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Technological advancements in communications and embedded systems have led to the proliferation of
Wireless Sensor Networks (WSNs) in a wide variety of application domains. These application domains
include but are not limited to mission-critical (e.g., security, defense, space, satellite) or safety-related (e.g.,
health care, active volcano monitoring) systems. One commonality across all WSN application domains is
the need to meet application requirements (e.g., lifetime, reliability). Many application domains require
that sensor nodes be deployed in harsh environments, such as on the ocean floor or in an active volcano,
making these nodes more prone to failures. Sensor node failures can be catastrophic for critical or safety-
related systems. This article models and analyzes fault detection and fault tolerance in WSNs. To determine
the effectiveness and accuracy of fault detection algorithms, we simulate these algorithms using ns-2. We
investigate the synergy between fault detection and fault tolerance and use the fault detection algorithms’
accuracies in our modeling of Fault-Tolerant (FT) WSNs. We develop Markov models for characterizing WSN
reliability and Mean Time to Failure (MTTF) to facilitate WSN application-specific design. Results obtained
from our FT modeling reveal that an FT WSN composed of duplex sensor nodes can result in as high as
a 100% MTTF increase and approximately a 350% improvement in reliability over a Non-Fault-Tolerant
(NFT) WSN. The article also highlights future research directions for the design and deployment of reliable
and trustworthy WSNs.
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1. INTRODUCTION AND MOTIVATION

Wireless Sensor Networks (WSNs) consist of spatially distributed autonomous sensor
nodes that collaborate with each other to perform an application task. A sensor node
comprises a sensing unit (a sensing unit contains sensors such as temperature and hu-
midity sensors), a processing unit, a storage unit, a communication unit, a power unit,
an actuator unit, and an optional location finding unit [Munir and Gordon-Ross 2010].

Figure 1 shows the WSN architecture that we consider in this article [Akyildiz et al.
2002; Winkler et al. 2008; Jiang et al. 2009]. The sensor nodes distributed in the sensor
field gather information (sensed data or statistics) about an observed phenomenon
(e.g., environment, target) using attached sensors. A group of sensor nodes located
geographically close to each other is called a WSN cluster. Each WSN cluster has one
cluster head (WSN cluster formation and cluster head determination/maintenance is
beyond the scope of this article). Sensed data within a WSN cluster are collected by
the cluster head and relayed to a sink node (or base station) via the sensor nodes’
ad hoc network. The sink node transmits the received information back to the WSN
designer and/or WSN manager via a gateway node connected to a computer network.
The WSN designer is responsible for designing the WSN for a particular application
to meet application requirements such as lifetime, reliability, and throughput. After
WSN design and deployment, the WSN manager manages WSN operations, such as
data analysis, monitoring alive and dead sensor nodes, and alarm conditions (e.g.,
forest fire, volcano eruption).

WSN research and design has gained significance in recent years because of the
increasing proliferation of WSNs in a wide variety of application domains. These ap-
plication domains include but are not limited to mission-critical (e.g., security, defense,
space, satellite) or safety-related (e.g., health care, active volcano monitoring) systems.
The utility of WSNs for safety-related systems can be illustrated by a volcano mon-
itoring example. Studying active volcanoes typically requires sensor arrays to collect
seismic and infrasonic (low-frequency acoustic) signals. Distributed sensor nodes in
a WSN provide a correlated spatial distribution of seismic and infrasonic events that
greatly facilitates scientific studies of wave propagation phenomena and volcanic source
mechanisms [Werner-Allen et al. 2006a]. The analytics of seismic and infrasonic data
obtained by a WSN can help scientists better predict volcanic events, such as volcanic
eruption and earthquakes. Although WSNs can benefit numerous applications, the
realization of WSNs for an application requires addressing various design challenges.

A crucial challenge in WSN design is to meet varying application requirements (e.g.,
lifetime, throughput, reliability) given the limited energy, computation, and storage
available on sensor nodes. Sensor nodes are often deployed in hostile environments,
such as forests, the ocean floor [Yifan and Peng 2008], animal habitats [Mainwaring
et al. 2002], and active volcanoes [Werner-Allen et al. 2006b], that further exacerbates
the design challenge of meeting application requirements. Unattended and/or hostile
deployment environments makes sensor nodes more susceptible to failures than
other systems [Werner-Allen et al. 2006b], and manual inspection of sensor nodes
after deployment can be impractical. Although faults can occur in any of the sensor
node components, sensors and actuators have significantly higher fault rates than
other semiconductor-based systems. For example, NASA aborted the launch of space
shuttle Discovery [NASA 2011] because of a sensor failure in the shuttle’s external
tank [Moustapha and Selmic 2007]. Sensor failure can occur due to deployment
impact, accidents (animal, vehicular), fire, extreme weather, or aging [Bredin et al.
2010]. Failed sensor nodes may result in sensor network partitioning (i.e., sensor
nodes become isolated and are disconnected from the sensor network), reduced WSN
availability, and WSN failure. To meet application requirements in the presence of
sensor failures, incorporation of fault detection and Fault-Tolerance (FT) mechanisms
in WSNs is imperative.
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Fig. 1. Wireless sensor network architecture.

Although traditional reliability models can be readily applied to FT systems, faults
do not always result in failure. Transient, malicious errors occur due to noise, voltage
levels, and broken components. Therefore, it is imperative to model the ability for fault
detection to provide coverage against such faults to protect mission-critical data. Fault
detection includes Distributed Fault Detection (DFD) algorithms that identify faulty
sensor readings to diagnose a faulty sensor. DFD algorithms do not incur additional
transmission cost because they use existing network traffic to identify sensor failures.
The accuracy of a fault detection algorithm signifies the algorithm’s ability to accurately
identify faults. We analyze and study two well-cited fault detection algorithms and
compare their performance under realistic conditions. We implemented and simulated
the DFD algorithms incorporating the protocol stack and a realistic WSN topology,
as opposed to only algorithm simulation that was done in most previous works [Chen
et al. 2006; Ding et al. 2005].

Although fault detection helps in isolating faulty sensors, FT incorporation in WSNs
is imperative to reliably accomplish application tasks. A prominent FT technique is
to add redundant hardware and/or software [Koren and Krishna 2007]. Stringent de-
sign constraints (e.g., power, cost) differentiate WSNs from other systems, and, conse-
quently, the added redundancy for FT must justify the additional cost. Since sensors
(e.g., temperature, light, motion) attached to sensor nodes have comparatively higher
fault rates than do other components (e.g., processor, transceiver) [Moustapha and
Selmic 2007; Sharma et al. 2007; Koushanfar et al. 2002], sensor redundancy would be
most effective to enhance the FT capability of sensor nodes. Fortunately, sensors are
cheap, and adding redundant spare sensors would add little to the individual sensor
node’s cost.
ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 3, Publication date: January 2015.
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Even though FT is a well-studied research field [Hopkins et al. 1978; Wensley et al.
1978; Avizienis 1985; Somani and Vaidya 1997; Sklaroff 1976; Avizienis and Laprie
1986], fault diagnosis and FT for WSNs are relatively unstudied. Varying FT require-
ments across different applications increase the complexity of fault detection and FT
for WSNs. For instance, mission-critical applications have relatively high reliability
requirements as compared to non–mission-critical applications such as ambient con-
ditions monitoring. To the best of our knowledge, there exists no sensor node model to
provide better reliability for mission-critical applications. Since applications are typi-
cally designed to operate reliably for a certain period of time (i.e., lifetime requirement),
FT metrics such as reliability and Mean Time to Failure (MTTF) need to be considered
in WSN design. WSN designers require a model to estimate FT metrics and determine
necessary redundancy during design time. Unfortunately, the literature provides no
rigorous mathematical model that provides insights into WSN reliability and MTTF.
Previous works study fault detection and FT in isolation, and their synergistic rela-
tionship has not been investigated in the context of WSNs.

Our main contributions in this article are:

—Fault diagnosis in WSNs through various fault detection algorithms.
—Simulation of fault detection algorithms using ns-2 to determine the algorithms’ ac-

curacy and false alarm rates. ns-2 is a discrete event simulator that provides support
for simulation of networks and routing protocols over wired and wireless networks
[ns2 2014]. We further analyze the effectiveness of fault detection algorithms under
conditions modeled from real-world data.

—Proposal of an FT sensor node model consisting of duplex sensors (i.e., one active
sensor and one inactive spare sensor) that exploits the synergy of fault detection and
FT. Although our model can be extended for sensors with N-Modular Redundancy
(NMR) [Koren and Krishna 2007], we suggest duplex sensor nodes to minimize the
additional cost.

—Characterization of FT parameters, such as coverage factor, by exploiting the synergy
between fault detection and FT.

—Proposal of hierarchical Markov models to characterize WSN reliability and MTTF.
For the first time, we delineate reliability and MTTF hierarchically at the sensor
node, WSN cluster, and WSN levels (Figure 1).

—Determination of iso-MTTF (isoreliability) for WSN clusters and the WSN. We define
iso-MTTF (isoreliability) of a WSN as how many redundant WSN clusters an NFT
WSN requires over an FT WSN to achieve an equal MTTF (reliability). Similarly,
we define iso-MTTF (isoreliability) of a WSN cluster as how many redundant sensor
nodes an NFT WSN cluster requires over an FT WSN cluster to achieve an equal
MTTF (reliability).

—Research challenges and future research directions for the design and deployment
of reliable and trustworthy WSNs.

In our duplex sensor model, we assume that the redundant sensor is in a cold standby
mode, which ideally consumes no power. Although we focus on sensor failures within
the sensor node in this study due to higher sensor failure rates as compared to other
sensor node components [Moustapha and Selmic 2007; Sharma et al. 2007], our model
can be extended to include failures for other components within the sensor node, such
as the processor and transceiver. Our FT WSN modeling serves as a first step toward
FT WSN modeling and can potentially facilitate further research in FT WSN modeling
and evaluation.

Our Markov models are comprehensive and characterize sensor nodes, WSN clusters,
and overall WSN reliability and MTTF. The proposed Markov modeling enables WSN
designers to investigate the effects of different types of FT sensor nodes (e.g., duplex,
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NMR), number of WSN clusters, and the number of sensor nodes in the cluster on
the FT of the overall WSN. Our hierarchical WSN Markov models enable designers to
select an efficient WSN topology to better meet application requirements.

The remainder of this article is organized as follows. Section 2 gives a review of
related work. Section 3 elaborates on fault diagnosis in WSNs. Section 4 discusses
two fault detection algorithms to elucidate the fault diagnosis mechanism in WSNs.
Section 5 describes our Markov models for characterizing WSN reliability and MTTF.
Implementation and simulation of fault detection algorithms using ns-2 are presented
in Section 6. Numerical results from our Markov modeling are presented in Section 7.
Section 8 highlights research challenges and future research directions for the design
and deployment of reliable and trustworthy WSNs. Finally, Section 9 concludes our
study.

2. RELATED WORK

Despite fault detection and FT being well-studied research fields [Hopkins et al. 1978;
Somani and Vaidya 1997; Avizienis and Laprie 1986], little work exists in WSN fault
detection and FT. This section summarizes some of the previous works in literature
related to fault detection and FT.

2.1. Fault Detection

Jiang [2009] proposed a DFD scheme that detected faulty sensor nodes by exchang-
ing data and mutually testing neighboring nodes. Jian-Liang et al. [2007] proposed a
weighted median fault detection scheme that used spatial correlations among the sen-
sor measurements (e.g., temperature, humidity). Lee and Choi [2008] presented a DFD
algorithm that identified faulty sensor nodes based on comparisons between neighbor-
ing sensor nodes’ data. The DFD algorithm used time redundancy to tolerate transient
faults in sensing and communication. Khilar and Mahapatra [2007] proposed a proba-
bilistic approach to diagnose intermittent WSN faults. The simulation results indicated
that the DFD algorithm’s accuracy increased as the number of diagnostic rounds in-
creased when neighboring sensor nodes exchanged measurements in each round.

Ding et al. [2005] proposed algorithms for faulty sensor identification and FT event
boundary detection. The algorithms considered that both the faulty and normal sen-
sors in an event region could generate abnormal readings (readings that deviate from
a typical application-specific range). Krishnamachari and Iyengar [2004] proposed a
distributed Bayesian algorithm for sensor fault detection and correction. The algo-
rithm considered that measurement errors due to faulty equipment are likely to be
uncorrelated. Wu et al. [2007] presented a fault detection scheme in which the fusion
center (the node that aggregated data from different nodes) attempted to identify faulty
sensor nodes through temporal sequences of received local decisions using a majority
voting technique. Lo et al. [2013] presented a distributed, reference-free fault detec-
tion algorithm based on local pairwise verification between sensor nodes monitoring
the same physical phenomenon. The authors observed that a linear relationship ex-
isted between the outputs of a pair of sensor nodes that could be exploited to detect
faulty sensor nodes. Since the fault detection was done pairwise, the algorithm was
able to conserve energy. Results revealed that the proposed algorithm could achieve a
detection accuracy of 84% and a false alarm rate of 0.04%.

Miao et al. [2013] proposed agnostic diagnosis for detecting silent failures (i.e., fail-
ures with unknown types and symptoms). The proposed detection technique exploited
the fact that a sensor node’s metrics (e.g., radio on-time, number of packets transmit-
ted in a time interval) exhibited certain correlation patterns, the violation of which
indicated potential silent failures. The detection accuracy of the proposed scheme was
close to 100% for small WSNs, whereas the detection accuracy decreased sharply and
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the false alarm rate increased as the WSN size increased. The proposed technique
required a sink node to collect data from all the sensor nodes in the WSN, which re-
sulted in rapid energy depletion of the sink node and sensor nodes near the sink node.
Furthermore, the fault detection latency of the proposed scheme was high due to its
centralized nature.

There exists some work related to anomaly detection in WSNs. Bhargava and
Raghuvanshi [2013] proposed a method for anomaly detection in WSNs based on S-
transform (an extension of continuous wavelet transform). The S-transform extracted
the features from sensor nodes’ datasets, which were used to train a Support Vector
Machine (SVM). The SVM was then used for the classification of normal and anoma-
lous data. Results revealed that the proposed scheme’s accuracy for data classification
ranged from 78% to 94%. Salem et al. [2013] proposed an anomaly detection algorithm
for medical WSNs. The proposed algorithm first classified instances of sensed patient
attributes as normal and abnormal. The algorithm then used regression prediction to
discern between a faulty sensor reading and a patient entering into a critical state.
The results demonstrated the algorithm’s ability to achieve a relatively low false alarm
rate (∼1%) and a good detection accuracy (the attained accuracy was not specified) for
the medical WSN application.

2.2. Fault Tolerance

In work related to FT for WSNs, Koushanfar et al. [2002] proposed an FT scheme
that provided backup for one type of sensor using another type of sensor, but they did
not propose any FT model. Clouqueur et al. [2004] presented algorithms for collabo-
rative target detection in the presence of faulty sensors. Chiang et al. [2004] designed
system-level test interfaces for remote testing, repair, and software upgrade for sen-
sor nodes. The authors evaluated the proposed test interfaces on Texas Instrument’s
MSP430 microcontroller-based sensor nodes. Experimental results revealed that the
test interfaces with double, triple, and quadruple redundancy increased the WSN’s
availability.

Krasniewski et al. [2005] proposed a protocol to diagnose and mask arbitrary sensor
node failures in an event-driven WSN. The protocol considered a clustered WSN with
rotating cluster heads. The protocol assigned each sensor node a trust index to indicate
the sensor node’s track record in reporting past events correctly. The cluster head an-
alyzed the event reports using the trust index and made event decisions. The authors
simulated the protocol using ns-2 and observed that the protocol was able to detect
events correctly even if more than 50% of the sensor nodes were compromised. Sun
et al. [2012] introduced a trust mechanism to evaluate the trustworthiness of a sensor
node and the sensor node’s data. The authors defined memory depth to characterize the
temporal correlation and aggregation bandwidth to characterize spatial correlation.
A sensor node used memory depth to calculate the self-trustworthiness of the sensor
node’s data based on stored historical/past data and the current data. When a sensor
node reported its sensed data to the aggregator, the aggregator’s trustworthiness to
the reported result depended both on the trustworthiness of the sensor node reporting
data as well as on the trustworthiness of the sensor node to its sensed data. Subse-
quently, each aggregator reported the aggregated result and the aggregator’s self-trust
opinion to the upper layer aggregator progressively, and so on, until the aggregated
result reached the sink node. Results demonstrated the effectiveness of the proposed
mechanism for continuous media streaming and discrete data in wireless multimedia
sensor networks.

There exists some work on providing FT in WSNs by deploying relay nodes and con-
sidering connectivity as an FT metric. Relay nodes communicate with sensor nodes,
other relay nodes, and sink nodes to prolong WSN lifetime. Zhang et al. [2007]
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developed approximation algorithms for determining a minimum number of relay
nodes, along with the relay nodes’ placement, to achieve certain connectivity require-
ments. Han et al. [2010] considered the problem of deploying relay nodes to provide
FT in heterogeneous WSNs where sensor nodes had different transmission radii. They
developed approximation algorithms for full and partial FT relay node placement.
Whereas full FT relay node placement deployed a minimum number of relay nodes to
establish disjoint paths between every sensor and/or relay node pair, partial FT relay
node placement only considered sensor node pairs. Baldi et al. [2009] evaluated gossip
algorithms, which are distributed algorithms that distribute the computational burden
across all nodes, and these authors also considered connectivity as an FT metric.

Sen et al. [2006] introduced region-based connectivity: an FT metric defined as the
minimum number of nodes within a region whose failure would disconnect the net-
work. Alwan and Agarwal [2009] provided a survey of FT routing techniques in WSNs.
Souza [2007] presented a framework for failure management in WSNs focusing on
fault diagnosis and recovery techniques. The presented FT framework mitigated the
failure propagation in a business (enterprise) environment by implementing different
FT techniques.

2.3. WSN Reliability Modeling

There exists some work on FT WSN modeling. Cai et al. [2006] presented a reliabil-
ity model to prolong the network lifetime and availability based on connectivity and
coverage constraints. Zhu and Papavassiliou [2003] presented a model that character-
ized sensor connectivity and investigated the tradeoffs among sensor node connectivity,
power consumption, and data rate. They also discussed the impact of sensor connectiv-
ity on system reliability. Vasar et al. [2009] presented Markov models for WSN reliabil-
ity analysis. They presented a reliability comparison for various numbers of defective
components’ replacements with hot-standby redundant components. Xing and Michel
[2006] presented WSN reliability and security modeling in an integrated fashion. Their
modeling technique differentiated two types of WSN failures: security failures due to
malicious intrusions and traditional failures due to malfunctioning components.

Moustapha and Selmic [2007] used recurrent neural networks to model sensor node
dynamics for sensor fault detection. Their network model corresponded to the WSN
topology such that the recurrent neural network input was taken from the modeled
sensor node and neighboring sensor nodes. Kannan and Iyengar [2004] developed a
game-theoretic model of reliable length- and energy-constrained routing in WSNs.
They showed that optimal length-constrained paths could be computed in polynomial
time in a distributed manner using geographic routing. Mukhopadhyay et al. [2009]
presented a method that used sensor data properties to enable reliable data collection.
The method consisted of predictive models based on temporal correlation in sensor
data. They demonstrated that their method could handle multiple sources of errors
simultaneously and could correct transient errors arising in sensor node hardware and
wireless communication channels.

Even though DFD algorithms were proposed in the literature for detecting sensor
faults, the fault detection was not leveraged to provide FT. There exists work in litera-
ture regarding FT in WSNs [Koushanfar et al. 2002; Zhang et al. 2007; Han et al. 2010;
Sen et al. 2006; Cai et al. 2006], however, FT metrics such as reliability and MTTF
were not investigated rigorously in the context of WSNs. Specifically, reliability and
MTTF were not considered hierarchically at the sensor node, WSN cluster, and WSN
levels. This hierarchical characterization of FT metrics facilitates a WSN designer to
determine an appropriate WSN topology (i.e., number of clusters and sensor nodes with
required FT capability in each cluster).
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Fig. 2. Byzantine faulty behavior in WSNs.

3. FAULT DIAGNOSIS IN WSNS

The sensor nodes in WSNs are often deployed in unattended and possibly hostile
environments that make sensor nodes susceptible to failures. Faults in sensor nodes
can occur at various levels, such as the processing unit, transceiver, storage unit, power
unit, sensors, and actuators. Since faults are inevitable, it is imperative to determine
faulty and fault-free sensor nodes in the WSN. Traditional fault diagnosis techniques
developed for multiprocessor systems are not directly applicable to WSNs due to the
sensor nodes’ stringent resource constraints. This section describes sensor faults and
then elaborates on fault diagnosis in WSNs.

3.1. Sensor Faults

The faults in sensor nodes include permanent faults, in which a node becomes dead,
and Byzantine faults, in which the node behaves arbitrarily or maliciously. Figure 2
shows an example of Byzantine faults in which sensor nodes A, B, C, D, and E are
equipped with temperature sensors and process the measured reading to give temper-
ature in Fahrenheit. The sensor nodes send the sensed temperature readings to other
neighboring nodes. The temperature sensor in node D behaves maliciously and sends
inconsistent and arbitrary temperature values to other nodes (60, 100, 150, and 10 to
A, B, C, and E, respectively). The rest of the sensor nodes send consistent values to
other neighboring nodes. As a consequence, nonfaulty sensor nodes obtain different
global information about the temperature in the region and may conclude on a false
value for the overall temperature of the region. The fault detection algorithm needs to
be robust to such inconsistent behavior that can jeopardize collaboration in the WSN
[Clouqueur et al. 2004].

Several efforts have been made to classify malicious sensor behavior [Sharma et al.
2007; Ni et al. 2009]. Although different sensor fault taxonomies have been proposed,
three particular behaviors are targeted by DFD methods. Outlier faults occur when a
sensor signal spikes in value (Figure 3(a)) and can be detected by comparing sensor
readings to previous readings or neighboring sensor nodes’ readings. The stuck-at faults
occur when the output remains at a constant level (Figure 3(b)). The noisy faults occur
when the signal-to-noise ratio of the sensor’s output is low, resulting in random data
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Fig. 3. Various types of sensor faults [Sharma et al. 2007].

(Figure 3(c)). An effective fault detection algorithm must be able to identify the broadest
possible range of malicious output while minimizing fault positives. Because the broad
range of sensor failures results in a mixed detection rate for different algorithms,
accurate simulation is important for studying sensor failures [Sharma et al. 2007].

3.2. Taxonomy for Fault Diagnosis Techniques

A fault diagnosis system is a monitoring system that detects faulty sensor nodes and
their location in the WSN. Fault diagnosis techniques are classified based on the na-
ture of tests, correlation between sensor readings, and characteristics of sensor nodes
[Mahapatro and Khilar 2013]. The key component of a fault diagnosis system is a
fault detection algorithm, and key terminology includes correctness, latency, detection
accuracy, and false alarm rate. A fault diagnosis is correct if no fault-free sensor nodes
are mistakenly diagnosed as faulty. Latency is defined as the time elapsed since the
appearance of the fault to the isolation of the faulty sensor node. Detection accuracy is
defined as the ratio of the number of faulty sensor nodes detected to the actual number
of faulty sensor nodes in the network. The accuracy of the fault detection algorithm is a
crucial factor in maintaining reliable WSN operation. The ratio of the number of fault-
free sensor nodes diagnosed as faulty to the actual number of fault-free sensor nodes
is the false alarm rate. Fault detection techniques for WSN can be broadly categorized
into centralized and distributed approaches [Mahapatro and Khilar 2013].

3.2.1. Centralized Approaches. In a centralized approach, a geographically or logically
centralized arbiter (i.e., sink node or base station) with higher computational power,
larger memory size, and a greater energy supply than ordinary sensor nodes is respon-
sible for fault detection and diagnosis of the overall WSN. The sink node periodically
sends diagnostic queries into the network to obtain the state of the individual sensor
nodes. The sink node then analyzes the received diagnostic response messages to deter-
mine faulty and fault-free sensor nodes. Centralized approaches are accurate; however,
these approaches cannot be scaled for large-scale WSNs. The scalability of centralized
approaches is limited because it is expensive for the sink node to accumulate and
analyze diagnostic information from all the sensor nodes in the WSN. Furthermore,
centralized approaches lead to rapid energy depletion in certain regions of the net-
work, particularly in nodes closer to the sink node. The energy depletion in sensor
nodes closer to the sink node causes network partitions, which results in unmonitored
areas in the WSN. Moreover, the detection latency of centralized approaches is large
due to multihop communication. Due to these limitations of centralized approaches,
distributed approaches are highly preferable in WSNs.
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3.2.2. Distributed Approaches. In distributed approaches, each sensor node executes the
fault detection algorithm and generates a localized fault view. The localized fault view is
a sensor node’s view regarding the fault states of the sensor node’s one-hop neighbors.
This localized fault view is then disseminated in the network such that each fault-
free sensor node correctly diagnoses the state of all the sensor nodes in the network.
Distributed approaches conserve the sensor nodes’ energy and consequently prolong the
WSN lifetime. Distributed approaches can be classified into various types [Mahapatro
and Khilar 2013]:

Test-Based Approaches: In test-based approaches, different tests (tasks) are assigned
to sensor nodes, and faulty sensor nodes are identified based on test results. Test-
based approaches are further classified into invalidation-based and comparison-based
approaches.

In invalidation-based approaches, every sensor node tests a set of sensor nodes.
Each sensor node then passes the test results to other sensor nodes based on which a
consensus is made on the faulty sensor nodes. Each sensor node must be tested by at
least t one-hop neighbors to achieve a t-diagnosability. The greater the t, the greater
the message overhead. In most invalidation-based approaches, the number of faulty
sensor nodes that can be detected is upper bounded by t. The detection accuracy of
these approaches is close to 100%, and the false alarm rate is close to zero; however,
the detection latency exhibited by most of these approaches is high.

In comparison-based approaches, different tests (tasks) are assigned to a pair of
sensor nodes, and the results of these tasks are compared. The agreement and dis-
agreement between these results form the basis for diagnosing faulty sensor nodes.
Comparison-based approaches have comparatively less message and time complexity
overhead than do invalidation-based approaches.

Neighbor Coordination Approaches: In neighbor coordination approaches, one-hop
neighbors coordinate with each other to determine whether to disregard their own
sensor readings based on the neighboring sensors readings or on the weights based on
physical distances from the event and trustworthiness of the sensor node’s measure-
ments. Neighbor coordination approaches are further categorized into majority voting
and weighted majority voting approaches.

Majority voting approaches exploit the fact that the faulty measurements are un-
correlated whereas nonfaulty measurements are spatially correlated. For example,
assume a sensor node si is a neighbor of sj , and ri and rj are the readings for si and sj ,
respectively. Sensor readings ri and rj are similar when |ri − rj| < δ where δ is applica-
tion dependent and typically a small number. Majority voting techniques can provide
good detection accuracy and low false alarm rates. However, majority voting techniques
are topology-dependent because the effectiveness of these approaches depends on the
node degree in the WSN.

Weighted majority voting approaches weigh the sensing measurements based on
properties such as physical distance from the event and trustworthiness of the mea-
surements. Unlike simple majority voting, these weighted measurements are used to
decide the state of a sensor node (i.e., faulty or nonfaulty) in a WSN. Weighted majority
voting approaches are computationally more expensive than simple majority voting
approaches. Weighted majority voting approaches are also topology-dependent, like
simple majority voting approaches (i.e., majority voting accuracy degrades drastically
in sparse networks).

Hierarchical Detection: In hierarchical detection, a spanning tree with the sink node
as the root node is constructed that spans all fault-free sensor nodes in the WSN. This
spanning tree is then used to determine faults at each level of the tree. The fault results
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are disseminated across the spanning tree such that each node in the network correctly
diagnoses the fault states of all the sensor nodes in the WSN. The detection latency in a
hierarchical detection approach is high because the diagnosis process is started either
by the sink node or the leaf nodes and requires multihop communication of diagnostic
messages. Furthermore, similar to the centralized approach, the hierarchical detection
approach leads to rapid energy depletion in certain regions of the WSN, particularly in
sensor nodes close to the sink.

Node Self-Detection: In sensor node self-detection, the sensor node detects its own
status (faulty or nonfaulty) with the help of additional hardware incorporated in the
sensor node. Since the sensor node self-detection approach requires additional hard-
ware, the approach increases hardware complexity, weight, and energy consumption.

Clustering-Based Approaches: Clustering-based approaches divide the overall WSN
into clusters, which are groups of sensor nodes located geographically close to each
other. Each cluster head executes a fault detection algorithm in the cluster head’s group
using a centralized or distributed approach. Clustering-based diagnostic approaches
are communication-efficient; however, the cluster head requires more energy for leading
the diagnostic process.

Watchdog Approaches: In watchdog approaches, a sensor node monitors whether
the sensor node’s packets are forwarded by the sensor node’s one-hop neighbor by
overhearing the communication channel. If a sensor node’s neighboring node does not
forward a packet within a certain time, the neighboring node is viewed as misbehaving.
When the misbehaving rate exceeds a threshold, the misbehaving node is diagnosed as
faulty. The source node then sends packets along other routes that avoid the diagnosed
faulty node.

Probabilistic Approaches: Probabilistic approaches exploit the fact that sensor fail-
ure probability for different sensor nodes is not identical in a time interval that is not
infinitesimally small. Probabilistic approaches normally leverage Bayesian or other
statistical methods for fault diagnosis.

Event-Driven Diagnosis: In event-based WSNs (as opposed to data- or query-driven
WSNs), sensor nodes only report events of interest to the sink node in a timely manner.
Fault diagnosis in event-driven WSNs requires special consideration for fault-event
disambiguation because an event also causes abnormal data that could be interpreted
as a faulty measurement to be sensed by the the sensor nodes. Event detection ap-
proaches work effectively in dense networks with relatively low fault probability of
sensor nodes. Most of the event detection approaches fail in distinguishing between
events and faults if faults are located at the event boundary.

4. DISTRIBUTED FAULT DETECTION ALGORITHMS

DFD algorithms are those in which each sensor node executes a fault detection al-
gorithm to diagnose the status of the sensor node’s neighboring sensor nodes and to
obtain a localized fault view (Section 3.2.2). The localized fault view is then shared
with neighboring sensor nodes to reach a consensus on faulty sensor nodes. We analyze
different fault detection algorithms [Chen et al. 2006; Ding et al. 2005; Jiang 2009;
Jian-Liang et al. 2007; Krishnamachari and Iyengar 2004]; however, we present two
fault detection algorithms that explain the fault detection algorithms’ functionalities:

4.1. Fault Detection Algorithm 1: The Chen Algorithm

The first algorithm, which we refer to as the Chen algorithm [2006], relies on simple
majority counts to determine faults. The approach is practical because sensor nodes
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Table I. Summary of Notations Used in the DFD Algorithms

Notation Description

S set of all the sensors involved in the DFD algorithm
N(Si) set of neighbors of sensor node Si

xi measurement of Si

dt
ij

measurement difference between Si and Sj

at time t (i.e., dt
ij = xt

i − xt
j )

�tl measurement time difference, tl+1 − tl

�d�tl
i j

measurement difference between Si and Sj

from time tl to tl+1 (i.e., �d�tl
i j = dtl+1

i j − dtl
i j )

cij test between Si and Sj , cij ∈ {0, 1}, cij = c ji

θ1 & θ2 two predefined thresholds
Ti tendency value of a sensor: Ti ∈ {LG, LF, GD, FT}

ALGORITHM 1: The Chen algorithm [2006] for WSN fault detection.
Input: Sensors Si with measurements
Output: Tendency of good and faulty sensors

Step 1: For each sensor node Si, compute the bit vector Ci{S}, where a 1 means Si and Sj are
consistent;
Let Sij(t) = |Si(t) − Sj(t)|;
Ci{Sj} = 1 if Sij(t) > θ1 and |Sij(t) − Sij(t + 1)| > θ2;

Step 2: Calculate the tendency of each sensor:
Ti = Likely Good (LG) if

∑
Ci >

NS
2 , else Likely Faulty (LF) where Ns is the number of

neighboring sensor nodes;

Step 3: Determine if the sensor node is good:
Ti = Good (GD) if NC − NC >

NS
2 ;

where NC and NC denote the number of consistent and inconsistent neighbors respectively;

Step 4: If a node is not sure, find Good or Faulty neighbors (set N). For each sensor:
if Si ∈ {LG, LF}, then for each Nj ∈ N:
Ti = GD if (Tj = GD and Ci{Nj} = 1) or (Tj = FT and Ci{Nj} = 0);
Ti = FT if (Tj = FT and Ci{Nj} = 1) or (Tj = GD and Ci{Nj} = 0);
Repeat until all sensor nodes have a state of Good (GD) or Faulty (FT);

have limited computing ability, and hence lightweight calculations are preferred over
intensive calculations. Each sensor node Si ∈ S can exist in four states: Good (GD),
Faulty (FT), Likely Good (LG), or Likely Faulty (LF). A sensor node in likely states
is unsure if the sensor node is faulty and uses the sensor nodes neighbors’ states to
finalize the sensor node’s decision. The algorithm’s implementation complexity is low,
and the probability of correct diagnosis is high.

Table I lists the notations used in the Chen algorithm [2006]. The neighboring sensor
nodes in a WSN are those that are within the transmission range of each other. Each
sensor node sends the sensor node’s sensed values to the sensor node’s neighboring
sensor nodes. A sensor Si generates test result cij based on the sensor node’s neighbor
Sj ’s measurements using variables dij , �d�tl

i j and threshold values θ1 and θ2. The sensors
Si and Sj are both good or both faulty if cij = 0; however, the sensor nodes have
a different good or faulty status if cij = 1. Each sensor node sends the sensor node’s
tendency values (i.e., estimated state) to all the sensor node’s neighboring sensor nodes.
The test values from neighboring sensors determine the tendency value of sensors to be
LG or LF, and the number of LG sensors with the same results determines whether the
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sensors are GD or FT. Precisely, ∀ Sj ∈ N(Si) and Tj = LG,
∑

(1−cij)−
∑

cij = ∑
(1−2cij)

must be greater than or equal to �|N(Si)/2|� for Si to be identified as good. The algorithm
diagnoses a good sensor Si as GD in the first round if the sensor node has less than k/4
bad neighbors. The Chen algorithm’s important steps are depicted in Algorithm 1.

4.2. Fault Detection Algorithm 2: The Ding Algorithm

The second algorithm, which we refer to as the Ding algorithm [2005], is a WSN fault
detection algorithm with a low computational overhead. The results indicate that the
algorithm can identify faulty sensors with relatively high accuracy even when the
sensor failure probability is as high as 20%. The Ding algorithm’s important steps are
shown in Algorithm 2.

ALGORITHM 2: The Ding algorithm [2005] for WSN fault detection.
Input: Sensors Si with measurements
Output: Set of faulty sensors F
Step 1: Identify the neighboring sensor nodes of sensor node Si. For each sensor node Si
perform Steps 2–4;

Step 2: Compute di for each sensor node Si using Equation (1);

Step 3: Compute yi for each sensor node Si using Equation (4);

Step 4: If |yi| ≥ θ , assign Si to F , otherwise treat Si as a normal sensor;

The algorithm compares the sensor node Si ’s reading with the sensor node’s k neigh-
bors Si1, Si2, . . . , Sik with measurements x(i)

1 , x(i)
2 , . . . , x(i)

k . The comparison is done by
comparing xi with the median medi of {x(i)

1 , x(i)
2 , . . . , x(i)

k }; that is,

di = xi − medi. (1)

If there are n sensors in total, the algorithm computes di ∀ n (i.e., D = {d1, d2, . . . ,
di, . . . , dn}). The mean μ̂ of D is given by Ding et al. [2005]:

μ̂ = 1
n

n∑
i=1

di. (2)

The standard deviation σ̂ of D is given as [Ding et al. 2005]:

σ̂ =
√√√√ 1

n − 1

n∑
i=1

(di − μ̂)2. (3)

Standardizing the dataset D yields Y = {y1, y2, . . . , yi, . . . , yn}; that is:

y1 = d1 − μ̂

σ̂

y2 = d2 − μ̂

σ̂
...

yi = di − μ̂

σ̂
...

yn = dn − μ̂

σ̂
. (4)

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 3, Publication date: January 2015.



3:14 A. Munir et al.

Table II. Summary of Notations Used in Our Markov Models

Notation Description

n total number of sensors in a WSN
c coverage factor
p cumulative sensor failure probability
λs sensor failure rate
ts time over which sensor failure rate is specified
Pi(t) probability of being in state i at time t
Rsd (t) reliability of FT (duplex) sensor node
MTTFsd mean time to failure of an FT sensor node
k average number of neighbor sensor nodes
λsd (k) FT sensor node failure rate with k neighbors
Rc(t) WSN cluster reliability
λc(n) WSN cluster failure rate with n sensor nodes
N number of clusters in the WSN
Rwsn(t) WSN reliability

If |yi| ≥ θ , then the Ding algorithm detects Si as faulty where θ > 1 is a predefined
threshold value. Mathematically, Si ∈ F if |yi| ≥ θ, where F denotes the set of sensors
claimed as faulty.

Section 6 discusses the implementation and effectiveness, particularly in detection
accuracy, that is used implicitly in our Markov model as the coverage factor c, of these
fault detection algorithms.

5. FAULT-TOLERANT MARKOV MODELS

In this section, we present our Markov models for FT WSNs. Our Markov models are
comprehensive and hierarchically encompass the sensor node, WSN cluster, and WSN
levels (Figure 1). We adopt a bottom-up paradigm in our modeling by first developing
a sensor node model and determining the model’s reliability and MTTF [Munir and
Gordon-Ross 2011]. The sensor node MTTF gives the average sensor node failure rate,
which is utilized in the WSN cluster model. The WSN cluster model gives the WSN
cluster reliability and MTTF, which determines the WSN cluster average failure rate.
The WSN cluster average failure rate is then utilized in the WSN model to determine
WSN reliability and MTTF. Our bottom-up approach enables WSN reliability and
MTTF characterization by leveraging sensor node and WSN cluster models. We note
that some WSN architectures do not employ a cluster-based hierarchy due to the
additional energy cost associated with cluster formation and cluster head election.
However, our modeling approach is equally applicable for WSN architectures without
a cluster-based hierarchy by assuming that the WSN is composed of just one cluster,
where the cluster head is the sink node. For clarity, Table II summarizes important
notations used in our Markov models.

5.1. Fault-Tolerance Parameters

Fault-tolerance in WSNs is highly dependent on fault diagnosis in WSNs (Section 3).
In this section, we characterize the FT parameters by exploiting the synergy between
fault detection and FT in WSNs. The FT parameters leveraged in our Markov model
are the coverage factor and sensor failure rate.

5.1.1. Coverage Factor. The coverage factor c is defined as the probability that the faulty
active sensor is correctly diagnosed, disconnected, and replaced by a good inactive spare
sensor. The c estimation is critical in an FT WSN model and can be determined by:

c = ck − cc, (5)
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where ck denotes the accuracy of the fault detection algorithm in diagnosing faulty
sensors and cc denotes the probability of an unsuccessful replacement of the identified
faulty sensor with the good spare sensor. Whereas cc depends on the sensor switching
circuitry and is usually a constant, ck’s estimation is challenging because different fault
detection algorithms have different accuracies. We analyze different fault detection
algorithms [Ding et al. 2005; Jiang 2009; Jian-Liang et al. 2007; Krishnamachari and
Iyengar 2004] and observe that the accuracy of a fault detection algorithm depends
on the average number of sensor node neighbors k and the cumulative probability of
sensor failure p. We model ck : ck ≤ 1 with the empirical relation:

ck = k × (1 − p)

k(k/M(p))1/M(p) + (1 − k/M(p))k
. (6)

where M(p) is a function of p and denotes an adjustment parameter that may cor-
respond loosely to the desired average number of neighboring sensor nodes required
to achieve a good fault detection accuracy for a given p. We derived Equation (6) by
experimenting with the relationship among the fault detection algorithms’ parameters
(i.e., the average number of sensor node neighbors), sensor failure probability, and the
fault detection algorithms’ accuracy. We point out that whereas Equation (6) provides
a good estimate of ck in general for any fault detection algorithm, exact ck for a particu-
lar fault detection algorithm can be derived from the algorithm’s mathematical model.
Equation (6) approximates the relationship among a fault detection algorithm’s pa-
rameters to obtain the fault detection algorithm’s accuracy (in case the accuracy is
unknown). In practice, a fault detection algorithm’s accuracy should be determined
accurately by the algorithm’s designer; this will alleviate the need for an approxima-
tion (as in Equation (6)). To clarify further, we point out that our Markov models are
independent of ck’s determination methodology and are equally applicable to any ck
value.

5.1.2. Sensor Failure Rate. The sensor failure rate can be represented by exponential
distribution with a failure rate of λs over the period ts [Johnson et al. 1994]. The expo-
nential distribution, which has a property of constant failure rate, is a good model for
the long, flat, intrinsic failure portion of the bathtub curve. The exponential distribu-
tion is applicable to a variety of practical situations since many embedded components
and systems spend most of their lifetimes in the flat portion of the bathtub curve.
Furthermore, any failure rate curve can be approximated by piecewise exponential
distribution segments patched together. Each exponential distribution segment in the
overall approximation specifies a constant failure rate over a small time unit (e.g.,
daily, weekly, or monthly) that is the average of the failure rates during the respective
time duration. The constant failure rate assignment for each exponential distribution
segment is justifiable because many natural phenomena have a constant failure rate
(or occurrence rate) property (e.g., the arrival rate of cosmic ray alpha particles). The
failure rate curve approximation by piecewise exponential distributions is analogous
to a curve approximation by piecewise straight-line segments.

The exponential model works well for those interarrival times where the total num-
ber of events in a given time period is given by the Poisson distribution. When these
events trigger failures, the exponential lifetime distribution model naturally applies
[NIST 2011]. The Cumulative Distribution Function (CDF) for the sensors with an
exponentially distributed failure rate is:

Fs(ts; λs) = p = 1 − exp(−λsts), (7)
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Fig. 4. A Non-FT (NFT) sensor node Markov model.

where p denotes the cumulative probability of sensor failure (for simplicity) and ts
signifies the time over which p is specified. Solving Equation (7) for λs gives:

λs = − 1
ts

ln(1 − p). (8)

5.2. Fault-Tolerant Sensor Node Model

As a base case, we describe a Non-FT (NFT) sensor node Markov model (Figure 4)
containing one sensor (a temperature sensor in this case, but the sensor type is arbi-
trary). The NFT sensor node model consists of two states: state 1 (good state) and state
0 (failed state). The NFT sensor node fails when the node transitions from state 1 to
state 0 due to a sensor failure. The differential equations describing the NFT sensor
node Markov model are:

P ′
1(t) = −λt P1(t)

P ′
0(t) = λt P1(t), (9)

where Pi(t) denotes the probability that the sensor node will be in state i at time t, and
P

′
i (t) represents the first order derivative of Pi(t). λt represents the failure rate of an

active temperature sensor.
Solving Equation (9) with the initial conditions P1(0) = 1 and P0(0) = 0 yields:

P1(t) = e−λtt

P0(t) = 1 − e−λtt. (10)

The reliability of the NFT sensor node is:

Rs(t) = 1 − P0(t) = P1(t) = e−λtt. (11)

The MTTF of the NFT sensor node is:

MTTFs =
∫ ∞

0
Rs(t) dt = 1

λt
. (12)

The average failure rate of the NFT sensor node is:

λs = 1
MTTFs

= λt. (13)

Because sensors have comparatively higher fault rates than other components
[Moustapha and Selmic 2007; Sharma et al. 2007; Koushanfar et al. 2002], we pro-
pose an FT duplex sensor node model consisting of one active sensor and one inactive
spare sensor. Using TMR [Koren and Krishna 2007] for FT is a possible scenario, but
we consider a duplex sensor node model to minimize the additional cost because the
additive cost of spare sensors can be prohibitive for large WSNs. In addition, a du-
plex model limits the increase in sensor node size. We point out that our modeling
methodology can be extended to sensor nodes with NMR.
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Fig. 5. FT sensor node Markov model [Munir and Gordon-Ross 2011].

In our duplex sensor node, the inactive sensor becomes active only when the active
sensor is declared faulty by the fault detection algorithm. We refer to our duplex sensor
node as an FT sensor node, whose Markov model is depicted in Figure 5. The states
in the Markov model represent the number of good sensors. The differential equations
describing the FT sensor node Markov model are:

P ′
2(t) = −λt P2(t)

P ′
1(t) = λtcP2(t) − λt P1(t)

P ′
0(t) = λt(1 − c)P2(t) + λt P1(t), (14)

where Pi(t) denotes the probability that the sensor node will be in state i at time t, and
P ′

i (t) represents the first-order derivative of Pi(t). λt represents the failure rate of an
active temperature sensor, and cλt is the rate at which recoverable failure occurs. The
probability that the sensor failure cannot be recovered is (1 − c), and the rate at which
unrecoverable failure occurs is (1 − c)λt.

Solving Equation (14) with the initial conditions P2(0) = 1, P1(0) = 0, and P0(0) = 0
yields:

P2(t) = e−λtt

P1(t) = cλtte−λtt

P0(t) = 1 − P1(t) − P2(t). (15)

The reliability of the FT sensor node is:

Rsd(t) = 1 − P0(t) = P2(t) + P1(t) = e−λtt + cλtte−λtt, (16)

where subscript d in Rsd(t) stands for duplex. The MTTF of the FT sensor node is:

MTTFsd =
∫ ∞

0
Rsd(t) dt = 1

λt
+ c

λt
. (17)

The average failure rate of the FT sensor node depends on k (since the fault detection
algorithm’s accuracy depends on k (Section 5.1)):

λsd(k) = 1
MTTFsd(k)

, (18)

where λsd(k) and MTTFsd(k) denote, respectively, the failure rate and MTTF of an FT
sensor node with k neighbors.

5.3. Fault-Tolerant WSN Cluster Model

A typical WSN consists of many clusters (Figure 1), and we assume for our model that
all nodes in a cluster are neighbors to each other (either one- or two-hop neighbors
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Fig. 6. WSN cluster Markov model [Munir and Gordon-Ross 2011].

Fig. 7. WSN cluster Markov model with three states [Munir and Gordon-Ross 2011].

depending on the topology). We note that our model does not impose any specific
topology on a sensor network cluster. If the average number of nodes in a cluster is n,
then the average number of neighboring nodes per sensor node is k = n − 1. Figure 6
depicts our Markov model for a WSN cluster. We assume that a cluster fails (i.e., fails to
perform its assigned application task) if the number of alive (nonfaulty) sensor nodes
in the cluster reduces to kmin. The differential equations describing the WSN cluster
Markov model are:

P ′
n(t) = −nλsd(n−1) Pn(t)

P ′
n−1(t) = nλsd(n−1) Pn(t) − (n − 1)λsd(n−2) Pn−1(t)

...

P ′
kmin

(t) = (kmin + 1)λsd(kmin) Pkmin+1(t), (19)

where λsd(n−1), λsd(n−2), and λsd(kmin) represent the FT (duplex) sensor node failure rate
(Equation (18)) when the average number of neighboring sensor nodes are n− 1, n− 2,
and kmin, respectively. For mathematical tractability and a closed-form solution, we
analyze a special (simple) case when n = kmin + 2, which reduces the Markov model to
three states (Figure 7). The differential equations describing the WSN cluster Markov
model when n = kmin + 2 are:

P ′
kmin+2(t) = −(kmin + 2)λsd(kmin+1) Pkmin+2(t)

P ′
kmin+1(t) = (kmin + 2)λsd(kmin+1) Pkmin+2(t)

− (kmin + 1)λsd(kmin) Pkmin+1(t)

P ′
kmin

(t) = (kmin + 1)λsd(kmin) Pkmin+1(t). (20)
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Fig. 8. WSN Markov model [Munir and Gordon-Ross 2011].

Solving Equation (20) with the initial conditions Pkmin+2(0) = 1, Pkmin+1(0) = 0, and
Pkmin(0) = 0 yields:

Pkmin+2(t) = e−(km+2)λsd(km+1)t

Pkmin+1(t) = (km + 2)λsd(km+1)e−(km+2)λsd(km+1)t

(km + 1)λsd(km) − (km + 2)λsd(km+1)

+ (km + 2)λsd(km+1)e−(km+1)λsd(km)t

(km + 2)λsd(km+1) − (km + 1)λsd(km)

Pkmin(t) = 1 − Pkmin+1(t) − Pkmin+2(t), (21)

where kmin denotes km in Equation (21) for conciseness. The reliability of the WSN
cluster is:

Rc(t) = 1 − Pkmin(t)

= e−(kmin+2)λsd(kmin+1)t

+ (kmin + 2)λsd(kmin+1)e−(kmin+2)λsd(kmin+1)t

(kmin + 1)λsd(kmin) − (kmin + 2)λsd(kmin+1)

+ (kmin + 2)λsd(kmin+1)e−(kmin+1)λsd(kmin)t

(kmin + 2)λsd(kmin+1) − (kmin + 1)λsd(kmin)
. (22)

The MTTF of the WSN cluster is:

MTTFc =
∫ ∞

0
Rc(t) dt = 1

(km + 2)λsd(km+1)

+ 1
(km + 1)λsd(km) − (km + 2)λsd(km+1)

+ (km + 2)λsd(km+1)

(km + 2)(km + 2)λsd(km)λsd(km+1) − (km + 1)2λ2
sd(km)

, (23)

where kmin denotes km in Equation (23) for conciseness. The average failure rate of the
cluster λc(n) depends on the average number of nodes in the cluster n at deployment
time:

λc(n) = 1
MTTFc(n)

, (24)

where MTTFc(n) denotes the MTTF of a WSN cluster of n sensor nodes.

5.4. Fault-Tolerant WSN Model

A typical WSN consists of N = ns/n clusters, where ns denotes the total number of
sensor nodes in the WSN, and n denotes the average number of nodes in a cluster.
Figure 8 depicts our WSN Markov model. We assume that the WSN fails to perform
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the WSN’s assigned task when the number of alive clusters reduces to Nmin. The
differential equations describing the WSN Markov model are:

P ′
N(t) = −Nλc(n)

P ′
N−1(t) = Nλc(n) PN(t) − (N − 1)λc(n) PN−1(t)

...
P ′

Nmin
(t) = (Nmin + 1)λc(n) PNmin+1(t), (25)

where λc(n) represents the average cluster failure rate (Equation (24)) when the cluster
contains n sensor nodes at deployment time. For mathematical tractability, we analyze
a special (simple) case when N = Nmin + 2, which reduces the Markov model to three
states. The differential equations describing the WSN Markov model when N = Nmin+2
are:

P ′
Nmin+2(t) = −(Nmin + 2)λc(n) PNmin+2(t)

P ′
Nmin+1(t) = (Nmin + 2)λc(n) PNmin+2(t)

− (Nmin + 1)λc(n) PNmin+1(t)
P ′

Nmin
(t) = (Nmin + 1)λc(n) PNmin+1(t). (26)

Solving Equation (26) with the initial conditions PNmin+2(0) = 1, PNmin+1(0) = 0, and
PNmin(0) = 0 yields:

PNmin+2(t) = e−(Nmin+2)λc(n)t

PNmin+1(t) = (Nmin + 2)λc(n)

× [e−(Nmin+1)λc(n)t − e−(Nmin+2)λc(n)t]
PNmin(t) = 1 − PNmin+1(t) − PNmin+2(t). (27)

The WSN reliability is:

Rwsn(t) = 1 − PNmin(t)

= e−(Nmin+2)λc(n)t + (Nmin + 2)λc(n)

× [e−(Nmin+1)λc(n)t − e−(Nmin+2)λc(n)t]. (28)

The WSN MTTF when N = Nmin + 2 is:

MTTFwsn =
∫ ∞

0
Rwsn(t) dt

= 1
(Nmin + 2)λc(n)

+ Nmin + 2
Nmin + 1

− 1. (29)

Discussion: Our hierarchical Markov modeling exploits the relationship between fail-
ure rates at the sensor component, sensor node, WSN cluster, and WSN levels. Markov
modeling of sensor nodes (Section 5.2) takes the failure rate of the sensor node’s com-
ponents λt (e.g., temperature sensor) as input and then derives the failure rate of
the sensor node λs (for simplicity, the failure rate of one component is considered for
illustration; however, the failure rates of different components can be considered or
combined into a single representative failure rate).

For an FT sensor node model (e.g., duplex sensor node or triple modular redundant
sensor node), the average failure rate of the FT sensor node implicitly depends on
k since the fault detection algorithm’s accuracy depends on k (Sections 4 and 5.1.1).
Hence, the failure rate of an FT sensor node is calculated for different k values in our
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numerical results (Section 7). The WSN cluster Markov model relies on the failure
rates calculated from the FT sensor node Markov model for different values of k. For
example, for a cluster with n sensor nodes (Figure 6), and assuming each sensor node
has all other sensor nodes in the cluster as neighbors, the number of neighboring sensor
nodes for a given sensor node is (n − 1). Thus, the failure rate of an FT sensor node is
calculated from the sensor node Markov model with k = n − 1, which is then used in
the WSN cluster Markov model (Figure 6). When a sensor node fails, the remaining
operational (healthy) neighboring nodes of a given sensor node in a cluster become
(n− 2); thus, the failure rate of an FT sensor node is calculated from the sensor node’s
Markov model with k = n − 2 and so on. The cluster becomes nonoperational when
the number of operational sensor nodes in the cluster reaches a minimum kmin, and,
consequently, the overall failure rate of a WSN cluster with n sensor nodes is calculated
for that kmin.

The WSN cluster failure rate with n sensor nodes obtained from the WSN cluster
Markov model is then used in the WSN Markov model (Section 5.4). The WSN is
assumed to consist of N clusters, and the WSN becomes nonoperational when the
number of alive (operational) clusters reduces to Nmin. The WSN Markov model is then
used to calculate the MTTF and reliability of a given WSN using the cluster failure
rate calculated from the WSN cluster Markov model.

6. SIMULATION OF DISTRIBUTED FAULT DETECTION ALGORITHMS

In this section, we discuss our implementation of two DFD algorithms: the Chen and
Ding algorithms (Section 4). Our analysis is challenging because it is difficult to com-
pare fault detection algorithms without a standard benchmark (Section 8.2). Since
different DFD algorithms can use different fault models, a comparison between DFD
algorithms can be made by observing the performance of the algorithms under similar
fault models and similar topologies.

6.1. Using ns-2 to Simulate Faulty Sensors

In prior work, the Chen and Ding algorithms were simulated strictly algorithmically
using simplified fault models that approximated a Poisson process. To compare these
two models as realistically as possible, we use ns-2 [ns2 2014], which is a widely used
discrete event simulator for both wired and wireless networks and a custom fault model.
ns-2 allows us to see how these algorithms perform atop a detailed network stack over
a wireless channel. We have leveraged ns-2 instead of ns-3 because ns-2 provides better
support for WSN and Mobile Ad Hoc Network (MANET) protocols [Wikipedia 2014].

Wireless entities in ns-2 are called nodes and have modules called agents repre-
senting network layers stacked atop the nodes. Agents are typically used to gener-
ate application traffic, but we use agents as fault detection units in a sensor node
(Figure 9). The agent first receives scheduled, scripted commands to read values from
a SensorNodeData module. The SensorNodeData module generates random sensor read-
ings based on our implemented fault models.

After recording a data sample, the sensor node broadcasts the data as a packet and
builds a record of each broadcast packet that the sensor node receives from other sensor
nodes. After a listening period, a separately scheduled event commands the detection
agent to apply the two fault detection algorithms (i.e., the Ding and Chen algorithms).
A fault tracker unit records statistics of detected and undetected errors. In the case of
the Chen algorithm, each round of tendency broadcasting occurs in 2-second intervals.
The sensor readings are also broadcast similarly in 2-second intervals.

A duplex configuration was implemented for permanent errors. When a sensor node
passes a threshold of detected errors, the sensor “fails” and is replaced by a spare
sensor. For the simplified fault model, this replacement helps little because Poisson
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Fig. 9. The ns-2–based simulation architecture.

events are memoryless, and a sensor node with a new sensor and a sensor node with
an old sensor will have the same error rate. However, for realistic data, constant errors
are permanent and are repaired when the sensor is replaced. The realistic data usage
also results in a penalty of false positives and causes more sensor nodes to be identified
as faulty. The following subsections describe our experiments with both simulated and
real-world data.

6.2. Experimental Setup for Simulated Data

To compare the performance of each algorithm, it is useful to observe each algorithm
using a simplified fault model; thus, we consider the scenario used by Chen et al.
[2006] where the average number of neighbors for each sensor node is approximately
7. Each sensor records a uniformly random temperature between 70 and 75 degrees.
Errors occur as a Poisson process, with an arbitrary, scalable mean and corrupt a
single sensor on a single sensor node during the event. A corrupted sample is randomly
distributed between 100 and 105 degrees. We simulate each sensor node for 4 hours
and take samples every 30 seconds.

Figures 10(a) and 10(b) depict the detection performance of the Chen algorithm across
different parameters and error rates. We observe that, for the Chen algorithm, the error
rate affects detection performance significantly; however, the θ value has a relatively
minor impact. Our experimental results also match closely with the results from Chen
et al. [2006], i.e., the detection accuracy for 7 neighbors and 10 neighbors decreases
when the fault probability becomes larger. However, the fault detection accuracy is
still about 97% when there are about 25% of the sensors being faulty. Figures 11(a)
and 11(b) depict the detection performance of the Ding algorithm across different
parameters and error rates. For the Ding algorithm, as θ is scaled, the number of false
positives scales proportionately. For both algorithms, low error rates improve detection
accuracy because low error rates make errors more distinguishable. In the simulated
data scenario, the Chen algorithm performs better than the Ding algorithm in terms
of percentage of false positives, and the detection accuracy is relatively less dependent
on θ . However, this simulated scenario is very specific and consistent, which may not
always be the case.
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Fig. 10. Effectiveness and false-positive rate of the Chen algorithm.

6.3. Experiments Using Real-World Data

Because transient faults are manifested in different ways, a more realistic error model
that closely follows a real-world scenario is desirable for analysis. For our real-world
data case study, we leverage publicly available sensor data from the Intel Berkeley
research laboratory [Intel 2009]. The data come from an indoor sensor network deploy-
ment that measures temperature, humidity, and other metrics. Using temperature
data from 53 sensor nodes, we produced a variety of empirical observations on which
we based our simulation.

We note a few empirical observations from the Intel Berkeley data. One observation
is that the real-world data include noise. Noise in sensor readings is correlated with
past values (autocorrelated) and can have high power levels for certain time periods.
To measure the effect of noise on sensor data, we apply a de-noising filter (available
in the MATLAB Wavelet toolkit) to the Intel Berkeley data to approximate a reference
“noise-free” signal. We measure the power level of noise in the data (Figure 12) and
record the values in a text file. We play back the recorded noise power level values
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Fig. 11. Effectiveness and false-positive rate for the Ding algorithm.

during simulation and multiply the noise values with simulated white Gaussian noise
to imitate the bursty behavior of noisy faults.

Another observation from the Intel Berkeley data is that, for nearly all sensor nodes,
sensor samples level off as they approach their end-of-life, resulting in a “constant”
fault. A histogram of the times at which this occurs (Figure 13) reveals that the dis-
tribution of sensor node lifetimes fits well into a Student’s t-distribution, which is
supported by MATLAB’s distribution fitting tools. For our experiments, we recorded
a set of several thousand random numbers fitting the Student’s t-distribution. The
sensor nodes then randomly select a value from the recorded t-distribution values to
select a time for the fault occurrence.

Finally, we observe that voltage spikes are not frequent in the Intel Berkeley dataset,
occurring in only 6 out of 53 nodes. Because of the rare occurrence of voltage spikes,
our simulations inject a spike once during the lifetime of each sensor node. The time of
the spike occurrence is modeled using a uniform process. The base signal is a sine wave
with a period of 2 hours between 20 and 30 degrees Celsius. To allow minor variations
in temperature readings sensed by sensor nodes, the temperature values are treated
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Fig. 12. Noise power levels in the Intel-Berkeley sample.

Fig. 13. Distribution of constant error occurrences.

as being generated from a radiating heat source. The nodes farthest from the center
have a lower temperature, proportional to the inverse of the distance squared, as in
the free-space path loss model. The noise and spike errors are added to the signal, and
the constant fault causes the signal to hang at the signal’s last valid value during an
error. A signal is considered erroneous if the variation is more than half a degree from
the signal’s true value. In our experiments, the faulty signals are never repaired unless
faults accumulate; ultimately, the sensor is replaced if diagnosed as faulty.

Figure 14 shows the performance of the Chen algorithm for the real-world data.
Despite detecting more than 90% of the faults in the simplified model, the algorithm
fails to perform well with real-world data, detecting fewer than 50% of erroneous
readings. The poor performance of the Chen algorithm on real-world data is due to
the nature of the algorithm. For an error to be detected, the error must not only be
disruptive, causing a node to have different values from the node’s neighbors, but the
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Fig. 14. Error detection and false positive rate for the Chen algorithm using real-world data.

Fig. 15. Error detection and false-positive rate for the Ding algorithm using real-world data.

error must also be transient and have a sharp transition boundary. Since noise events
last for multiple samples, the Chen algorithm is not equipped to handle these errors.

The Ding algorithm’s performance with real-world data is shown in Figure 15. Like
the Chen algorithm, the Ding algorithm’s performance degrades as compared to the
previous simplified model environment. However, the Ding algorithm still detects a
majority of occurring faults. As with the previous simplified model experiment, the
Ding algorithm is highly dependent on the algorithm’s parameters. The higher the
detection rate, the higher the rate of false positives for the Ding algorithm; however,
the false-positive rate remains low, peaking at 20%.

7. NUMERICAL RESULTS

In this section, we present reliability and MTTF results for our Markov models (Sec-
tion 5) implemented in the Symbolic Hierarchical Automated Reliability and Perfor-
mance Evaluator (SHARPE) Software Package [Sahner et al. 1996; SHARPE 2014].
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Table III. Estimated Values for a Fault Detection Algorithm’s Accuracy

k
p M(p) 5 6 7 10 15

0.05 25 0.979 1 1 1 1
0.1 50 0.858 0.895 0.921 0.957 0.96
0.2 56 0.755 0.717 0.81 0.845 0.851
0.3 65 0.652 0.679 0.699 0.732 0.742
0.4 66 0.558 0.5813 0.599 0.627 0.636
0.5 67 0.464 0.484 0.498 0.522 0.53
0.6 68 0.371 0.386 0.398 0.417 0.424
0.7 69 0.278 0.29 0.298 0.313 0.318
0.8 70 0.185 0.193 0.198 0.208 0.212
0.9 71 0.092 0.096 0.099 0.104 0.106
0.99 72 0.0092 0.00962 0.0099 0.0104 0.0106

SHARPE provides MTTF results directly based on our models’ implementations; al-
though SHARPE does not provide reliability results directly, reliability results can be
calculated from state probabilities. We present example reliability calculations as well
as detailed reliability and MTTF results for an NFT as well as for an FT sensor node,
WSN cluster, and WSN using our bottom-up Markov modeling paradigm.

7.1. Experimental Setup

In this subsection, we describe our FT sensor node, WSN cluster, and WSN model im-
plementation in the SHARPE Software Package [Sahner et al. 1996; SHARPE 2014].
We also present a typical fault detection algorithm’s accuracy for different cumulative
sensor failure probability p values. Due to SHARPE limitations that take only expo-
nential polynomials, we assume our sensor failure rate to be exponentially distributed
(Section 5.1.2).

SHARPE is a software tool for performance, reliability, and performability model
specification and analysis. The SHARPE toolkit provides a specification language
and solution methods for commonly used performance, reliability, and performabil-
ity model types. SHARPE-supported models include combinatorial models, state-space
(e.g., Markov and semi-Markov reward) models, and stochastic Petri nets. SHARPE
allows computation of steady-state, transient, and interval measures. SHARPE allows
output measures of a model to be used as parameters of other models to facilitate the
hierarchical combination of different model types.

Our Markov model exploits the synergy of fault detection and FT for WSNs. Table III
depicts ck values estimated for a DFD algorithm using Equation (6) for different p and
k values. These estimated ck values approximate the accuracy of the DFD algorithms
proposed in [Ding et al. 2005; Jiang 2009; Jian-Liang et al. 2007; Krishnamachari and
Iyengar 2004]. We note that any inaccuracy in the ck estimation does not affect our
results calculations since these calculations leverage ck values but are independent
of whether these values accurately reflect a particular DFD algorithm’s accuracy. We
assume cc = 0 in Equation (5) (i.e., once a faulty sensor is identified, the faulty sensor
is perfectly replaced by a good spare sensor), which gives c = ck in Equation (5).

7.2. Reliability and MTTF for an NFT and an FT Sensor Node

In this subsection, we present the reliability and MTTF results for an NFT and an FT
sensor node for the two cases: c �= 1 and c = 1, when k = 5 and p = 0.05. The case
c �= 1 corresponds to a real-world fault detection algorithm (typical values are shown
in Table III), whereas the case c = 1 corresponds to an ideal fault detection algorithm,
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Table IV. Reliability for an NFT and an FT Sensor Node

NFT FT FT FT
k, c : (k = 5, (k = 10, (k = 15, FT

Prob. p N/A c �= 1) c �= 1) c �= 1) (c = 1)

0.05 0.94999 0.99770 0.99872 0.99872 0.99872
0.1 0.89996 0.98135 0.99074 0.99102 0.99482
0.2 0.80011 0.93481 0.95088 0.95195 0.97853
0.3 0.69977 0.86265 0.88263 0.88513 0.94959
0.4 0.59989 0.77094 0.79209 0.79485 0.90643
0.5 0.5007 0.66086 0.68097 0.68374 0.84662
0.6 0.40012 0.53610 0.55295 0.55552 0.76663
0.7 0.30119 0.40167 0.41432 0.41612 0.66262
0.8 0.19989 0.25943 0.26683 0.26812 0.52171
0.9 0.10026 0.12148 0.12424 0.12470 0.33086
0.99 0.01005 0.01048 0.01053 0.01056 0.05628

which detects faulty sensors perfectly for all p values. We calculate reliability at t = 100
days since we assume ts = 100 days [Munir and Gordon-Ross 2009] in Equation (8);
however, we point out that reliability can be calculated for any other time value using
our Markov models.

For an NFT sensor node reliability calculation, we require the sensor failure rate λt,
which can be calculated using Equation (8) (i.e., λt = (−1/100) ln(1−0.05) = 5.13×10−4

failures/day). SHARPE gives P1(t) = e−5.13×10−4t and sensor node reliability Rs(t) =
P1(t). Evaluating Rs(t) at t = 100 gives Rs(t)|t=100 = 0.94999.

For an FT sensor node when c �= 1, different reliability results are obtained for dif-
ferent k because the fault detection algorithm’s accuracy and coverage factor c depend
on k. For k = 5, c = 0.979 (Table III), SHARPE gives P2(t) = e−5.13×10−4t and P1(t)
= 5.0223 × 10−4te−5.13×10−4t. The reliability Rs(t) = P2(t) + P1(t), which when evalu-
ated at t = 100 gives Rs(t)|t=100 = 0.99770. For an FT sensor node when c = 1 for
all k, p, SHARPE gives P2(t) = e−5.13×10−4t and P1(t) = 5.13 × 10−4te−5.13×10−4t. Using
Equation (16), the reliability Rs(t)|t=100 = 0.99872.

Table IV shows the reliability for an NFT and an FT sensor node evaluated at t = 100
days for k values of 5, 10, and 15. As expected, the results show that reliability decreases
for both NFT and FT sensor nodes as p increases, and the reliability attained by an FT
sensor node (both for c �= 1 and c = 1) is always better than an NFT sensor node. For
example, the percentage reliability improvement achieved by an FT sensor node with
c �= 1, k = 15 over an NFT sensor node is 18.98% when p = 0.2. However, an FT sensor
node with c = 1 outperforms both an FT sensor node with c �= 1 and an NFT sensor
node for all p values. For example, the percentage improvement in reliability for an
FT sensor node with c = 1 over an NFT sensor node is 69.09%, and the percentage
improvements in reliability for an FT sensor node with c = 1 over an FT sensor node
(c �= 1) with k equal to 5, 10, and 15, are 28.11%, 24.32%, and 23.82%, respectively,
for p = 0.5. The percentage improvement in reliability attained by an FT sensor node
with c = 1 over an NFT sensor node is 230%, and the percentage improvements in
reliability for an FT sensor node with c = 1 over an FT sensor node (c �= 1) with k
equal to 5, 10, and 15, are 172.36%, 166.31%, and 165.32%, respectively, for p = 0.9.
These results reveal that the percentage improvement in reliability attained by an FT
sensor node with c = 1 increases as p → 1 because, for an FT sensor node with c �= 1,
c decreases as p → 1 (Table III). The sensor node reliability analysis reveals that a
robust fault detection algorithm with c ≈ 1 for all p and k values is necessary to attain
good reliability for an FT sensor node.
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Fig. 16. MTTF in days for an NFT and an FT sensor node [Munir and Gordon-Ross 2011].

Table V. Percentage MTTF Improvement for an FT Sensor
Node as Compared to an NFT Sensor Node

FT FT FT
Prob. p (k = 5, c �= 1) (k = 10, c �= 1) (c = 1)

0.1 85.75 95.65 100
0.2 75.61 84.63 100
0.3 65.14 72.99 100
0.5 46.25 52.49 100
0.7 27.62 31.23 100
0.9 9.37 10.52 100
0.99 0.875 1.34 100

Figure 16 depicts the MTTF for an NFT and an FT sensor node for k values of 5, 10,
and 15 versus the sensor failure probability p when ts in Equation (7) is 100 days [Ding
et al. 2005; Krishnamachari and Iyengar 2004]. The results show that the MTTF for
an FT sensor node improves with increasing k. However, the MTTF shows negligible
improvement when k = 15 over k = 10 because the fault detection algorithm’s accuracy
improvement gradient (slope) decreases for large k values.

Figure 16 also compares the MTTF for an FT sensor node when c = 1∀k, p. Whereas
c �= 1 for existing fault detection algorithms, comparison with c = 1 provides in-
sight into how the fault detection algorithm’s accuracy affects the sensor node’s MTTF.
Figure 16 shows that the MTTF for an FT sensor node with c = 1 is always greater
than an FT sensor node with c �= 1.

Figure 16 shows that the MTTF for an NFT and an FT sensor node decreases as p
increases; however, the FT sensor node maintains better MTTF than the NFT sensor
node for all p values. This observation reveals that a sensor with a lower failure
probability achieves better MTTF for both the NFT and FT sensor nodes. Figure 16
also shows that the MTTF for both the NFT and the FT sensor nodes approaches
zero as p approaches 1 (i.e., MTTF → 0 ⇐⇒ p → 1). This observation is intuitive
because a faulty sensor (with p = 1) is unreliable and leads to a failed sensor node with
zero MTTF and suggests that, depending on the application’s reliability and MTTF
requirements, the faulty sensor should be replaced before p approaches 1.

Table V depicts the percentage MTTF improvement gained by an FT sensor node over
an NFT sensor node for different values of p. We calculate the percentage improvement
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as % MTTF Improvement = (MTTFFT −MTTFNFT )/MTTFNFT ×100. The table shows
that the MTTF percentage improvement for an FT sensor node decreases as p increases
when c �= 1. The percentage MTTF improvement for an FT sensor node with k = 5 and
k = 10 are 85.75% and 95.65%, respectively, for p = 0.1, and drops to 0.875% and 1.34%,
respectively, for p = 0.99. This observation reveals that having more neighboring
sensor nodes (a higher k value) improves MTTF because, in general, a fault detection
algorithm’s accuracy and c improve with increasing k. Table V also shows that the
MTTF percentage improvement for an FT sensor node over an NFT sensor node is
100% on average when c = 1, thus highlighting the importance of a robust fault
detection algorithm.

Model Validation: We compare the MTTF results for an NFT sensor node obtained
using our Markov model with other existing models in literature, as well as with
practical sensor node implementations, to provide insights into the accuracy of our
models. We note that a detailed comparison and verification of our model with existing
models is not possible because there are no similar/related models that leverage FT
constructs. [Jung et al. 2007] modeled over the lifetime of trigger-driven sensor nodes
with different event arrival rates (trigger-driven sensor nodes perform processing based
on events as opposed to duty-cycle-based sensor nodes that perform processing based
on a duty cycle), which can be interpreted as sensing events that depend on the sensor
node’s sensing frequency. Results were obtained for three trigger-driven sensor node
platforms: XSM, MicaZ, and Telos. XSM and MicaZ consisted of an ATmega128L 8-bit
processor with a maximum processor frequency of 16MHz and a maximum performance
of 16 Million Instructions Per Second (MIPS). Telos consisted of a TI MSP430 16-bit
processor with a maximum processor frequency of 8MHz and a maximum performance
of 16 MIPS. Results revealed that Telos, XSM, and MicaZ delivered lifetimes of 1,500,
1,400, and 600 days, respectively, with an event arrival rate of 0.1 events/hour, which
dropped to 350, 100, and 0 days, respectively, with an event arrival rate of 100 events/
hour. The lifetime values for an NFT sensor node obtained from our Markov model
ranges from 949 days to 22 days for different sensor failure probabilities. Depending
on the sensor node energy consumption, the lifetime model proposed in Sha and Shi
[2005] estimated that the sensor node lifetime varied from 25 days to 215 days. These
comparisons indicate that our Markov model yields sensor node lifetime values in the
range obtained from other existing models.

We also compare the NFT sensor node lifetime estimation from our model with an
experimental study on sensor node lifetimes [Nguyen et al. 2011]. This comparison ver-
ifies conformity of our model with real measurements. For example, with a sensor node
battery capacity of 2,500mA-h, experiments indicate a sensor node lifetime ranging
from 72 to 95 hours for a 100% duty cycle for different battery brands (e.g., Ansmann,
Panasonic Industrial, Varta High Energy, Panasonic Extreme Power) [Nguyen et al.
2011]. The sensor node lifetime for a duty cycle of 18% can be estimated as 95/0.18 =
528 hours ≈ 22 days and for a duty cycle of 0.42% as 95/0.0042 = 22,619 hours ≈
942 days. This comparison reveals that our NFT sensor node lifetime model estimates
lifetime values in the range obtained by experimental sensor node implementations.

7.3. Reliability and MTTF for an NFT and an FT WSN Cluster

In this subsection, we present the reliability and MTTF results for two WSN clusters
that contain on average n = kmin + 2 and n = kmin + 5 sensor nodes at deployment time
(kmin = 4). The selection of two different n values provides insight on how the size of the
cluster affects reliability and MTTF (other n and kmin values depicted similar trends).
The NFT WSN cluster consists of NFT sensor nodes and the FT WSN cluster consists of
FT sensor nodes. For brevity, we present example WSN cluster reliability calculations
for n = kmin + 2 (kmin = 4) and p = 0.1.
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Table VI. Reliability for an NFT and an FT WSN Cluster
when n = kmin + 2 (kmin = 4)

p NFT FT (c �= 1) FT (c = 1)

0.05 0.96720 0.99058 0.99098
0.1 0.88562 0.95969 0.96552
0.2 0.65567 0.84304 0.87474
0.3 0.41968 0.66438 0.74422
0.4 0.23309 0.45925 0.59388
0.5 0.10942 0.26595 0.43653
0.6 0.04098 0.11837 0.28732
0.7 0.01114 0.03548 0.16279
0.8 1.5957 × 10−3 4.3470 × 10−3 0.06723
0.9 5.5702 × 10−5 1.4838 × 10−4 0.01772
0.99 6.1056 × 10−10 1.0057 × 10−9 5.5702 × 10−5

Leveraging our bottom-up approach model, the NFT WSN cluster uses the failure
rate λs of an NFT sensor node. By using Equation (8), λt = 1.054 × 10−3 failures/day.
Since the coverage factor c does not appear in the reliability (and MTTF) calculation for
an NFT sensor node, the failure rate λs = λt = 1/MTTFs = 1.054×10−3 failures/day. In
other words, for an NFT sensor node λs(kmin) = λs(kmin+1), λs(kmin) = λs(4), and λs(kmin)+1 = λs(5),
which denote the sensor node failure rate when the average number of neighboring
sensor nodes are 4 and 5, respectively. The NFT WSN cluster reliability calculation
utilizes λs(4) and λs(5), which gives Pkmin+2(t) = e−6.324×10−3t and Pkmin+1(t) = 6×e−5.27×10−3t−
6 × e−6.324×10−3t. The reliability Rc(t) = Pkmin+2(t) + Pkmin+1(t), which when evaluated at
t = 100 days gives Rc(t)|t=100 = 0.88562.

For an FT WSN cluster when c �= 1, the reliability calculation requires λsd(kmin) and
λsd(kmin+1), which depends on k as the fault detection algorithm’s accuracy, and c depends
on k, yielding different reliability results for different kmin values. Using Table III and
Equation (18), λsd(kmin) = λsd(4) = 1/MTTFsd(4) = 1/1.715 × 103 = 5.83 × 10−4 failures/day
and λsd(kmin+1) = λsd(5) = 1/MTTFsd(5) = 1/1.763×103 = 5.67×10−4 failures/day. SHARPE
gives Pkmin+2(t) = e−3.402×10−3t and Pkmin+1(t) = 6.9856×e−2.915×10−3t − 6.9856×e−3.402×10−3t.
The reliability of the FT WSN cluster is calculated as Rc(t)|t=100 = 0.95969.

For an FT WSN cluster when c = 1, the reliability calculation does not depend on
k, which gives λsd(kmin) = λsd(4) = 1/MTTFsd(4) = 1/1898 = 5.269 × 10−4 failures/day and
λsd(kmin+1) = λsd(5) = 1/MTTFsd(5) = 1/1898 = 5.269 × 10−4 failures/day. SHARPE gives
Pkmin+2(t) = e−3.1614×10−3t and Pkmin+1(t) = 6 × e−2.6345×10−3t − 6 × e−3.1614×10−3t, from which
we calculate Rc(t)|t=100 = 0.96552.

Table IV shows the reliability for an NFT and an FT WSN cluster (for c �= 1 and
c = 1) evaluated at t = 100 days when n = kmin + 2 (kmin = 4). We observe similar
trends as with sensor node reliability (Table IV), where the reliability of both NFT
and FT WSN clusters decreases as p increases (i.e., reliability Rc → 0 ⇐⇒ p → 1)
because decreased individual sensor node reliability decreases the overall WSN cluster
reliability. Table VI shows that an FT WSN cluster with c = 1 outperforms an FT WSN
cluster with c �= 1 and an NFT WSN cluster for all p values. For example, the percentage
improvement in reliability for an FT WSN cluster with c = 1 over an NFT WSN cluster
and an FT WSN cluster with c �= 1 is 77.33% and 12.02% for p = 0.3 and 601.12% and
142.73% for p = 0.6, respectively. These results show that the percentage improvement
in reliability attained by an FT WSN cluster increases as p increases because a fault
detection algorithm’s accuracy and c decrease as p increases (Table III). This trend is
similar to the percentage improvement in reliability for an FT sensor node (Section 7.2).
The results show that an FT WSN cluster always performs better than an NFT WSN
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Fig. 17. MTTF in days for an NFT WSN cluster and an FT WSN cluster with kmin = 4 [Munir and Gordon-
Ross 2011].

Table VII. Percentage MTTF Improvement for an FT WSN
Cluster as Compared to an NFT WSN Cluster (kmin = 4)

FT FT FT
(n = kmin + 2, (n = kmin + 5, (n = kmin + 2,

Prob. p c �= 1) c �= 1) c = 1)

0.1 83.04 87.55 100
0.2 73.84 77.24 100
0.3 63.58 66.51 100
0.5 44.97 47.22 100
0.7 26.4 28.71 100
0.9 9.81 9.57 100
0.99 2.26 2.47 100

cluster. For example, the percentage improvement in reliability for an FT WSN cluster
with c �= 1 over an NFT WSN cluster is 58.31% for p = 0.3.

Figure 17 depicts the MTTF for an NFT WSN cluster and an FT WSN cluster ver-
sus p when kmin = 4 for average cluster sizes of n = kmin + 2 and n = kmin + 5 sensor
nodes, respectively, at deployment time. The figure reveals that the FT WSN cluster’s
MTTF is considerably greater than the NFT WSN cluster’s MTTF for both cluster sizes.
Figure 17 also compares the MTTF for an FT WSN cluster when c = 1 with c �= 1 and
shows that the MTTF for an FT WSN cluster with c = 1 is always better than an FT
WSN cluster with c �= 1. This observation again verifies the significance of a robust
(ideal) fault detection algorithm, which can ideally provide c values close to 1 (i.e., c ≈ 1
for all p values). We note that both an NFT and an FT WSN cluster with n > kmin have
redundant sensor nodes and can inherently tolerate n − kmin sensor node failures. The
WSN cluster with n = kmin + 5 has more redundant sensor nodes than the WSN cluster
with n = kmin +2, resulting in a comparatively greater MTTF. Figure 17 shows that the
MTTF for both an NFT and an FT WSN cluster approaches 0 as p approaches 1 and fur-
ther solidifies the necessity of low failure probability sensors to achieve better MTTF in
WSN clusters. The MTTF variation for a WSN cluster with varying p is similar to the
MTTF variation for a sensor node (Figure 16) because a WSN cluster is composed of sen-
sor nodes and reflects the MTTF variation of a WSN cluster’s constituent sensor nodes.

Table VII shows the percentage MTTF improvement for an FT WSN cluster as
compared to an NFT WSN cluster for cluster sizes of n = kmin+2 and n = kmin+5 sensor
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Table VIII. Iso-MTTF for WSN Clusters (kmin = 4)

MTTF FT (days) MTTF NFT (days) NFT
Prob. p (n = kmin + 2, c = 1) (n = kmin + 5) �s

NFT

0.1 695.89 707.43 3
0.3 205.3 208.86 3
0.5 105.97 107.6 3
0.7 61.213 62.136 3
0.99 15.942 16.209 3

�s
NFT denotes the redundant sensor nodes required by an

NFT WSN cluster to achieve a comparable MTTF as that
of an FT WSN cluster.

nodes. The percentage improvements are calculated separately for the two cluster sizes,
and we compare the MTTFs of clusters of the same size. We observe that the MTTF
improvement for an FT cluster is slightly greater when n = kmin + 5 as compared to
when n = kmin + 2; however, the MTTF improvement decreases with increasing p when
c �= 1. This observation reveals that a WSN cluster consisting of more sensor nodes
can achieve better MTTF improvements when compared to a WSN cluster containing
fewer sensor nodes. The MTTF percentage improvement for an FT WSN cluster with
n = kmin + 2, c �= 1, is 83.04% for p = 0.1 and drops to 2.26% for p = 0.99. Similarly,
the percentage MTTF improvement for an FT WSN cluster with n = kmin + 5, c �= 1, is
87.55% for p = 0.1 and drops to 2.47% for p = 0.99. The percentage MTTF improvement
for both cluster sizes is 100% on average when c = 1 (for brevity, in Table VII, results
are not shown for n = kmin + 5 when c = 1). We observed that the MTTF percentage
improvement for an FT WSN cluster with n = kmin + 5 over n = kmin + 2 is 103.35% on
average. Intuitively, these results confirm that clusters with more redundant sensor
nodes are more reliable and have a better MTTF than do clusters with fewer redundant
sensor nodes.

Because SHARPE provides information on MTTF directly from Markov models,
whereas reliability calculation requires manual substitution in state transition proba-
bilities, we present iso-MTTF results for WSN clusters. Table VIII depicts the MTTFs
for an FT WSN cluster and an NFT WSN cluster for p varying from 0.1 to 0.99 and
when kmin = 4. Results indicate that an NFT WSN cluster requires three redundant
NFT sensor nodes to achieve a comparable MTTF as that of an FT WSN cluster.

7.4. Reliability and MTTF for an NFT and an FT WSN

This subsection presents the reliability and MTTF results for an NFT WSN and an FT
WSN containing N = Nmin+2 and N = Nmin+5 clusters at deployment time (Nmin = 0).
We consider WSNs containing different number of clusters to provide an insight on
how the number of clusters affects WSN reliability and MTTF (other N and Nmin
values depicted similar trends). The FT WSN contains FT sensor nodes and the NFT
WSN contains NFT sensor nodes. We present example WSN reliability calculations for
N = Nmin + 2 (Nmin = 0; i.e., each WSN fails when there are no more active clusters)
and p = 0.2. We assume that both WSNs contain clusters with n = kmin + 5 (kmin = 4) =
9 sensor nodes on average, with a cluster failure rate λc(9).

The reliability calculation for an NFT WSN requires the NFT WSN cluster fail-
ure rate λc(9), which can be calculated using Equation (24) with n = 9 (i.e., λc(9) =
1/MTTFc(9) = 1/3.34 × 102 = 2.99 × 10−3 failures/day). Using λc(9), SHARPE gives
PNmin+2(t) = e−5.98×10−3t and PNmin+1(t) = 2 × e−2.99×10−3t−2 × e−5.98×10−3t. The WSN relia-
bility Rwsn(t) = PNmin+2(t)+PNmin+1(t) when evaluated at t = 100 days gives Rwsn(t)|t=100 =
0.93321.
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Table IX. Reliability for an NFT WSN and an FT WSN
when N = Nmin + 2 (Nmin = 0)

p NFT FT (c �= 1) FT (c = 1)

0.05 0.99557 0.99883 0.99885
0.1 0.98261 0.99474 0.99534
0.2 0.93321 0.97583 0.98084
0.3 0.85557 0.93775 0.95482
0.4 0.75408 0.87466 0.91611
0.5 0.63536 0.78202 0.86218
0.6 0.51166 0.65121 0.78948
0.7 0.36303 0.49093 0.69527
0.8 0.20933 0.30328 0.55494
0.9 0.08807 0.11792 0.39647
0.99 4.054 × 10−3 4.952 × 10−3 0.08807

For an FT WSN when c �= 1, the reliability calculation requires the FT WSN cluster
failure rate λc(9) (for c �= 1) (i.e., λc(9) = 1/MTTFc(9) = 1/5.92 × 102 = 1.69 × 10−3

failures/day). Using λc(9), SHARPE gives PNmin+2(t) = e−3.38×10−3t, PNmin+1(t) = 2 ×
e−1.69×10−3t − 2 × e−3.38×10−3t. The WSN reliability Rwsn(t)|t=100 = 0.97583.

For an FT WSN cluster when c = 1, the reliability calculation requires the FT WSN
cluster failure rate λc(9) (for c = 1) (i.e., λc(9) = 1/MTTFc(9) = 1/668.73 = 1.49 × 10−3

failures/day). Using λc(9), SHARPE gives PNmin+2(t) = P2(t) = e−2.98×10−3t, PNmin+1(t) =
P1(t) = 2 × e−1.49×10−3t −2 × e−2.98×10−3t, which gives Rwsn(t)|t=100 = 0.98084.

Table IX shows the reliability for an NFT WSN and an FT WSN evaluated at t = 100
days when N = Nmin + 2 (Nmin = 0) for clusters with nine sensor nodes on average.
We observe similar trends as with sensor node reliability (Table IV) and WSN cluster
reliability (Table VI), where reliability for both an NFT WSN and an FT WSN decreases
as p increases (i.e., reliability Rwsn → 0 ⇐⇒ p → 1) because a WSN contains clusters
of sensor nodes and decreased individual sensor node reliability with increasing p
decreases both WSN cluster and WSN reliability. Table IX shows that an FT WSN
with c = 1 outperforms an FT WSN with c �= 1 and an NFT WSN for all p values.
For example, the percentage improvement in reliability for an FT WSN with c = 1
over an NFT WSN and an FT WSN with c �= 1 is 5.1% and 0.51% for p = 0.2 and
350.18% and 236.22% for p = 0.9, respectively. These results show that the percentage
improvement in reliability attained by an FT WSN increases as p increases because
the fault detection algorithm’s accuracy and c decrease as p increases (Table III). This
trend is similar to the percentage improvement in reliability for an FT sensor node
(Section 7.2) and an FT WSN cluster (Section 7.3). The results show that an FT WSN
always performs better than an NFT WSN. For example, the percentage improvement
in reliability for an FT WSN with c �= 1 over an NFT WSN is 4.57% for p = 0.2.

Figure 18 depicts the MTTF for an NFT WSN and an FT WSN containing on average
N = Nmin + 2 and N = Nmin + 5 clusters (Nmin = 0) at deployment time. The figure
reveals that an FT WSN improves the MTTF considerably over an NFT WSN for both
number of clusters. Figure 18 also shows that the MTTF for an FT WSN when c = 1 is
always greater than the MTTF for an FT WSN when c �= 1. We observe that since the
MTTF for an FT WSN drops nearly to that of an NFT WSN as p → 1, building a more
reliable FT WSN requires low failure probability sensors. This WSN MTTF variation
with p follows trends similiar to those observed in WSN clusters (Figure 17) and sensor
nodes (Figure 16). Similar MTTF variations for a WSN, WSN cluster, and a sensor node
result from our bottom-up modeling approach (Section 5) where each hierarchical level
captures the MTTF variation trends of lower levels. We observe that the MTTF for a
WSN with N = Nmin+5 is always greater than the MTTF for a WSN with N = Nmin+2.
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Fig. 18. MTTF in days for an NFT WSN and an FT WSN with Nmin = 0 [Munir and Gordon-Ross 2011].

Table X. Iso-MTTF for WSNs (Nmin = 0)

MTTF FT (days)
(N = Nmin + 2, MTTF NFT (days) NFT

Prob. p c = 1) (N = Nmin + 11) �c
NFT

0.1 2121.6 2135.7 9
0.3 627.62 631.77 9
0.5 323.28 326.12 9
0.7 186.8 188.74 9
0.99 48.387 48.71 9

�c
NFT denotes the redundant WSN clusters required by an NFT

WSN to achieve a comparable MTTF as that of an FT WSN.

This observation is intuitive because WSNs with N = Nmin + 5 have more redundant
WSN clusters (and sensor nodes) and can survive more cluster failures before reaching
the failed state (N = 0) as compared to a WSN with N = Nmin + 2.

We observe the percentage MTTF improvement for an FT WSN over an NFT WSN
containing on average N = Nmin + 2 and N = Nmin + 5 clusters. We observe that the
MTTF improvement for both numbers of clusters decreases with increasing p when
c �= 1 (a trend similar to that for a WSN cluster and for a sensor node). The MTTF
percentage improvement for an FT WSN with N = Nmin+2, c �= 1, is 87.56% for p = 0.1
and drops to 3.3% for p = 0.99. Similarly, the MTTF percentage improvement for an
FT WSN with N = Nmin+5, c �= 1, is 88.2% for p = 0.1 and drops to 3.26% for p = 0.99.
We observe that the MTTF improvement for an FT WSN with c = 1 is 100% on average
for all p values and is greater than an FT WSN with c �= 1. The MTTF percentage
improvement for an FT WSN with N = Nmin + 5 over an FT WSN with N = Nmin + 2
is 52.22% on average.

We also investigate iso-MTTF for WSNs. Table X depicts the MTTFs for an FT WSN
and an NFT WSN for p varying from 0.1 to 0.99 and when Nmin = 0. Results indicate
that an NFT WSN requires nine redundant NFT WSN clusters to achieve an MTTF
comparable to that of an FT WSN.

8. RESEARCH CHALLENGES AND FUTURE RESEARCH DIRECTIONS

WSNs are susceptible to a plethora of different fault types and external attacks after
the WSN’s deployment. Fault detection and tolerance in WSNs is paramount, especially
for safety-critical WSNs such as military target applications, biomedical applications
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(body sensor networks), and volcanic eruption detection systems. Although there has
been research done in fault diagnosis and FT in WSNs, various issues remain to be
addressed. This section highlights research challenges and future research directions
for development and deployment of reliable and trustworthy WSNs.

8.1. Accurate Fault Detection

Our Markov modeling results in Section 7 reveal that the fault detection algorithm’s
accuracy plays a crucial role in realizing FT WSNs. An accuracy close or equal to 100%
and a false alarm rate close or equal to 0% is desirable for fault detection algorithms.
There is a need to develop novel fault detection algorithms and/or improve the exist-
ing fault detection algorithms with the objective of attaining ∼100% fault detection
accuracy.

8.2. Benchmarks for Comparing Fault Detection Algorithms

There is a need to develop standard benchmarks for comparing different fault detection
algorithms for various fault models and topologies. The development of these bench-
marks would facilitate designers in selecting an appropriate fault detection algorithm
for WSNs with given FT requirements.

8.3. Energy-Efficient Fault Detection and Tolerance

Because sensor nodes have stringent resource constraints, fault detection and FT ap-
proaches for WSNs need to be energy-efficient. Although initiatives have been taken
in developing DFD approaches to minimize energy overhead, the area requires further
research. Moreover, FT techniques developed for WSNs need to be energy-efficient. The
impact of added redundancy in sensor nodes to provide FT has not only economic cost
overhead but can also have power consumption overhead, which needs to be considered
and minimized during the design. Energy-efficiency in fault detection and tolerance
can also be achieved by exploiting Near-Threshold Computing (NTC) in sensor node
design. NTC refers to using a supply voltage (VDD) that is close to a single transistor’s
threshold voltage Vt (generally VDD is slightly above Vt in near-threshold operation,
whereas VDD is below Vt for subthreshold operation). Lowering the supply voltage
reduces power consumption and increases energy efficiency by lowering the energy
consumed per operation. The widespread adoption of NTC in sensor node designs for
reduced power consumption requires addressing NTC challenges such as increased
process, voltage, and temperature variations; subthreshold leakage power; and soft
error rates.

8.4. Machine Learning-Inspired Fault Detection

Machine learning-based approaches can be leveraged to classify normal and anoma-
lous data. Since sensor nodes are resource constrained, innovative approaches are
required to extract features from the sensed data. The machine learning techniques
for sensor nodes need to reduce the training data size for the classifier (e.g., SVM)
based on extracted features. The goal of machine learning-inspired fault detection is to
classify normal and anomalous data in or near real-time. There exist some initiatives
in machine learning-inspired fault detection [Bhargava and Raghuvanshi 2013]; how-
ever, further work is required in this domain for accurate and energy-efficient fault
detection.

8.5. FT in Multimedia Sensor Networks

Fault detection and tolerance in Wireless Multimedia Sensor Networks (WMSNs) is
a relatively new research field [Sun et al. 2012]. FT data aggregation in WMSNs is
imperative to reduce the throughput of data transmission, energy conservation, and

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 3, Publication date: January 2015.



Modeling and Analysis of Fault Detection and Fault Tolerance in WSNs 3:37

accuracy of event detection, and to alleviate the interference from compromised nodes.
Another research challenge in WMSNs is to ensure the trustworthiness of aggregated
results. Since multimedia data sensed by sensor nodes require compute-intensive pro-
cessing, multicore-based sensor node designs could meet the performance, energy, and
FT requirements of WMSNs. Accurate fault detection, FT, reliability, and security in
WMSNs require further research endeavors.

8.6. Security

Security is critical for many WSNs, such as military target tracking and biomedical
applications. Security aspects are crucial to consider in developing a reliable, robust,
and trustworthy WSNs. Since sensor nodes use wireless communication, WSNs are
susceptible to eavesdropping, message injection, replay, and other attacks. In many
situations, an adversary is capable of deploying malicious nodes in the WSN or com-
promising some legitimate sensor nodes. Since the sink node is a gateway between
a WSN and the outside world, compromising the sink node could render the entire
WSN useless. Hence, security integration in sink nodes is imperative. The security
integration objective in WSNs is to provide confidentiality, integrity, authenticity, and
availability of all messages in the presence of adversaries. In a secure and reliable
WSN, every eligible receiver should receive all messages intended for that receiver.
Furthermore, the receiver should be able to verify the integrity of each message, as
well as the identity of the sender.

Integration of security and privacy in sensor nodes is challenging because of the
sensor nodes’ resource constraints in terms of computation, communication, memory/
storage, and energy supply. The security mechanisms for prevalent end-to-end systems
(e.g., Secure Socket Layer (SSL)) are not directly applicable to WSNs. In traditional
end-to-end systems, it is neither necessary nor desirable for the contents of the message
(except the message headers) to be available to intermediate routers. On the contrary,
in WSNs, the dominant traffic pattern is many-to-one (i.e., from sensor nodes to the
sink node) [Du and Chen 2008]. Each intermediate sensor node in a WSN also needs
access to message contents to perform in-network processing, such as data aggregation
and data compression, to conserve energy. Security incorporation in WSNs has several
aspects, some of which are discussed here.

Time Synchronization: Due to the collaborative nature of sensor nodes, secure time
synchronization is important for various WSN operations, such as coordinated sens-
ing tasks, sensor scheduling, target tracking, data aggregation, and Time Division
Multiple Access (TDMA) medium access control. The Network Time Protocol (NTP),
which is used for synchronization in the Internet, cannot be directly used by WSNs
due to a sensor node’s constrained resources. Some time synchronization protocols for
WSNs have been proposed in the literature, such as Reference-Broadcast Synchroniza-
tion (RBS) [Sichitiu and Veerarittiphan 2003] and Timing-Sync Protocol for Sensor
Networks (TPSN) [Ganeriwal et al. 2003]; however, security is not considered in the
design of these synchronization protocols.

Sensor Location Discovery: Sensor node location is important for many WSN applica-
tions, such as target tracking and environmental monitoring. The geographical routing
protocols developed for WSNs also require sensor node location information to make
routing decisions. Sensor location discovery protocols make use of special nodes, known
as beacon nodes, which are assumed to know their own location via Global Positioning
System (GPS) or manual configuration. Nonbeacon nodes receive radio signals (refer-
ence signals) from beacon nodes. These reference signals contain the location of beacon
nodes. The nonbeacon nodes then determine their own location based on features of the
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reference messages, such as using Received Signal Strength Indicator (RSSI). Without
any protection, the adversary has the potential to mislead the location estimation at
sensor nodes. For example, an attacker may provide incorrect location references by
replaying the beacon signals intercepted in different locations. A more serious attack
launched by an adversary could be to compromise a beacon node and distribute mali-
cious location references by manipulating the beacon signals (e.g., changing the signal
strength if RSSI is used to estimate the distance). In the presence of such attacks,
nonbeacon nodes will determine their location incorrectly. There are a few methods
to counter these attacks and to increase the reliability and trustworthiness of WSN.
For instance, voting-based location reference uses voting of different received location
references from different beacon nodes; however, this technique would increase the cost
of the WSN because the approach requires more beacon nodes equipped with GPS.

Secure Routing: An adversary can also impact routing within a WSN, which conse-
quently degrades the reliability of the WSN. Secure routing protocols for mobile ad
hoc networks or wired networks are not suitable for WSNs because these protocols are
computationally expensive and are meant for routing between any pair of nodes and
not for the many-to-one traffic pattern prevalent in WSNs.

Intrusion Detection: Most of the existing WSNs are designed without considering
security and intrusion detection. WSNs are more prone to malicious intruders as com-
pared to traditional wired networks due to an open medium, a low degree of physical
security, the dynamic topology, and a limited power supply. Security vulnerabilities in
WSNs can be alleviated using an Intrusion Detection System (IDS). Intrusion detec-
tion is a security technology that attempts to identify those who are trying to break
into and misuse a system without authorization, as well as those who have legitimate
access to the system but are abusing their privileges [Sun et al. 2007]. By modeling
the behavior of normal sensor node activities and operations, an IDS can identify po-
tential intruders and maintain the trustworthy operation of a WSN. IDSs are of two
types: misuse-based detection and anomaly-based detection. A misuse-based IDS en-
codes known attack signatures and vulnerabilities and stores this information in a
database. An alarm is generated by the IDS if a discrepancy exists between the cur-
rent activities and stored signatures. A misuse-based IDS cannot detect novel attacks
because of the lack of corresponding signatures. An anomaly-based IDS creates normal
profiles of sensor node behavior and compares them with current activities. If a signif-
icant deviation in a sensor node’s behavior is observed, the anomaly-based IDS raises
an alarm. An anomaly-based IDS can detect unknown attacks; however, developing
profiles of a sensor node’s normal behavior is challenging.

8.7. WSN Design and Tuning for Reliability

WSNs are more susceptible to failure than are wired networks due to a WSN’s de-
ployment in unattended and often hostile environments. The vulnerability of sensor
nodes to failures and attacks from malicious intruders requires reliability and security
incorporation in the design of sensor nodes and WSNs. For instance, in the case of fail-
ures of some sensor nodes or some sensor nodes being compromised by an adversary,
a WSN should be able to detect these failures and then adapt accordingly to remain
operational. For example, if a few nodes are diagnosed as misbehaving or failed, the
routing protocol should be able to adapt to the situation and find alternative routes.
This adaptation may require some sensor nodes to increase their transmission energy
to get their sensed information to healthy nodes. Furthermore, the frequency of packet
transmission can be reduced in such situations to conserve the energy of sensor nodes
to compensate for the increased transmission energy. This tuning of sensor nodes and
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the WSN would maintain the reliable operation of WSN, albeit at a reduced efficiency.
Moreover, the WSN manager should be notified of the situation so that the manager
can take necessary actions to increase the efficiency of the WSN, including removal of
identified malicious nodes and placement of new healthy sensor nodes in the WSN.

8.8. Novel WSN Architectures

To maintain reliable and secure operation of WSNs in the presence of failures and
malicious intruders, innovative WSN architectures are desired. For instance, a het-
erogeneous hierarchical Multicore Embedded Wireless Sensor Network (MCEWSN)
can better meet the performance and reliability requirements of a WSN [Munir et al.
2014]. The heterogeneity in the architecture subsumes the integration of numerous
single-core embedded sensor nodes and several multicore embedded sensor nodes. A
hierarchical architecture comprising various clusters and a sink node is appropriate
for large WSNs since, in small WSNs, sensor nodes can send the sensed data directly
to the sink node. Each cluster comprises several leaf sensor nodes and a cluster head.
Leaf sensor nodes embed a single-core processor and are responsible for sensing, pre-
processing, and transmitting the sensed data to the cluster head nodes. Cluster head
nodes embed a multicore processor and are responsible for coalescing/fusing the data
received from leaf sensor nodes for transmission to the sink node. Multicore embed-
ded sensor nodes enable energy savings over conventional single-core embedded sensor
nodes in two ways. First, multicore embedded sensor nodes reduce the energy expended
in communication by performing in situ computation of sensed data and transmitting
only processed information. Second, a multicore embedded sensor node permits the
computations to be split across multiple cores while running each core at a lower
processor voltage and frequency, as compared to a single-core system, which results
in energy savings. Multicore cluster heads are also amenable for supervising a fault
diagnosis algorithm within the cluster. Additionally, security primitives could be inte-
grated into these multicore cluster heads to thwart attacks from malicious intruders
or malicious sensor nodes.

9. CONCLUSION

This article provided comprehensive research on modeling and analysis of fault de-
tection and tolerance in WSNs. To elucidate fault detection in WSNs, we provided a
taxonomy for fault diagnosis in WSNs. We simulated prominent fault detection al-
gorithms using ns-2 to determine the algorithms’ accuracies and false alarm rates.
We further analyzed the effectiveness of fault detection algorithms under conditions
modeled from real-world data. We proposed an FT duplex sensor node model based
on the novel concept of determining the coverage factor using a sensor node’s fault
detection algorithm’s accuracy. We developed comprehensive Markov models that hier-
archically encompass sensor nodes, WSN clusters, and the overall WSN. Our Markov
models characterized WSN reliability and MTTF for different sensor failure probabili-
ties. Our models could assist WSN designers to better meet application requirements
by determining the reliability and MTTF in the predeployment phase.

Our ns-2 simulation results for fault detection algorithms suggested that both the
simulated and real-world data needed to be considered for rigorous evaluation of fault
detection algorithms. Although some algorithms performed better than others on sim-
ulated data, these algorithms performed inferiorly to other algorithms on real-world
data. We observed that the fault detection algorithm’s accuracy played a crucial role in
FT WSNs by comparing our results against a perfect fault detection algorithm (c = 1).
The results indicated that the percentage improvement in reliability for an FT sensor
node with c = 1 over an NFT sensor node is 230%, and the percentage improvements
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in reliability for an FT sensor node with c = 1 over an FT sensor node (c �= 1) with
an average number of neighbors k equal to 5, 10, and 15, was 172.36%, 166.31%, and
165.32%, respectively, for p = 0.9. The percentage improvement in reliability for an FT
WSN cluster with c = 1 over an NFT WSN cluster and an FT WSN cluster with c �= 1
was 601.12% and 142.73%, respectively, for p = 0.6. The percentage improvement in
reliability for an FT WSN with c = 1 over an NFT WSN and an FT WSN with c �= 1
was 350.18% and 236.22%, respectively, for p = 0.9.

Results indicated that our FT model could provide, on average, a 100% MTTF im-
provement with a perfect fault detection algorithm, whereas the MTTF improvement
varied from 95.95% to 1.34% due to a fault detection algorithm’s typical poor perfor-
mance at high sensor failure rates. We also observed that redundancy in WSNs plays
an important role in improving WSN reliability and MTTF. Results revealed that just
three redundant sensor nodes in a WSN cluster resulted in an MTTF improvement of
103.35% on average. Similarly, redundancy in WSN clusters contributes to reliability
and MTTF improvement, and the results indicated that three redundant WSN clus-
ters could improve the MTTF by 52.22% on average. The iso-MTTF results indicated
that an NFT WSN cluster required three redundant sensor nodes to attain an MTTF
comparable to that of an FT WSN cluster. Iso-MTTF results further indicated that an
NFT WSN required nine redundant WSN clusters to achieve an MTTF comparable to
that of an FT WSN.
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