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An Efficient O(N ) Comparison-Free Sorting
Algorithm
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Abstract— In this paper, we propose a novel sorting algorithm
that sorts input data integer elements on-the-fly without any com-
parison operations between the data—comparison-free sorting.
We present a complete hardware structure, associated timing
diagrams, and a formal mathematical proof, which show an
overall sorting time, in terms of clock cycles, that is linearly
proportional to the number of inputs, giving a speed complexity
on the order of O(N). Our hardware-based sorting algorithm pre-
cludes the need for SRAM-based memory or complex circuitry,
such as pipelining structures, but rather uses simple registers to
hold the binary elements and the elements’ associated number of
occurrences in the input set, and uses matrix-mapping operations
to perform the sorting process. Thus, the total transistor count
complexity is on the order of O(N). We evaluate an application-
specified integrated circuit design of our sorting algorithm for a
sample sorting of N = 1024 elements of size K = 10-bit using
90-nm Taiwan Semiconductor Manufacturing Company (TSMC)
technology with a 1 V power supply. Results verify that our
sorting requires approximately 4–6 µs to sort the 1024 elements
with a clock cycle time of 0.5 GHz, consumes 1.6 mW of power,
and has a total transistor count of less than 750 000.

Index Terms— 90-nm TSMC, comparison free, Gigahertz clock
cycle, one-hot weight representation, sorting algorithms, SRAM,
speed complexity O(N).

I. INTRODUCTION, MOTIVATION, AND RELATED WORK

SORTING algorithms have been widely researched for
decades [1]–[6] due to the ubiquitous need for sorting in

many application domains [7]–[10]. Sorting algorithms have
been specialized for particular sorting requirements/situations,
such as large computations for processing data [11], high-
speed sorting [12], improving memory performance [13],
sorting using a single CPU [14], exploiting the parallelism
of multiple CPUs [15], parallel processing for grid-computing
in order to leverage the CPU’s powerful computing resources
for big data processing [16].
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Due to the ever-increasing computational power of parrallel
processing on many core CPU- and GPU-based process-
ing systems, much research has focused on harnessing
the computational power of these resources for efficient
sorting [17]–[20]. However, since not all computing domains
and sorting applications can leverage the high throughput
of these systems, there is still a great need for novel and
transformative sorting methods. Additionally, there is no clear
dominate sorting algorithm due to many factors [21]–[24],
including the algorithm’s percentage utilization of the available
CPU/GPU resources, the specific data type being sorted,
amount of data being sorted.

To address these challenges, much research has focused
on architecting customized hardware designs for sorting algo-
rithms in order to fully utilize the hardware resources and
provide custom, cost-effective hardware processing [2]–[27].
However, due to the inherent complexity of the sorting
algorithms, efficient hardware implementation is challenging.
To realize fast and power-efficient hardware sorting, a sig-
nificant amount of hardware resources are required, including,
but not limited to, comparators, memory elements, large global
memories, and complex pipelining, in addition to complicated
local and global control units.

Most prior work on hardware sorting designs are imple-
mented based on some modification of traditional mathemati-
cal algorithms [28]–[31], or are based on some modified net-
work of switching structures [32]–[34] with partially parallel
computing processing and pipelining stages. In these sorting
architectures, comparison units are essential components that
are characterized by high-power consumption and feedback
control logic delays. These sorting methods iteratively move
data between comparison units and local memories, requiring
wide, high-speed data buses, involving numerous shift, swap,
comparison, and store/fetch operations, and have complicated
control logic, all of which do not scale well and may need spe-
cialization for certain data-type particulars. Due to the inherent
mixture of data processing and control logic within the sorting
structure’s processing elements, designing these structures can
be cumbersome, imposing large design costs in terms of area,
power, and processing time. Furthermore, these structures are
not inherently scalable due to the complexity of integrating
and combining the data path and control logic within the
processing units, thus potentially requiring a full redesign for
different data sizes, as well as complex connective wiring with
high fan-out and fan-in in addition to coupling effects, thus
circuit timing issues are challenging to address. Additionally,
if multiple processors are used along with pipelining stages
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and global memories, the data must be globally merged
from these stages to output the complete final sorted data
set [35], [36].

To address these challenges, in this paper, we propose
a new sorting algorithm targeted for custom, IC-designed
applications that sort small- to moderate-sized input sets,
such as graphics accelerators, network routers, and video
processing DSP chips [12], [33], [44], [46]. For example,
graphics processing uses a painter unit that renders objects
according to the object’s depth value such that the object
can be displayed in the correct order on the screen. In video
processing, fast computation is required for small matrices
in a frame in order to increase the resolution using digi-
tal filters that leverage sorting algorithms. Even though we
present our design based on these scenarios, our design also
supports processing large input sets by subsequently process-
ing the data in multiple, smaller input sets (i.e., in sets of
N < 100 000) using fast computations, and then merging
these sets. However, since applications with larger input
sets (on the order of millions) are usually embedded into
systems with large computational resources, such as data min-
ing and database visualization applications running on high-
performance grid computing and GPU accelerators [17]–[20],
these applications can harness those powerful resources for
sorting.

Our sorting algorithm’s main features and contributions
include as follows.

1) Our design affords continuous sorting of input element
sets, where each set can hold any type and distribu-
tion (ordering) of data elements. Sorting is triggered
with a start-sort signal and sorting ends when a done-
sorting signal is asserted by the design, which subse-
quently begins sorting the next input set, thus affording
continuous, end-to-end sorting.

2) Our sorting design does not require any ALU-
comparisons/shifting-swapping, complex circuitry,
or SRAM-based memory, and processes data in a
forward moving direction through the circuit. Our
design’s simplicity results in a highly linearized
sorting method with a CMOS transistor count that
grows on the order of O(N). Hence, the design
provides low and efficient power components with the
addition of regularity and scalability as key structure
features, which provide easily and quick miagration to
embedded micro-controllers and field-programmable
gate arrays (FPGAs).

3) The sorting delay time is always linearly proportional
to the number of input data elements N , with upper
and lower bounds of 3N and 2N clock cycles, respec-
tively, giving a linear sorting delay time of O(N).
This sorting time is independent of the input elements’
ordering or repitition since the design always performs
the same operations within these bounds as opposed to
Quicksort and othersorting algorithms, which have large
and nonlinear margin of bounds.

The remainder of this paper is organized as follows. Section II
summarizes related works and the works’ cost-performance
bottleneck tendencies. Section III discusses our proposed

comparison-free sorting algorithm with illustrative exam-
ples and Section IV provides a mathematical analysis.
Section V details the hardware data path and control logic
implementations along with timing diagrams. Section VI
presents our simulation results, and Section VII discusses our
conclusions, which elaborate on the overall results and our
design’s hardware advantages.

II. RELATED WORK

In order to provide high scalability, it is critical to design a
sorting method with timing and circuit complexity that scales
linearly with the number of input elements N [i.e., the circuit
timing delay and circuit complexity are on the complexity
order of O(N)]. Although some recent works showed linear
scalability, these works’ O(N) notations hide a large scalar
value [4], [27], [32], [34] and these methods have expensive
circuit complexity with respect to multiprocessing, local and
global memories, pipelining, and control units with special
instruction sets, in addition to high-cost technology power
factors.

Other recent works [2], [25], [37]–[42] divide the sorting
algorithm design into smaller computation partitions, where
each partition integrates control logic and the partition’s com-
parison operations with feedback decisions from neighbor-
ing partitions. A global control unit coordinates this control
to streamline the data flow between the partitions and the
partitions’ associated memories to store temporary data that
is transferred between partitions. In addition to the complex
circuitry required to maintain inter-partition connectivity and
redundant intra-partition control circuitry, a complex global
memory organization is required.

Alternative methods [43]–[45] attempt to eliminate
comparators by introducing a rank (sorted) ordering
approach. In [43], a bit-serial sorter architecture was
implemented based on a rank-order filter (ROF), but
comparators were still used to transform the programmable
capacitive threshold logic (CTL) to a majority voting decision.
That design used large array cells of ROF and CTL decisions
with a pipelined architecture. The design in [44] counted the
number of occurrences of every element in the unsorted input
array, where the rank of each element was determined by
counting the number of elements less than or equal to the
element being considered. Thus, the comparison units were
replaced by counting units with bit comparison. However,
the design required a complicated hardware structure with
pipelining and a histogram counting sequence. Alternatively,
the design in [45] used a rank matrix that assigned relative
ranks to the input elements, where the highest element had
the maximum rank and the lowest element had the lowest
rank of 1. The rank matrix was updated based on the value of
a particular bit in each of the N input elements, starting with
the most-significant bit. This bit-wise inspection required
inspecting a complete column of the rank matrix in order
for the lower ranks to update the higher ranks. However, that
design could not be used when the number of elements was
less than the elements’ bit-width.

Some recent works [47]–[49] leverage previous works and
integrate several different sorting architectures for different
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requirements, such as speed, area, power. The work in [47]
leveraged a bitonic sorting network to more efficiently map the
methodology considering energy and memory overheads for
FPGA devices. Further advances of that work [48] presented
novel and improved cost-performance tradeoffs, as well as
identification of some Pareto optimal solutions trading off
energy and memory overheads. Additional work [49] devel-
oped a framework that composes basic sorting architectures
to generate a cost-efficient hybrid sorting architecture, which
enabled fast hardware generation customized for heteroge-
neous FPGA/CPU systems.

Even though all of these designs reported linear sorting
delay times as the number of input elements increased,
the authors did not include the initialization times for the
required arrays/matrices, nor was the worst case sorting time
evaluated. Furthermore, each design either required arrays
to store the input elements, associated arrays for the rank
operations and data routing, or had to globally merge the
intermediate sorted array partitions. These array elements
required a significant amount of local and global input–output
data routing, SRAM-based memory, and control signals, where
the local control logic communicated with each processing unit
partition and the global control unit. This layout complicates
adapting the design to different input data bit-widths. Addi-
tionally, since the control signals and data path wiring was
intertwined, circuit design bugs were challenging to locate,
in turn leading to high-cost design.

III. COMPARISON-FREE SORTING ALGORITHM

The input to our sorting algorithm is a K -bit binary bus,
which enables sorting N = 2K input data elements. The
sorting algorithm operates on the element’s one-hot weight
representation, which is a unique count weight associated with
each of the N elements. For example, “5” has a binary repre-
sentation of “101,” which has a one-hot weight representation
of “1 00 000.” For a complete set of N = 2K data elements,
the one-hot weight representation’s bit-width H is equal to
the number of possible unique input elements. For example,
a K = 3-bit input bus can sort/represent N = 8 elements,
so each element’s one-hot weight representation is of size
H = 8-bit (i.e., H = N). The binary to one-hot weight
representation conversion is a simple transformation using
a conventional one-hot decoder. Using this one-hot weight
representation method ensures that different elements are
orthogonal with respect to each other when projected into
an Rn linear space.

For brevity of discussion and ease of understanding our
sorting method’s mathematical functionality, we illustrate a
small example in Fig. 1, which is based on linear algebra
vector computations. This example shows our sorting algo-
rithm’s functionality using four 2-bit input data elements,
with an initial (random and arbitrary) sequential ordering
of [2; 0; 3; 1], which generates the outputted elements in the
sorted matrix = [3; 2; 1; 0]. This sorting matrix is in descend-
ing order; however, the elements can also be represented in
ascending order by having the mapping go from the bottom
row to the upper row.

Fig. 1. Comparison-free sorting example using four 2-bit input data elements.

This example operates as follows. The inputted elements are
inserted into a binary matrix of size N×1, where each element
is of size k-bit (in this example N = 4 and k = 2 bit).
Concurrently, the inputted elements are converted to a one-
hot weight representation and stored into a one-hot matrix
of size N × H , where each stored element is of size H -bit
and H =Ngiving a one-hot matrix of size N-bit ×N-bit. The
one-hot matrix is transposed to a transpose matrix of size
N × N , which is multiplied by the binary matrix—rather than
using comparison operations—to produce the sorted matrix.
For repeated elements in the input set, the one-hot transpose
matrix stores multiple “1s” (equal to the number of occurances
of the repeated element in the input set) in the element’s
associated row, where each “1” in the row maps to identical
elements in the binary matrix, an advantage that will be
exploited in the hardware design (Section V). For example,
if the input set matrix is [2; 0; 2; 1], then the transpose matrix
is [0 0 0 0; 1 0 1 0; 0 0 0 1; 0 1 0 0]. Notice that
the second row contains two “1s,” such that when the transpose
matrix is multiplied by the second row in the binary matrix,
both “1” occurances in the transpose matrix are mapped to
the “2” in the binary matrix. Therefore, the multiply operation
can be simply replaced with a mapping function using a
tri-state buffer (Section V). Additionally, the first row in
the transpose matrix has no element in the first position
(i.e., element 3 is not in the binary matrix since 3 is not in the
input set). The absence of this element can be recorded using
a counting register for each inputted element (Section V), and
this register records the number of occurences of this element
in the binary matrix, which in this case would be “0” for
element 3.

For more insight on this algorithm, Fig. 2 shows C-code
for a single-threaded implementation on a single CPU, where
the transpose matrix is used as a vector matrix instead of a
2-D matrix such that the indices of the TMN×1 matrix record
the counting elements of size N×1. Hence, the initialization
phase, which is structured in the first loop, requires less
memory access time for the reads and writes in the loop
body. The evaluation phase is conducted in the second loop,
and in this phase, the elements are sorted and stored in the
sorted vector SSN×1. The elements in the array vector TMN×1
are read sequentially, and concurrently the elements in the
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Fig. 2. Comparison-free sorting C-code for a single-threaded single CPU.

Fig. 3. Execution comparisons of for our comparison-free sorting design,
Quicksort, merge sort, and radix sort.

sorted vector SSN×1 are written sequentially, resulting in good
spatial locality in the second loop of the C-code. Due to these
structural designs, initial insight in our simulation results for a
single-threaded single CPU, which is shown in Fig. 3, reveal
the advantages of our proposed algorithm in execution time
over other popular sorting algorthms such as Quicksort and
other standard sorting algorithms reported in [50]

IV. MATHEMATICAL ANALYSIS

In this section, we provide the mathematical proof for
our sorting algorithm illustrating the case of N unique input
elements as a proof of concept. We present this case as the base
case proof for our sorting algorithm since other input element
set cases (i.e., different numbers of duplicated elements) can
be easily derived from this case.

Let

L = [a(1), . . . , a(k)] (1)

be a given list1 of k positive integers and let

M = max[a(1), . . . , a(k)]. (2)

Let J = JL be the (k x M) matrix whose entries Jr,s are
defined by

Jr,s =
{

1, if a(r) = s

0, otherwise.
(3)

1A list is a set in which repetition is allowed.

Fig. 4. Block diagram of the hardware structure for our sorting algorithm.

Thus, if s does not belong to L (i.e., there is no r such
that a(r) = s), then the sth column of J will contain all “0s.”
If s belongs to L, then the sth column of J will have “1s” in
exactly the locations r where a(r) = s.

Supposing that L had no repetitions, let

L J = [a(1), . . . ,a(k)]
J = [b(1), . . . , b(m)] (4)

which gives

b(s) =
{

s, if s ∈ L

0, otherwise.
(5)

If s /∈ L, then all of the values in the sth column of Cs of J
are “0s,” and b (s) = L · CT

s = 0. If s ∈ L, and if r is the
unique value for which a(r) = s, then all of the values in the
sth column of Cs of J are all “0” except for the value in the r th
column, which is “1.” Therefore, b (s) = L • CT

s = a(r) = s,
which proves our claim.

For example, starting with L = [6, 3, 4], then J = JLwould
be the matrix

J =
⎡
⎣ 0 0 0

0 0 1
0 0 0

0 0 1
0 0 0
1 0 0

⎤
⎦ (6)

and

L J = [0, 0, 3, 4, 0, 6]. (7)

Let J∗ be the matrix obtained by deleting the zero columns
from J such that

L J ∗ = [3, 4, 6]. (8)

V. HARDWARE FUNCTIONALITY DETAILS

The overall hardware structure for our sorting algorithm is
divided into two parts: the data path and the control unit.
Fig. 4 depicts the input–output signals of a complete block
diagram for our sorting algorithm, which sorts of N = 2K

input data elements. The basic design architecture operates in
two sequential phases: the write-evaluate phase (Section V-A1)
followed by the read-sort phase (Section V-A2). The control
unit (Section V-B), is a simple state machine that controls the
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Fig. 5. Hardware flow for the write-evaluate phase.

data path’s phases using only a few D-type flip-flop (DFF)
components. Sorting begins when the START-EXT signal is
asserted and the design signals that sorting has completed by
asserting the FINAL-EXT signal.

A. Data Path Operation

The data path contains several circuit components: a one-hot
decoder, register arrays, a serial shifter, a parallel counter (PC),
tri-state buffers and multiplexors, a one-detector, and an incre-
mentor/decrementor circuit. In order to meet the setup-hold
delay time bewteen the clock and data stabilization for the
elements’ storage registers, the delay element’s components
are a cascade of an even number of inverters. These circuit
components are standard CMOS circuit components [51]–[53],
which are commonly used components for advanced
CMOS technologies beyond 90 nm, making our design scal-
able for further advanced low-cost CMOS technologies.

Before proceeding with a more detailed circuit structure of
the write-evaluate and read-sort phases, we present generalized
and overall illustrations for these phases in the flow charts
in Figs. 5 and 6, respectively. The rectangles present the
operations during each clock cycle event, in which two events
occur per clock cycle, one on each cycle edge (i.e., asserted
high and low). The steps within the rectangles show the
sequences of the operations based on the data hardware flow
shown in Figs. 7 and 9, where some operations have the same
number indicating parallelism/independence between these
operations within the clock cycle, meaning that it does not mat-
ter which operation occurs first. Additionally, these flow charts
adhere to the timing constraints depicted in Figs. 8 and 10,
respectively, where each event occurs at a clock edge. The
diamonds are the condition expressions that change the data
flow based on control flow events.

1) Write-Evaluate Phase: During the write-evaluate phase,
each binary input element is converted to the element’s one-hot

Fig. 6. Hardware chart for read-sort phase.

Fig. 7. Detailed block diagram of our sorting algorithm’s write-evaluate
phase.

Fig. 8. Timing diagraph for our sorting algorithm’s write-evaluate phase.

weight representation by the one-hot decoder. The decoder’s
output enables an associated register in a register array to
record the binary input element’s occurrence. We refer to
this register as an order register (ORi ) array, where the
i th register stores the i th input element. Each register is a
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Fig. 9. Detailed block diagram of our sorting algorithm’s read-sort phase.

Fig. 10. Timing diagraph for our sorting algorithm’s read-sort phase.

simple DFF register of size k-bit. This operation is equivalent
to the recording of the element in the transposed matrix in our
algorithm (Section III). Simultaneously, the one-hot decoder
enables an associated register in another register array—
the flag register (FRi ) array—which records the number of
occurrences of this element in the input set. For each occur-
rence of a duplicated element, the associated flag register is
triggered, and the occurrence is recorded by incrementing
the register’s stored value using a 10-bit incrementor. This
operation is equivalent to having multiple “1s” for repeated
elements in a row in the transpose matrix (Section III).

All input elements follow the same sequential operation at
every rising clock edge. Fig. 7 illustrates a detailed block
diagram of the write-evaluate phase’s data path, which shows
the input bus and all control signals that are fed from the
control unit (Section V-B). Fig. 8 depicts the associated timing
diagram, which shows the detailed streamlined sequential
timing for the write-evaluate phase. In this diagram, the
START-EXT signal indicates the beginning of a new block
of N = 2Kk-bit input elements, which arrive sequentially
on each clock cycle. The START-EXT signal consecutively
triggers several intermediate signals in the write-evaluate data
path’s circuit. First, the reset signal RES is asserted high
for one clock cycle to initialize all registers (omitted from

Fig. 7 for figure clarity). Next, the WRITE-ENA signal is used
to direct the input data to the one-hot decoder, and enable the
clocking source for the order and flag register arrays, which
are actually gated by another AND-gate that comes from the
one-hot decoder.

Following the timing diagram in Fig. 8, the write-evaluate
cycle time requires time for the one-hot decoder (Toh), time
for the order and flag registers’ access times, (Tor) and (Tfr),
respectively, and time for the flag register increment (Tacc).
The total write-evaluate phase’s cycle time (Twrite−cycle) is

Twrite-cycle = Toh + Tor + Tacc + Tfr. (9)

The delay element’s components have no influence on the
write-evaluate cycle time since these components only change
the duty cycle while preserving the cycle time. All of the
registers (order and flag) are structured in parallel, such that
the access times to the registers are on the order of fractions
of a nano-second. Additionally, the simple incrementor is less
than a nano-second time scale since the bit-width is only
k-bits. One incrementor is shared for all flag registers since
only one element is input per clock cycle.

A parallel counter in the control unit (Section V-B) controls
the end of the write-evaluate phase when the counter’s value
reaches the maximum number possible inputted elements
(i.e., N = 2k). Even though the input set may contain
less than the maximum number of elements, assuming that
the input set is full realizes the simplisity of the read-sort
phase’s operation. The control unit asserts the READ-ENA
signal and deasserts the WRITE-ENA signal when the write-
evaluate phase completes, which enables the read-sort phase
on the next clock edge. The write-evaluate phase requires a
fixed N clock cycles since the phase always iterates for the
maximum number of potential input elements.

2) Read-Sort Phase: Fig. 9 illustrates a detailed block
diagram of the read-sort phase’s data path, which comprises
of a k-bit sorted shift register (SRi) array of size N that stores
the elements in their final sorted order, and a k-bit PC that
indexes into the order register array to process each element in
turn. The element ordering, ascending or descending, is user-
specified, and can be controlled by either left- or right-shifting
in the elements. A one-detector circuit detects if the flag
register value is “1” or not, and a decrementor circuit subtracts
a “1” from the flag register, the result of which is stored back
in to the flag register, when processing replicated elements.
In this figure, the write-evaluate phase’s data path components
that are used in the read-sort phase are encompassed in the
dashed lines.

The read-sort phase begins after the WRITE-ENA signal
is deasserted and the READ-ENA signal is asserted, which
sends the PC’s value to the one-hot decoder at each new read-
sort clock cycle. The one-hot decoder converts this counter
value to the value’s one-hot representation, which enables the
associated order and flag registers to read/release the registers’
values, and the order register’s value is stored into the sorted
register array if-and-only-if that element’s flag register value
is greater than “0,” meaning there was at least one occurrence
of that input element. The one-detector evaluates the flag
register value to control whether or not the element is stored
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in the sorted register array. If the flag register records a value
equal to or greater than “1,” the associated element should be
stored in the sorted register array a number of times equal
to the flag register’s value. The case is simple when the flag
register value is “1,” which is detected by the one-detector.
To avoid complex comparison units (i.e., equal to or greater
than “1”), detecting values greater than “1” can be easily
determined using the decrementor’s carry out single. Thus,
if the one-detector’s evaluation is false (i.e., “0” is the one-
detector’s decision output), but when decrementing the flag
register’s value, the resulting carry out flag is “0,” this means
that the flag register’s value was greater than “1.” In both
cases, the input element should be stored into the sorted
register array. Indexing to the next input element is inhibited
by disabling the PC’s increment, which allows the replicated
element to be stored in the sorted register array until the flag
register value reaches “0.” Otherwise, the flag register’s value
is “0,” the element is not in the input set, and thus is not stored
into the sorted register array, and the PC is incremented.

The read-sort cycle time can be divided into three cases
based on the flag register’s value. For clarity, these cases will
be described with references to the example in Fig. 1 and
the discussion of the structure in Section III. In case one,
the flag register’s value is “0” (i.e., the element is not in the
binary matrix), and thus, this element is not stored in the sorted
register array, and the PC is incremented (i.e., proceed to the
next row in the transpose matrix). The timing of the read-
sort cycle (Tread−cycle) in case one is the sum of the PC’s
increment (TPC), the one-hot decoder’s (TOH), and the one-
detector’s (TOD) delays

Tread−cycle = TPC + TOH + TOD. (10)

We can see that the one-detector and decrementor both operate
concurrently with the flag register value’s evaluation.

In case two, the flag register’s value is “1,” meaning that
the element is in the input set once, and thus this element is
read from the order register using the one-hot decoder and a
tri-state buffer at the register’s output, the element is stored in
the sorted register array, and the PC is incremented. As with
case one, a flag register value of “0” and “1” both require one
clock cycle. The timing of the read-sort cycle (Tread−cycle) in
this case is the sum of the PC’s increment (TPC), the one-
hot decoder’s (TOH), the one-detector’s (TOD), and the sorted
register array’s (TSR) delays

Tread−cycle = TPC + TOH + TOD + TSR. (11)

In case three, the flag register’s value is greater than “1”
(i.e., the element’s corresponding row in the transpose matrix
contains more than one “1”). Similar to case two, this element
is stored into the sorted register array, but in this case, the flag
register is also decremented. The PC’s increment is disabled
until the element’s flag register reaches “1,” signaling that all
occurrences of the element have been stored into the sorted
output array. The timing of the read-sort cycle (Tread−cycle) in
this case is the sum of the PC’s increment (TPC), the one-hot
decoder’s (TOH), the decrementor’s (TDA), and the flag register
array’s (TFR) delays

Tread-cycle = TPC + TOH + TDA + TFR. (12)

Fig. 10 shows the timing diagram for the read-sort phase for
all three cases, where the circled area shows the clock cycle
operations for case two and three. Case three is assumed to be
the worst case due to the decrementor’s delay, which has more
delay than the one-detector delay (TOD) as given in case 2.

The additional required logic gates’ delays, such as the XOR
gate, tri-state buffer, and AND gates, are not included in the
above delay equations since these gates require only fractions
of nano-seconds. Additionally, delay buffer #3 (Fig. 9) has
no effect on the read-sort cycle time since this delay element
is only used for maintaining the setup-hold time between the
clock (CLK) and the element being stored in the sorted register
array.

Case three represents the worst case, upper bound sorting
time when the input element set contans N occurances of the
same element (i.e., one row in the transpose matrix has all
“1” values, while all other rows have all “0” values). The
corresponding flag register’s value for this element is “N ,”
while all other flag registers’ values are “0.” Our algorithm
requires N− 1 cycles to check all flag register values (i.e., all
transpose matrix rows), even though all values are “0,” and
N cycles to output the single replicated element N times into
the sorted register array. Therfore, the total number of clock
cycles are 2N − 1 plus one cycle for reset, resulting in a total
worst case, upper bound of 2N .

The best case, lower bound occurs when all elements in
the input set are distinct (i.e., every transpose matrix row
contains either a single “1” or no “1s,” case one and case
two, respectively). During the read-sort phase, each cycle
either stores one element or nothing, respectively, to the
sorted register array, which requires N clock cycles to sort
N elements.

On average and in most general cases, the input set will
contain a mixture of distinct and repeated elements, and the
actual sorting time will fall between the upper and lower
bounds. Considering both the write-evaluate and read-sort
phases, the required number of clock cycles ranges from
2N to 3N to sort the input elements, with the addition of the
one clock cycle for reset and one clock cycle for the control
switch between the write-evaluate and read-sort phases.

B. Control Unit Operation

The control unit receives input signals from the data path
and outputs the appropriate control signals back to the data
path. The control unit also receives the external and hand-
shaking components’ signals in order to interface with the
external components that are using the sorting hardware, and
synchronizes the complete sorting operation. There are several
methods for designing the control unit [54], [55], and prior
work on sorting hardware typically found it sufficient to
present only the data path design and no detail on the control
logic [2], [34]–[45]. However, in our work, we present the
complete control unit design in order to provide a holistic
sorting implementation with all signals, which alleviates any
discrepancy between the control and data path units. Addi-
tionally, our inclusion of the control unit’s design shows
the simplicity of our sorting hardware, with the control unit
using a small number of gates and is scalable and easily
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Fig. 11. Control unit diagram for the write-evaluate unit.

Fig. 12. Control unit diagram for the read-sort unit.

reconfigurable to different data types and sizes. We note that
further area optimization can easily be achieved by reusing
components for many handshaking controls with the data path
unit, however, without loss of generality and for an easier
conceptual explanation, we describe the control unit without
shared components. In regards to timing and power, most of
the components in the control unit are fast, and respond within
the DFF access time delay. Additionally, most of the DFFs
are clock-gated with an enable signal to minimize the DFFs’
switching activities upon needed, thus reducing the overall
circuit’s power consumption.

Collectively, Figs. 11 and 12 depict the complete block
diagrams for the control unit. For ease of explanation, the con-
trol unit divides the control logic structure into the write-
evaluate and read-sort phases’ controls, respectively, however,
physically the control units share common components, such
as the clock and the reset-initialization block.

The write-evaluate control circuitry (Fig. 11) is derived
from the write-evaluate timing diagram (Fig. 8) and receives
as input the external signals CLOCK-EXT, RES-EXT, and
START-EXT. These signals control the sorting of the input
bus elements, such that the data path generates the outputted
sorted elements on the output bus and signals the end of
sorting by asserting the FINAL-EXT signal. The internal reset-
initialization block is triggered by the START-EXT signal,
which in turn asserts the RES signal for one clock cycle.
This complete clock cycle ensures that the reset-initialized
components receive the asserted RES signal for long enough

to ensure state initialization in the components, regardless of
the underlying technology and fan-out interconnect. Several
reset signals are branched and routed to different components
in order to minimize the effective load on the RES signal.
Additionally, the clock tree is designed in order to balance the
clock edges across the components and preserve the setup-
hold time margins, the details of which have been omitted in
this figure for figure clarity.

All input and output signals are associated with
appropriately-sized drivers to minimize the resistor-capacitive
load on the input signals, and ensures that the signals propa-
gate quickly enough and at full-swing with an appropriate sig-
nal slew-rate. We refer the reader to [53] for further details on
load balancing and using appropriately-sized drivers. Asserting
the RES signal (after START-EXT is asserted) for one clock
cycle begins initializing the master-slave DFF structure for
further operations. Subsequently, de-asserting the RES signal
triggers asserting the WRITE-ENA signal for the complete
write-evaluate phase. Once the control unit’s PC reaches
the saturated state N = 2K , all input elements have been
processed, which indicates the end of the write-evaluate phase.
The WRITE-ENA signal is de-asserted and the READ-ENA
signal is asserted on the next CLK edge, as illustrated in the
timing diagram in Fig. 8.

The read-sort phase’s control unit’s circuitry (Fig. 12) is
derived from the read-sort timing diagram (Fig. 10). The
READ-ENA signal is asserted one clock cycle after the WRITE-
ENA is de-asserted. At this point, the data path’s PC is enabled
and activates the one-hot decoder, order register array, flag
register array, and one-detector. When the data path’s PC
saturates (i.e., all order and flag register values have been
evaluated), the data path asserts the FINAL-STATE signal
that drives the control unit. The control unit deasserts the
READ-ENA signal and asserts the FINAL-EXT signal indi-
cating that sorting is complete. The FINAL-STATE signal
indicates that all rows in the transpose matrix have been
scanned and mapped to the sorted array register.

The synchronization of these operations are inherent-by-
design using DFFs with a SET and RESET structure, as given
in [59]. The complete control unit only requires seven DFFs
for controlling the continuous sorting of input elements. The
simplicity of our control unit circuitry design is due to the
continuous forward-flowing data through the data path and
results in simple timing, which is amenable to efficient circuit
design structures.

VI. SIMULATIONS AND RESULTS

Without loss of generality and for comparison purposes,
we implemented, tested, and verified our sorting algorithm
and hardware architecture using a sample system with N =
1024 input data elements, which is similar to many prior hard-
ware sorting integrated circuits (ICs) [2], [37]–[45], [47]–[49].
We architected our proposed comparison-free sorting hardware
at the CMOS transistor level using 90-nm Taiwan Semicon-
ductor Manufacturing Company (TSMC) technology with a 1
V power supply [56]. We gathered timing delay values, total
power consumption, and total transistor counts using HSPICE
simulations [57].
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TABLE I

COMPONENT TIME DELAYS AND TRANSISTOR COUNTS
ASSUMING 90-nm TECHNOLOGY

The one-hot decoder, which converts the 10-bit input bus
binary representation to the 1024-bit one-hot weight repre-
sentation, uses a four-input fan-in NAND logic gate with a
five-level hierarchical structure, resulting in a timing delay of
TOH = 0.688 ns. The order and flag registers are comprised
of ten parallel DFFs, such that the register access time can
be approximated using a single DFF access time of TDFF =
0.14 ns. Similarly, the tri-state buffer and multiplexer are
approximated as the same delay as the DFF access time
TTB = TMUX = TDFF.

The one-detector uses a parallel prefix-tree structure of four-
input OR-gates, which take as input 10 bits and activates a
two-level output, resulting in a timing delay of TOD = 0.26 ns.
The data path’s 10-bit PC is implemented based on state-look
ahead logic [58], giving a timing delay to the next state of
approximately 0.167 ns. The incrementor/decrementor circuit
takes a 10-bit input bus and add/subtract a “1,” giving a timing
delay of approximately 0.37 ns.

Table I summarizes all of the components’ delay times
and associated transistor counts. These results, combined
with (9)–(12), show that the write-evaluate phase’s clock cycle
time is CLKW < 2 ns and the read-sort phase’s clock cycle
time is CLKR < 2 ns. These timings result in an approximate

Fig. 13. Transistor counts for the order, flag, and sorted register arrays as
compared number of elements.

Fig. 14. Clock cycle time as compared to bus width.

conservative clock cycle frequency of 500 MHz, and the
total power consumption given the technology factor at this
frequency is 1.6 mW. Sorting 1024 elements requires a total
number of clock cycles ranging from 3 × 1024 = 3076
to 2 × 1024 = 2048, depending on the number of duplicated
input elements, resulting in a total time (for our clock speed
of 500 MHz) of approximately 4–6 μs. Additionally, the total
transistor count is less than 7 50 000 to sort 1024 elements.

Our design alleviates complex components such as memory
and pipelining structures, which are considered in hardware
designs as the bottleneck for performance and power con-
sumption [13]. The only design bottleneck with respect to
performance is the one-hot decoder; however, an optimized
version of this component could be used [51], [52]. Since
our focus is to architect a holistic circuit design, rather
than optimizing special components and leveraging advanced
CMOS technologies, we consider the integration of these
optimizations as orthagonal to our design.

Fig. 13 shows how the transistor count scales as compared
to the number of data elements for the order, flag, and sorted
register arrays since these structures dominate the transistor
count. These results show that our design’s transistor growth
rate is linear, with a small increase in the slope rate of less
than six, giving a linear complexity ratio of O(N) with respect
to transistor count.

Fig. 14 shows sorting speed in clock cycle time as compared
to the number of data elements N = 2K for a k-bit bus. Our
results ignore the interconnect parasitic values and the required
buffering sizes, and focus only on our design’s components’
delays. Using the access delay times reported in Table I
and (12) for upper bound limits on maximum frequency, and
assume the worst case data distribution (all N elements are
repeated), Fig. 14 shows a linear complexity of O(N) for
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TABLE II

SORTING COMPUTATION TIME FOR AN INPUT SET OF 1024 ELEMENTS

Fig. 15. Power consumption as compared to number of data elements.

end-to-end execution time for our sorting design with a small
growth rate less than 1.5. This small rate is due to using basic
registers (flag, order, and sorted registers) that access the bus
in parallel.

The power consumption is relative to the switching activity
and the transistors’ static leakage. To reduce power consump-
tion, our design’s datapath and control units’ components
are gated with enable signals to restrict activity to only the
components operational periods. The write-evaluate and read-
sort phases each activate two register arrays: the order and flag
register arrays, and the flag and sorted register arrays, respec-
tively. Therfore, during the write-evaluate phase, the sorted
register array is shut off, and in the read-sort phase, the order
register array is shut off. All other components operate in both
phases, therefore the phases’ consume approximately equal
power. Fig. 15 shows our design’s power consumption as
compared to the number of data elements and assuming a
500 MHz running frequncy. The operating frequency limits
are evaluation to a maximum of N = 216 data elements, since
larger sizes would require slower a slower clock frequency.
Our design’s power consumption shows a linear complexity
of O(N) for a number of data elements less than 216 with a
growth rate of about 6.4.

Overall, our design shows a linear growth rate O(N) with
respect to total transistor count, end-to-end execution time, and
power consumption. This is in contrast to other work’s [2],
[35], [41], [48] that report a linear complexity of O(N), but
the growth rate is usually in the order of greater than 100.

We also compare our design with data reported in litera-
ture for related CPU and GPU sorting algorithms [5], [15],
[19], [20]. Table II reports the execution time for sorting
1024 elements using both single- and multicore CPUs and
GPUs not considering the the front-end memory initialization
time and the back-end memory merging time; just only the
computation time. These results show that our design is
even faster than prior algorithms who effectively harness the
computing resources, to the best of our knowledge.

For general purposes, we have compared our sorting design
with prior work with respect to hardware complexity and

TABLE III

COMPARISON BETWEEN PRIOR WORK AND OUR
PROPOSED SORTING DESIGN

sorting performance in number of clock cycles. These com-
parisons are independent of technology factors in order to
avoid uncertainty with respect to different technology scale
comparisons and technology simulation environments, which
makes the comparison fair because technology circuit imple-
mentations can vary greatly, ranging from different FPGA
varieties/families to custom application specified integrated
circuits using CMOS, NMOS, PMOS, Domino, pass-transistor
logic families, and many others [53]. These implementation
specifics have a large influence on the design performance
and design cost, which may result in unrealistic or inaccurate
conclusions. Therefore, we compare our design with prior
designs with respect to common features for sorting hardware
design circuit architectures, such as the number of cycles
with respect to number of input elements, design structure
of the data path and control units that leads to scalability
and flexibility for different applications, and finally, the design
computation complexity and data movement directions, which
impact the design cost and power factor. These types of
comparisons provide a larger evaluation picture considering
the huge number of sorting hardware designs.

Table III compares our design with prior hardware sorting
algorithms that have a single computing engine and several
sorting partitions that require merging small sorted partitions



1940 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 6, JUNE 2017

TABLE IV

COMPARISON WITH RECENT FPGA SORTING ALGORITHMS: SPIRAL [47] AND RESOLVE [48]

to obtain the final sorted output. We evaluated the designs
based on the number of clock cycles required to sort an
input set of size N . This evaluation illustrates the com-
plexity scaling of our simple forward data flowing design
for increasing bit-widths as compared to the prior methods
that merge the datapath and control units’ functionalities
within the parallel computing cells, memory, and comparison
circuitry, all of which usually dictate the circuit’s design
complexity (number of transistors), runtime complexity (num-
ber of cycles to sort N elements), and power. Dividing
computing cells that integrate the datapath with the control
unit usually requires two operations: element evaluation and
result updating, which requires repeating evaluation decisions.
Furthermore, prior rank-based designs required repeated ALU
computations within the SRAM or memory array, which is
usually characterized as being time consuming.

For additional comparison, we evaluate the data reported
in [49], which presents recent work on hardware sorting algo-
rithms implemened on the Xilinx FPGA xc7vx690tffg1761-2
using 32-bit fixed point operations and running at a frequency
of 125 MHz. Table IV shows the overall transistor counts,
required number of BRAMs, and sorting time in micro-
seconds. These compared designs show a linear increase
in the FF/LUT count with respect to the number of ele-
ments, however the BRAM requirements do not scale linearly.
Since memory devices introduce performance bottlenecks,
this results in the non-linear execution time and non-linear
transistor count.

With respect to all evaluated results, our comparison-free
sorting design provides an efficient linear scalability of O(N).
Our design uses simple registers (flag, order, and sorted
registers) that are accessed on both the rising and falling
clock edges, and simple standard CMOS components with
a forward flowing data movement architecture. Even though
our design shows a linear performance cost of O(N), our
hardware design is recommended for data element set sizes of
less than 216 due to practical integration into large computing
IC devices (e.g., graphics engines, routers, grid controllers.),
where the sorting hardware accounts for no more than 10% of
the IC’s characteristics (power and area).

VII. CONCLUSION

In this paper, we proposed a novel mathematical
comparison-free sorting algorithm and associated hardware
implementation. Our sorting design exhibits linear complexity

O(N) with respect to the sorting speed, transistor count, and
power consumption. This linear growth is with respect to the
number of elements N for N = 2K where K is the bit width
of the input data. The slope of the linear growth rate is small,
with a growth rate of approximately 6 for the transistor count
and power consumption, and 1.5 for the sorting speed.

The order complexity and growth rates are due to
simple basic circuit components that alleviate the need
for SRAM-based memory and pipelining complexity. Our
mathematically-simple algorithm streamlines the sorting oper-
ation in one forward flowing direction rather than using
compare operations and frequent data movement between the
storage and computational units, as with other sorting algo-
rithms. Our design uses simple standard library components
including registers, a one-hot decoder, a one detector, an incre-
menter/decrementer, and a PC, combined with a simple control
unit that contains a small amount of delay logic.

Our design is at least 6× faster than software parallel
algorithms that harness powerful computing resources for
input data set sizes in the small-to-moderate range up to 216.
Additionally, our hardware design’s performance is approxi-
mately 1.5× better as compared to other optimized hardware-
based hybrid sorting designs in terms of transistor count and
design scalability, number of clock cycles and critical path
delay, and power consumption. Thus, our design is suitable
for most IC systems that require sorting algorithms as part of
their computational operations.

Our results show that our comparison-free sorting CMOS
hardware can sort N unsigned integer elements from end-to-
end with any input data set distribution within 2N to 3N
clock cycles (lower and upper bounds, respectively) at a clock
frequency of 0.5 GHz using a 90-nm TSMC technology with
a 1 V power supply and a power consumption of 1.6 mW for
N = 1024 elements.

Future work includes leveraging our sorting algorithm for
commercial parallel processing computing power, such as
GPUs and parallel processing machines, in order to further
improve large-scale sorting, and thus, further enhance embed-
ded sorting for big data applications.
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