Figure 8(b) shows how we select these
caches. We only consider those cache configurations on the Pareto-optimal curve that
have either better energy efficiency or higher performance than the other configura-
tions. In the extreme case, if we can store all these cache configurations for every task

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

28:18 W. Wang et al.

Fig. 8. (a) Storing multiple optimal cache configurations for each task phase; (b) second beneficial optimal
cache selection on the Pareto-optimal curve.

phase in the profile table, the scheduler would be capable of selecting the lowest en-
ergy cache configuration that is capable of meeting time constraints of all the existing
tasks in the system. Thus, this is a trade-off between potential energy savings and
system overhead in the form of table storage and scheduler complexity. Note that stor-
ing information for one more cache configuration in the table would potentially double
the area overhead as well as increase power consumption and access time. Section 4.4
provides experimental results for this approach.

4. EXPERIMENTS

4.1 Experiments Setup
To quantify energy savings using our approaches, we examined selected benchmarks
from the MediaBench [Lee et al. 1997] (mostly multimedia applications) and the
EEMBC Automotive [EEMBC 2000] benchmark suites, representing typical tasks that
might be present in a soft real-time system. All applications were executed with the
default input sets provided with the benchmarks suites.

We utilized the configurable cache architecture for the L1 cache developed by Zhang
et al. [2005] with a four-bank cache with base size of 4KB, which offers sizes of 1KB,
2KB, and 4KB, line sizes ranging from 16 bytes to 64 bytes, and associativity of one-
way, two-way, and four-way. For comparison purposes, we define the base cache config-

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 28:19

uration to be a 4KB, two-way set associative cache with a 32-byte line size—a reason-
ably common configuration that meets the needs of the benchmarks studied. The L2
cache is set to a 64KB unified cache with four-way associativity and a 32-byte line size.
Our energy model, adopted from the one used in Zhang et al. [2005], calculates both
dynamic and static energy consumption, memory latency, processor stall energy, and
main memory fetch energy. Let Edyn and Esta denote the dynamic energy and static
energy of the cache subsystem, respectively. The total cache energy consumption is
Ecache = Edyn + Esta. Specifically, we have

Edyn = num accesses · Eaccess + num misses · Emiss; (2)

Emiss = Eo f fchip access + EµP stall + Eblock f ill; (3)

Esta = Psta · CC · tcycle, (4)
where Eaccess, Emiss, and Pstatic are the energy required per cache access, per cache miss,
and static power consumption, respectively. Eaccess and Pstatic are collected from CACTI
4.2 [HP 2008] with a 0.18 µm technology for all cache configurations. Following Zhang
et al. [2005], we represent Emiss as the sum of the energy consumptions for fetching
data from off-chip memory Eo f fchip access, processor stall energy due to a cache miss
EµP stall, and cache line refilling after a miss Eblock f ill. CC denotes the number of clock
cycles that is required to execute the task, and tcycle is the length of each clock cycle.
The access latency (e.g., in nanoseconds) to read data from the cache remains the same
when we reconfigure the cache, because the clock frequency is determined by the base
cache size. The data transfer time during a cache miss is determined by the cache
line size as well as the bandwidth between the memory levels. In general, larger line
sizes will lead to more data transfer cycles, thus higher access latencies. This vari-
ance for both L1 and L2 caches is incorporated in our model considering different miss
cycles for cache configurations with various line sizes. We adopt these values from
the study in Zhang et al. [2005]. To obtain cache hit and miss statistics, we used the
SimpleScalar toolset [Burger et al. 1996] to simulate the applications. We assume an
in-order issue core with a four-stage pipeline, which supports out-of-order completion,
but the pipeline is stalled whenever a data hazard is detected. The simulator also
supports speculation and a branch predictor with a two-bit saturating counter. We use
the PISA architecture in our experiments, and the compiler is the default little-endian
PISA compiler (sslittle-na-sstrix-gcc) provided with SimpleScalar 3.0 with cc options
CFLAGS= −O −I$(srcdir). To populate the static profile tables for each task, we utilize
SimpleScalar’s external I/O trace files (eio files), checkpointing, and fastforwarding ca-
pabilities. This method allows for every benchmark phase to be individually profiled
via fastforwarding execution to each potential preemption point. In our experiments,
we used partition factors ranging from four to seven. Driven by Perl scripts, the de-
sign space of 18 cache configurations is exhaustively explored during static analysis to
determine the energy-, performance-, and deadline-aware energy-optimal cache con-
figurations for each phase of each benchmark.

4.2 Results
To model sample real-time embedded systems with multiple executing tasks, we cre-
ated seven different task sets, as shown in Table IV. In each task set, the three selected
benchmarks have comparable dynamic instruction sizes in order to avoid behavioral
domination by one relatively large task. For system simulation, task arrival times
and deadlines are randomly generated. To achieve an effective and fair comparison,
we make the system utilization ratio close to the schedulability condition [Liu 2000].
We examine varying preempting points and average these values so that our results
represent a generic degree of scheduling decisions.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

28:20 W. Wang et al.

Table IV. Benchmark Task Sets

Task 1 Task 2 Task 3
Task Set 1 epic* pegwit* rawcaudio*
Task Set 2 cjpeg* toast* mpeg2*
Task Set 3 A2TIME01** AIFFTR01** AIFIRF01**
Task Set 4 BITMNP01** IDCTRN01** RSPEED01**
Task Set 5 djpeg* rawdaudio* untoast*
Task Set 6 BaseFP01** CACHEB01** IIRFLT01**
Task Set 7 TBLOOK01** TTSPRK01** PUWMOD01**

Note: *MediaBench; **EEBMC.

We compare the energy consumption for each task set using different schemes:
a fixed base cache configuration, the conservative approach, and the aggressive ap-
proach. Energy consumption is normalized to the fixed base cache configuration such
that a value of 1 represents our baseline. Figure 9 presents energy savings for the
instruction and data cache subsystems. Energy savings in the instruction cache sub-
system ranges from 22% to 54% for the conservative approach, while it reaches as
high as 74% for the aggressive approach. Energy savings average 33% and 52% for the
conservative and aggressive approaches, respectively. In the data cache subsystem,
energy savings are generally less than that of the instruction cache subsystem due to
less variation in cache configuration requirements. In the data cache subsystem, en-
ergy savings range from 15% to 47% for the conservative approach, while it reaches as
high as 64% for the aggressive approach, and the averages are 16% and 22% for the
conservative and aggressive approaches, respectively.

It is worth investigating the insights behind the experimental results: why instruc-
tion caches and data caches reveal such different energy savings when executing tasks
from different benchmark suites (MediaBench and EEMBC). Note that we use bench-
marks from MediaBench in task sets 1 and 2 and benchmarks from EEMBC in task
sets 3 and 4. As shown in Figure 9, task set 1, for example, has more energy savings in
the data cache than in the instruction cache using the aggressive approach. By eval-
uating the properties of each benchmark in that task set, we found that these bench-
marks have common characteristics in their energy-optimal and performance-optimal
cache configurations stored in the profile table. To illustrate this, we sort the tasks’
cache configurations by their energy consumption as well as performance. Figure 10
depicts the layout of each configuration, ranking by its energy and performance for
benchmark epic.4 We can see that in the data cache, the chosen energy-optimal cache’s
performance and performance-optimal cache’s energy consumption are relatively much
better than the instruction cache. The higher the performance an energy-optimal cache
configuration has, the higher the chance that it will be chosen by the scheduler. On
the other hand, the less energy a performance-optimal cache configuration consumes,
the less penalty (extra energy consumption) it has to pay when the scheduler has to
choose the performance-optimal configuration due to tight timing constraints. These
two factors explain why for test case 1, the data cache reveals more energy savings
than the instruction cache. For those task sets containing benchmarks from EEBMC,
the situation is the opposite. Task sets 3 and 4 do very well in the instruction cache
but show very little energy savings in the data cache. Figure 11 illustrates the reason
for this observation. Again, though only A2TIME01 is shown, we found almost all the

4Due to space limits, results for one task in test set 1 are shown here; however, other tasks in that set also
have a similar pattern. For the same reason, even though only the results for the entire benchmark are
shown here, other phases also show the same property.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 28:21

Fig. 9. Cache subsystem energy consumption normalized to the base cache configuration for each task set.

benchmarks in EEMBC have the same property. In the instruction cache, the per-
formance of the energy-optimal cache is very close to that of the performance-optimal
cache. Similarly, the energy consumption of the performance-optimal cache is very
close to that of the energy-optimal cache. Interestingly, in many cases they are the
same cache configuration, for example, A2TIME01 in Figure 11(a). However, in the
data cache, the energy-efficient caches and performance-efficient caches differ tremen-
dously. For this reason, benchmarks from EEMBC show poor results for the data
cache.

It is also helpful to discuss how the cache miss rate plays its role in the cache model
and thus affects the optimal cache configuration variations. Figure 12 shows the miss
rates for epic, which explains the insights behind Figure 10, showing each data cache
configuration behaving similarly in terms of both performance and energy efficiency
(e.g., Figure 10(b)), while the instruction cache behaves just the opposite. The reason
for 4KB 4W 16B and 4KB 4W 32B being superior in both energy and performance is
the following. On one hand, the benchmark’s data region in the footprint is relatively
large, and thus the capacity of the data cache is critical. In other words, configura-
tions with smaller sizes cannot satisfy the benchmark’s footprint and thus suffer from

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

28:22 W. Wang et al.

Fig. 10. Cache configuration candidate’s energy and performance rank layout.

Fig. 11. Cache configuration candidate’s energy and performance rank layout.

high miss rates. Therefore, with the same associativity, configurations with a larger
capacity always win over those with smaller size in both performance and energy. On
the other hand, as shown in Figure 12, 1KB configurations with two-way associativ-
ity5 have similar miss rates as 2KB direct-mapped caches, while 2KB and two-way
associativity configurations have lower miss rates than 4KB direct-mapped caches.
Therefore, the temporal locality of the benchmark is reflected in the number of conflict
misses (which is further reflected in the desired cache associativity) and also plays an
important role in determining optimal cache configurations. The code region in the
footprint is relatively small and thus can be easily satisfied; each configuration will
show similar low miss rates, thus smaller configurations could win in energy efficiency
due to their low power dissipation.

To illustrate the effect of leakage power on the optimal cache configuration,
Figures 13(a) and 13(b) show both dynamic and static energy consumption for var-
ious cache configurations for dijkstra and A2TIME01, respectively. For dijkstra, the
smallest cache configuration overall wins, since larger-sized configurations do not show
much efficiency in dynamic energy while resulting in larger static energy. However,
for A2TIME01, larger cache configurations outperform smaller configurations due to

5Although 1KB cache with two-way associativity is not valid in our reconfigurable cache architecture, we
include it here for illustration purposes only.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 28:23

Fig. 12. Miss rate for epic.

Fig. 13. Cache energy consumption decomposition.

significant reductions in dynamic energy consumption. This also explains why differ-
ent benchmarks favor different cache configurations.

4.3 Suitability of Statically Determined Configurations
A system’s performance variations when using our approaches are shown in Tables V
and VI. We keep track of each task’s performance during execution and determine the
percentage of the task’s jobs whose performance are higher (and lower but deadlines
are met) using the selected cache configuration as compared to the base cache configu-
ration. As discussed in Section 3.4.1, the cache configuration selected by our approach
(nearest-neighbor nature) may possibly be inefficient in performance for the execution
period between the actual preemption points. The percentage of deadline misses are
also provided for each task to evaluate the system service level. Though lower per-
formance jobs potentially have an impact on the system performance, they are not
harmful, since no task deadline is missed. As the results show, our approach achieves
significant energy savings at the expense of a small amount of task deadline misses
which are acceptable in soft real-time systems. For example, among epic’s all execu-
tions (jobs), 75% of them took a shorter period of time using the cache configurations
selected by the conservative approach as compared to using the base cache configura-
tion, while 21% of them took a longer time but still met the time constraints. Only 4%
of all its jobs actually miss their deadlines. As Table V demonstrates, our conservative
approach leads to very minor deadline misses (0–4%). Our aggressive approach can

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

28:24 W. Wang et al.

Table V. Task Performance Variations for the Conservative Approach

Higher Lower Deadline
Task Sets Tasks performance performance misses

jobs jobs

1
epic 75% 21% 4%

pegwit 99% 1% 0%
rawcaudio 94% 3% 3%

2
cjpeg 94% 5% 1%
toast 89% 4% 7%

mpeg2 94% 2% 4%

3
A2TIME01 98% 2% 0%
AIFFTR01 82% 15% 3%
AIFIRF01 99% 1% 0%

4
BITMNP01 100% 0% 0%
IDCTRN01 96% 2% 2%
RSPEED01 99% 1% 0%

Table VI. Task Performance Variations for the Aggressive Approach

Higher Lower Deadline
Task Sets Tasks performance performance misses

jobs jobs

1
epic 63% 29% 8%

pegwit 89% 10% 1%
rawcaudio 76% 12% 12%

2
cjpeg 90% 6% 4%
toast 72% 16% 12%

mpeg2 75% 17% 8%

3
A2TIME01 94% 2% 3%
AIFFTR01 52% 30% 18%
AIFIRF01 97% 2% 1%

4
BITMNP01 62% 27% 11%
IDCTRN01 94% 3% 3%
RSPEED01 91% 2% 7%

Table VII. Current Phases of Deadline Violated Tasks When
the Task is Discarded

Task Sets Tasks CP = 1 CP = 2 CP = 3

1
epic 23% 54% 23%

pegwit 0% 0% 100%
rawcaudio 33% 34% 33%

2
cjpeg 14% 34% 52%
toast 10% 25% 65%

mpeg2 18% 32% 50%

generate a drastic reduction in energy requirements with a slightly increased number
of missed deadlines (1%–18%).

To illustrate how early/late in the execution the deadlines are missed, for each
low-priority job that is discarded, we collected its current phase (CP), as shown in
Table VII. In other words, among all the jobs that missed their deadlines (e.g., 4% of

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 28:25

Fig. 14. The effect of using the extended profile table: cache subsystem energy consumption normalized to
the conservative approach for each task set.

all jobs), different jobs are dropped at different stages of execution (CP). For example,
in the case of epic, among the 8% of jobs that are dropped, 23% of them have executed
over one-fourth (CP = 1), 54% of them have executed over half (CP = 2), and 23% of
them are over three-fourths (CP = 3).

4.4 Impact of Storing Multiple Cache Configurations
As discussed in Section 3.5, storing multiple beneficial cache configurations may lead
to more energy savings. We explore the effect of using an extended profile table by
running task set 1–4 in Table IV. The profile table size is doubled to accommodate the
second beneficial energy- and performance-optimal cache configurations. Algorithm 2
is modified to be aware of this extension. We call this method the Extended approach,
and Figure 14 shows its energy consumption compared to the conservative and ag-
gressive approaches. On average, the extended approach achieves 4.6% more energy
savings than the aggressive approach in the instruction caches while 5.9% more in the
data caches. In some cases (like task set 3 in the instruction cache and task set 1 in

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

28:26 W. Wang et al.

the data cache), no extra energy savings is observed due to the lack of beneficial cache
configurations.

As already discussed in Section 3.5, the extended profile table will cause an expo-
nential increase in system overheads. The energy overhead of the profile table can be
safely ignored, because it only accounts for a small proportion of the gained energy
savings. However, the increase in the area and access time of the table affects the
feasibility of applying the extended approach. When the number of different tasks is
relatively small such that the system overhead is not large, the extended approach
is favored over the other two approaches. Since it is common to have a large num-
ber of tasks in the system, applying the extended approach may not be a good idea
in these cases, because the profile table’s area could exceed the chip area constraints,
and increased access time may impact the system’s critical path. In extreme cases, it
may lead to longer clock cycle length and lower system clock frequency, which should
obviously be avoided.

4.5 Analysis of Input Variations
A program’s cache behavior, especially in the data cache, can vary when using different
inputs. Essentially, inputs can vary in size, structure, and contents. For example,
different inputs may drastically affect the program’s dynamic execution path (such as
the number of loop iterations), thus both energy- and performance-optimal caches may
differ from what are stored in the profile table.

Obviously, it is impossible to exhaustively explore all potential inputs. Energy-
aware task scheduling techniques face the same problem. In real-time systems, as dis-
cussed in Section 2.1, the scheduler should be supplied with the task set information,
which includes the task’s execution time (in cycles). The potential solutions include use
of i) a fixed input set (execution time is known beforehand) [Hu and Marculescu 2004;
Rong and Pedram 2008], ii) worst-case execution time (WCET) [Jejurikar et al. 2004;
Seo et al. 2004; Shin et al. 2001; Zhang et al. 2007] and iii) a probabilistic execution
time distribution [Hong et al. 2006; Oh et al. 2008; Zhong and Xu 2005].

It is worth exploring how varying inputs would impact each; task’s cache behavior.
In our experiments, we examine inputs with different sizes and observe the variation
in the optimal cache configurations. For the instruction cache, the energy-optimal
cache configuration parameters (cache size, line size, and set associativity) reduce as
the input size decreases. Results are similar for the data cache. The performance-
optimal instruction cache configuration’s line size reduces as input size decreases, but
cache size and associativity remain the same. However, in this case, the data cache
shows nondeterministic behavior. The reason for the variation in the instruction cache
is the size of the critical data processing code sections, which accounts for 90% of the
execution time (e.g., loops, etc.) and may be a comparatively small segment of the
entire program due to the 90/10 rule. Since critical data processing code sections (the
instruction cache working set) remains in the cache, the line size tends to be smaller in
order to reduce the time spent on cache misses and, thus, static energy consumption.
For the data cache, as the input size increases, spatial locality is more critical than
temporal locality, thus the cache size nearly remains the same (or even decreases), but
line size increases. It is important to note that drastic changes in input size are not
usual in real-time systems. We also studied the impact of changing input patterns on
our approach. We observed that a change in input pattern (data structure and the
absolute values change but not the size) shows a minor impact on the cache behavior.
Both energy- and performance-optimal cache configurations show very little variation.

The following experimental results support these arguments. We examined cjpeg
from MediaBench. In the first set of experiments, we selected six different-sized input

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 28:27

Table VIII. Input Variation Exploration

a.ppm: Size of input: 8431 bytes
EO icache PO icache EO dcache PO dcache

4096B 2W 16B 4096B 4W 16B 4096B 2W 16B 4096B 4W 16B
4096B 2W 16B 4096B 4W 16B 4096B 2W 16B 4096B 4W 16B
4096B 2W 16B 4096B 4W 16B 4096B 2W 16B 4096B 4W 16B

b.ppm: Size of input: 101484 bytes
EO icache PO icache EO dcache PO dcache

4096B 2W 16B 4096B 4W 16B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

c.ppm: Size of input: 306915 bytes
EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 32B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 4096B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

d.ppm: Size of input: 530895 bytes
EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 32B 4096B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

e.ppm: Size of input: 1476015 bytes
EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 16B 4096B 2W 16B 4096B 4W 16B
2048B 2W 16B 4096B 2W 64B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 2W 64B 2048B 2W 32B 4096B 4W 16B

f.ppm: Size of input: 3832336 bytes
EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 2W 64B 4096B 2W 16B 4096B 4W 16B
2048B 2W 16B 2048B 2W 64B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 2048B 2W 64B 2048B 2W 32B 4096B 4W 16B

image files (a.ppm, b.ppm, c.ppm, d.ppm, e.ppm, and f.ppm) and found the energy-
performance-optimal cache configurations for both instruction and data caches with a
partition factor of four, as shown in Table VIII. In the second experiment, we selected
two similarly sized image files (man.ppm and woman.ppm) with different content and
explored the cache behavior using partition factors of four, five, and six. As shown
in Table IX, there is very little variation in terms of the optimal cache configuration
selection for the two inputs. Therefore, our approach is applicable when the input
for each task is known during design time so that it can be statically profiled. Our
approach is also applicable when there are changes in input pattern. This is a realistic
assumption for real-time systems.

4.6 Hardware Overhead
This section describes the overhead of implementing the profile table in hardware.
The profile table is stored in SRAM and accessed by the cache tuner to fetch the cache
configuration information. The size of the table depends on the number of tasks in the
system and the partition factor used. For the conservative approach, each table entry

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

28:28 W. Wang et al.

Table IX. Input Pattern Changes

man.ppm: Size of input: 336165 bytes
Partition factor p = 4

EO icache PO icache EO dcache PO dcache
2048B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

Partition factor p = 5
EO icache PO icache EO dcache PO dcache

4096B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

Partition factor p = 6
EO icache PO icache EO dcache PO dcache

4096B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 4096B 2W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

woman.ppm: Size of input: 312999 bytes
Partition factor p = 4

EO icache PO icache EO dcache PO dcache
2048B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

Partition factor p = 5
EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

Partition factor p = 6
EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 4096B 2W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

consists of five bits, since the configurable cache architecture used in this study offers
18 possible cache configurations. We have implemented the profile table using Verilog
HDL and synthesized the table using Synopsis Design Compiler with a TSMC 0.18 cell
library. We estimate a table lookup frequency of once per three million nanoseconds
during dynamic power computation, which means that there is a table lookup every
one million instructions using a 500 MHz CPU with an average CPI of 1.5. It is clearly
an overestimation (which is safe), since the benchmarks we used have around 10 to

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 28:29

Table X. Overhead of Different Lookup Tables (180nm Technology)

Table
size (# of
entries)

Area
(µm2)

Dynamic
Power
(µW)

Leakage
Power
(µW)

Critical
Path

Length
64 61,416 38.13 114.37 0.91

128 121,200 84.25 224.90 0.91
256 244,520 187.68 461.30 1.08
512 483,416 327.90 904.70 1.20

Table XI. Overhead of Different Lookup Tables
(65nm Technology)

Table
size (# of
entries)

Area
(µm2)

Dynamic
Power
(µW)

Leakage
Power
(µW)

64 6,756 12.23 154.52
128 13,332 27.02 303.86
256 26,897 60.19 623.25
512 53,176 105.16 1,222.32

200 million dynamic instructions. Table X illustrates our results. Each row in the
table indicates the area, dynamic power, leakage power, and critical path length for
the profile table with different sizes. We also calculated the overhead using 65nm
technology, as shown in Table XI. We observed that on average for each task set, the
energy overhead of our approach only accounts for less than 0.02% (450 nJ compared
to 2,825,563 nJ) of the total energy savings. The aggressive approach requires more
bits per lookup table entry (74 bits6). However, Tables X and XI illustrate that the
power dissipation is approximately linearly proportional to the table size. Therefore,
even if the table entry size is increased by 15 times (5 bits to 74 bits), the total energy
overhead is no more than 0.3% of the total energy savings. Therefore, we can safely
conclude that the overhead for the profile tables are negligible compared to the energy
savings for both the conservative and aggressive approaches.

5. CONCLUSIONS
Dynamic reconfiguration techniques are widely used in designing efficient embedded
systems. Dynamic cache reconfiguration is a promising approach for improving both
energy consumption and overall performance. The contribution of this article is a novel
scheduling-aware dynamic cache reconfiguration technique for soft real-time systems.
To the best of our knowledge, this is the first approach integrating dynamic cache re-
configuration into real-time systems. Our methodology employs an ideal combination
of static analysis and dynamic tuning of cache parameters with minor or no impact
on timing constraints. Our experiments demonstrated a 50% reduction on average
in the overall energy consumption of the cache subsystem in soft real-time embed-
ded systems. Our future work includes application of our approach to hard real-time
systems.

674 bits are needed to store both energy- and performance-optimal cache configurations (5 + 5 bits) as well
as the corresponding execution times (32 + 32 bits).

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

28:30 W. Wang et al.

REFERENCES
ANDERSSON, B., BLETSAS, K., AND BARUAH, S. 2008. Scheduling arbitrary-deadline sporadic task systems

on multiprocessors. In Proceedings of the Real-Time Systems Symposium. 385–394.
BENINI, L., BOGLIOLO, R., AND MICHELI, G. D. 2000. A survey of design techniques for system-level

dynamic power management. IEEE Trans. VLSI Syst. 8, 299–316.
BURGER, D., AUSTIN, T. M., AND BENNETT, S. 1996. Evaluating future microprocessors: The simplescalar

tool set. Tech. rep., University of Wisconsin-Madison, Madison, WI.
BUTTAZZO, G. 1995. Hard Real-Time Computing Systems. Kluwer, Berlin, Heidelberg.
EEMBC. 2000. EEMBC, The Embedded Microprocessor Benchmark Consortium. http://www.eembc.org.
GORDON-ROSS, A. AND VAHID, F. 2004. Automatic tuning of two-level caches to embedded applications. In

Proceedings of the Design, Automation and Test in Europe Conference. 208–213.
GORDON-ROSS, A., VAHID, F., AND DUTT, N. 2005. Fast configurable-cache tuning with a unified second-

level cache. In Proceedings of the International Symposium on Low Power Electronics and Design
(ISLPED’05). 323–326.

GORDON-ROSS, A., VIANA, P., VAHID, F., NAJJAR, W., AND BARROS, E. 2007. A one-shot configurable-
cache tuner for improved energy and performance. In Proceedings of the Design, Automation and Test
in Europe Conference. 755–760.

HENNESSY, J. AND PATTERSON, D. 2003. Computer Architecture: A Quantitative Approach. Morgan Kauf-
mann Publishers, Waltham, MA.

HONG, I., KIROVSKI, D., QU, G., POTKONJAK, M., AND SRIVASTAVA, M. B. 1999. Power optimization of
variable-voltage core-based systems. IEEE Trans. Comput.-Aided Des. Integr. Cir. Syst. 18, 1702–1714.

HONG, S., YOO, S., JIN, H., CHOI, K., KONG, J., AND EO, S. 2006. Runtime distribution-aware dynamic
voltage scaling. In Proceedings of the International Conference on Computer-Aided Design. 587–594.

HP. 2008. CACTI, HP Laboratories Palo Alto, CACTI 5.3. http://www.hpl.hp.com/.
HU, J. AND MARCULESCU, R. 2004. Energy-aware communication and task scheduling for network-on-chip

architectures under real-time constraints. In Proceedings of the Design, Automation and Test in Europe
Conference. 234–239.

JEJURIKAR, R. AND GUPTA, R. 2005. Dynamic slack reclamation with procrastination scheduling in real-
time embedded systems. In Proceedings of the Design Automation Conference. 111–116.

JEJURIKAR, R. AND GUPTA, R. 2006. Energy-aware task scheduling with task synchronization for embed-
ded real-time systems. IEEE Trans. Comput.-Aided Des. Integr. Cir. Syst. 25, 1024–1037.

JEJURIKAR, R., PEREIRA, C., AND GUPTA, R. K. 2004. Leakage aware dynamic voltage scaling for real-time
embedded systems. In Proceedings of the Design Automation Conference. 275–280.

KIM, H., SOMANI, A. K., AND TYAGI, A. 2000. A reconfigurable multi-function computing cache architec-
ture. In Proceedings of the International Symposium on Field Programmable Gate Arrays. 85–94.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. 1997. Mediabench: A tool for evaluating and
synthesizing multimedia and communications systems. In Proceedings of the International Symposium
on Microarchitecture. 330–335.

LEUNG, L., TSUI, C., AND HU, X. S. 2005. Exploiting dynamic workload variation in low energy preemptive
task scheduling. In Proceedings of the Design, Automation and Test in Europe Conference. 634–639.

LIU, J. 2000. Real-Time Systems. Prentice Hall, Upper Saddle River, NJ.
MALIK, A., MOYER, B., AND CERMAK, D. 2000. A low power unified cache architecture providing power

and performance flexibility. In Proceedings of the International Symposium on Low Power Electronics
and Design. 241–243.

MODARRESSI, M., HESSABI, S., AND GOUDARZI, M. 2006. A reconfigurable cache architecture for object-
oriented embedded systems. In Proceedings of the Canadian Conference on Electrical and Computer
Engineering. 959–962.

NACUL, A. C. AND GIVARGIS, T. 2004. Dynamic voltage and cache reconfiguration for low power. In Pro-
ceedings of the Design, Automation and Test in Europe Conference. 21376.

OH, S., KIM, J., KIM, S., AND KYUNG, C. 2008. Task partitioning algorithm for intra-task dynamic voltage
scaling. In Proceedings of the International Symposium on Circuits and Systems. 1228–1231.

PUANT, I. 2002. Cache analysis vs static cache locking for schedulability analysis in multitasking real-time
systems. In Proceedings of the International Workshop on Worst-Case Execution Time Analysis.

PUANT, I. AND DECOTIGNY, D. 2002. Low-complexity algorithms for static cache locking in multitasking
hard real-time systems. In Proceedings of the IEEE Real-Time Systems Symposium. 114–125.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 28:31

PUANT, I. AND PAIS, C. 2007. Scratchpad memories vs locked caches in hard real-time systems: A quantita-
tive comparison. In Proceedings of the Design, Automation and Test in Europe Conference. 1484–1489.

QUAN, G. AND HU, X. S. 2007. Energy efficient dvs schedule for fixed-priority real-time systems. ACM
Trans. Des. Autom. Electron. Syst. 6, 1–30.

RONG, P. AND PEDRAM, M. 2008. Energy-aware task scheduling and dynamic voltage scaling in a real-time
system. J. Low Power Electron. 4, 1–10.

SEGARS, S. 2001. Low power design techniques for microprocessors. In Proceedings of the International
Solid State Circuit Conference.

SEO, J., KIM, T., AND CHUNG, K. 2004. Profile-based optimal intra-task voltage scheduling for hard real-
time applications. In Proceedings of the Design Automation Conference. 87–92.

SETTLE, A., CONNORS, D., AND GIBERT, E. 2006. A dynamically reconfigurable cache for multithreaded
processors. J. Embed. Comput. 2, 221–233.

SHERWOOD, T., PERELMAN, E., HAMERLY, G., SAIR, S., AND CALDER, B. 2003. Discovering and exploiting
program phases. In Proceedings of the International Symposium on Microarchitecture. 84–93.

SHIN, D., KIM, J., AND LEE, S. 2001. Low-energy intra-task voltage scheduling using static timing analysis.
In Proceedings of the Design Automation Conference. 438–443.

SPRUNT, B. 1990. Aperiodic task scheduling for real-time systems. Ph.D. dissertation, Carnegie Mellon
University, Pittsburg, PA.

STASCHULAT, J., SCHLIECKER, S., AND ERNST, R. 2005. Scheduling analysis of real-time systems with
precise modeling of cache related preemption delay. In Proceedings of the Euromicro Conference on
Real-Time Systems. 41–48.

TAN, Y. AND MOONEY, V. J. 2007. Timing analysis for preemptive multitasking real-time systems with
caches. ACM Trans. Embed. Comput. Syst. 6, 7.

VARMA, A., DEBES, E., KOZINTSEV, I., AND JACOB, B. 2005. Instruction-level power dissipation in the intel
xscale embedded microprocessor. In Proceedings of the SPIE 17th Annual Symposium on Electronic
Imaging Science & Technology.

WANG, W. AND MISHRA, P. 2009. Dynamic reconfiguration of two-level caches in soft real-time embedded
systems. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI. 145–150.

WOLFE, A. 1993. Software-based cache partitioning for real-time applications. In Proceedings of the Inter-
national Workshop on Responsive Computer Systems.

ZHANG, C., VAHID, F., AND LYSECKY, R. 2004. A self-tuning cache architecture for embedded systems. In
Proceedings of the Design, Automation and Test in Europe Conference.

ZHANG, C., VAHID, F., AND NAJJAR, W. 2005. A highly configurable cache for low energy embedded systems.
ACM Trans. Embed. Comput. Syst. 6, 362–387.

ZHANG, S., CHATHA, K., AND KONJEVOD, G. 2007. Approximation algorithms for power minimization of
earliest deadline first and rate monotonic schedules. In Proceedings of the International Symposium on
Low Power Electronics and Design. 225–230.

ZHONG, X. AND XU, C. 2005. Energy-aware modeling and scheduling of real-time tasks for dynamic voltage
scaling. In Proceedings of the International Real-Time Systems Symposium. 366–375.

Received February 2009; revised October 2009, March 2010, October 2010; accepted March 2011

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 28, Publication date: July 2012.

