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Supplementary Material for
“An MDP-based Dynamic Optimization

Methodology for Wireless Sensor Networks”
Arslan Munir and Ann Gordon-Ross

Abstract—Wireless sensor networks (WSNs) are distributed systems that have proliferated across diverse application domains (e.g.,
security/defense, health care, etc.). One commonality across all WSN domains is the need to meet application requirements (i.e.,
lifetime, responsiveness, etc.) through domain specific sensor node design. Techniques such as sensor node parameter tuning
enable WSN designers to specialize tunable parameters (i.e., processor voltage and frequency, sensing frequency, etc.) to meet
these application requirements. However, given WSN domain diversity, varying environmental situations (stimuli), and sensor node
complexity, sensor node parameter tuning is a very challenging task. In this paper, we propose an automated Markov Decision Process
(MDP)-based methodology to prescribe optimal sensor node operation (selection of values for tunable parameters such as processor
voltage, processor frequency, and sensing frequency) to meet application requirements and adapt to changing environmental stimuli.
Numerical results confirm the optimality of our proposed methodology and reveal that our methodology more closely meets application
requirements compared to other feasible policies.

✦

1 INTRODUCTION

THis document presents additional details
supplementing our IEEE Transactions on Parallel

and Distributed (TPDS) paper with the title “An
MDP-based Dynamic Optimization Methodology for
Wireless Sensor Networks”. This supplementary
material document is organized as follows. A
review of supplemental related work is given in
Section 2. Section 3 presents the formulation of
our proposed methodology as an MDP. Section 4
provides implementation guidelines and our proposed
methodology’s computational complexity. Section 5
provides model extensions to our proposed policy.
Numerical results for an ambient conditions monitoring
application are presented in Section 6.

2 RELATED WORK

This section presents additional related work not
summarized in the main paper. There is a lot of research
in the area of dynamic optimizations [1][2][3][4], but
however, most previous work focuses on the processor
or memory (cache) in computer systems. Whereas these
endeavors can provide valuable insights into WSN
dynamic optimizations, they are not directly applicable
to WSNs due to different design spaces, platform
particulars, and a sensor node’s tight design constraints.

Stevens-Navarro et al. [5] applied MDPs for vertical
handoff decisions in heterogeneous wireless networks.
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Although our work leverages the reward function idea
from their work, our work, for the first time to the best of
our knowledge, applies MDPs to dynamic optimizations
for WSNs.

Little previous work exists in the area of application
specific tuning and dynamic profiling in WSNs.
Sridharan et al. [6] obtained accurate environmental
stimuli by dynamically profiling the WSN’s operating
environment, however, they did not propose any
methodology to leverage these profiling statistics for
optimizations. Tilak et al. [7] investigated infrastructure
(referred to as sensor node characteristics, number of
deployed sensors, and deployment strategy) tradeoffs on
application requirements. The application requirements
considered were accuracy, latency, energy efficiency, fault
tolerance, goodput (ratio of total number of packets
received to the total number of packets sent), and
scalability. However, the authors did not delineate
the interdependence between low-level sensor node
parameters and high-level application requirements.
Kogekar et al. [8] proposed an approach for dynamic
software reconfiguration in WSNs using dynamically
adaptive software. Their approach used tasks to detect
environmental changes (event occurrences) and adapt
the software to the new conditions. Their work did not
consider sensor node tunable parameters. Kadayif et al.
[9] proposed an automated strategy for data filtering to
determine the amount of computation or data filtering
to be done at the sensor nodes before transmitting
data to the sink node. Unfortunately, the authors only
studied the effects of data filtering tuning on energy
consumption and did not consider other sensor node
parameters and application requirements.

Some previous and current work investigates
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WSN operation in changing application (mission)
requirements and environmental stimuli. Marrón et
al. [10] presented an adaptive cross-layer architecture
TinyCubus for TinyOS-based sensor networks that
allowed dynamic management of components (e.g.,
caching, aggregation, broadcast strategies) and reliable
code distribution considering WSN topology. TinyCubus
considered optimization parameters (e.g., energy,
communication latency, and bandwidth), application
requirements (e.g., reliability), and system parameters
(e.g., mobility). The system parameters selected the
best set of components based on current application
requirements and optimization parameters. Vecchio [11]
discussed adaptability in WSNs at three different levels:
communication-level (by tuning the communication
scheme), application-level (by software changes),
and hardware-level (by injecting new sensor nodes).
The international technology alliance in network and
information science (ITA), sponsored by the UK ministry
of defense (MoD) and US army research lab (ARL),
investigates task reassignment and reconfiguration
(including physical movement of sensor nodes or
reprocessing of data) of already deployed sensor nodes
in the sensor field in response to current or predicted
future conditions to provide the expected sensed
information at a sufficient quality [12]. However, ITA
current projects, to the best of our knowledge, do not
consider sensor node parameter tuning and our MDP-
based parameter tuning can optimize WSN operation
in changing application requirements.

Several papers explore DVFS for reduced energy
consumption. Pillai et al. [13] proposed real-time
dynamic voltage scaling (RT-DVS) algorithms capable
of modifying the operating systems’ real-time scheduler
and task management service for reduced energy
consumption. Childers et al. [14] proposed a technique
for adjusting supply voltage and frequency at run-
time to conserve energy. Their technique monitored
a program’s instruction-level parallelism (ILP) and
adjusted processor voltage and speed in response to
the current ILP. Their proposed technique allowed
users to specify performance constraints, which the
hardware maintained while running at the lowest energy
consumption.

Liu et al. [15] investigated reducing processor speed
by varying the supply and threshold voltages for
low power consumption in complementary metal-
oxide-semiconductor (CMOS) VLSI (very-large-scale
integration). Results showed that an optimized threshold
voltage revealed an 8x power savings without any
negative performance impacts. In addition, significantly
greater energy savings could be achieved by reducing
processor speed in tandem with threshold voltage.
Burd et al. [16] presented a microprocessor system
that dynamically varied its supply voltage and clock
frequency to deliver high throughput during critical
high-speed execution periods and extended battery life
during low-speed execution periods. Results revealed

that dynamic voltage scaling (DVS) could improve
energy efficiency by 10x for battery-powered processor
systems without sacrificing peak throughput.

Min et al. [17] demonstrated that dynamic voltage
scaling in a sensor node’s processor reduced energy
consumption. Their technique used a voltage scheduler,
running in tandem with the operating system’s task
scheduler, to adjust voltage and frequency based on
a priori knowledge of the predicted sensor node’s
workload. Yuan et al. [18] studied a DVFS system for
sensor nodes, which required sensor nodes sending data
to insert additional information into a transmitted data
message’s header such as the packet length, expected
processing time, and deadline. The receiving sensor node
used this message information to select an appropriate
processor voltage and frequency to minimize the overall
energy consumption.

Some previous works in WSN optimizations explore
greedy and simulated annealing (SA)-based methods.
Lysecky et al. [19] proposed an SA-based automated
application specific tuning of parameterized sensor-
based embedded systems and found that automated
tuning can improve WSN operation by 40% on average.
Verma [20] studied SA and particle swarm optimization
(PSO) methods for automated application specific
tuning and observed that SA performed better than
PSO because PSO often quickly converged to local
minima. In prior work, Munir et al. [21] proposed
greedy- and simulated annealing (SA)-based algorithms
for parameter tuning. Whereas greedy- and SA-based
algorithms are lightweight, these algorithms do not
ensure convergence to an optimal solution.

There exists previous work related to DVFS and
several initiatives towards application-specific tuning
were taken. Nevertheless, literature presents no
mechanisms to determine an optimal dynamic tuning
policy for sensor node parameters in accordance with
changing application requirements. To the best of our
knowledge, we propose the first methodology to address
WSN dynamic optimizations with the goal of meeting
application requirements in a dynamic environment.

3 DYNAMIC OPTIMIZATION FORMULATION AS
AN MDP
In this section, we describe the formulation of our WSN
dynamic optimization as an MDP. We formulate MDP-
based policy constructs (i.e., state space, decision epochs,
actions, state dynamics, policy, performance criterion,
and reward function) for our system. We also introduce
optimality equations and the policy iteration algorithm.

3.1 State Space

The state space for our MDP-based tuning methodology
is a composite state space containing the Cartesian
product of sensor node tunable parameters’ state spaces.
We define the state space S as:

S = S1 × S2 × · · · × SM : |S| = I (1)
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where × denotes the Cartesian product, M is the
total number of sensor node tunable parameters, Sk

denotes the state space for tunable parameter k where
k ∈ {1, 2, . . . ,M}, and |S| denotes the state space S
cardinality (the number of states in S).

The tunable parameter k’s state space (k ∈
{1, 2, . . . ,M}) Sk consists of n values:

Sk = {sk1
, sk2

, sk3
, . . . , skn

} : |Sk| = n (2)

where |Sk| denotes the tunable parameter k’s state space
cardinality (the number of tunable values in Sk). S
is a set of n-tuples where each n-tuple represents a
sensor node state s. Each state si is an n-tuple, i.e.,
si = (v1, v2, . . . , vM ) : vk ∈ Sk. Note that some n-tuples
in S may not be feasible (e.g., all processor voltage and
frequency pairs are not feasible) and can be regarded as
do not care tuples.

Each sensor node state has an associated power
consumption, throughput, and delay. The power,
throughput, and delay for state si are denoted by pi,
ti, and di, respectively. Since different sensor nodes
may have different embedded processors and attached
sensors, each node may have node specific power
consumption, throughput, and delay information for
each state.

3.2 Decision Epochs and Actions

Sensor nodes make decisions at decision epochs, which
occur after fixed time periods. The sequence of decision
epochs is represented as:

T = {1, 2, 3, ..., N}, N ≤ ∞ (3)

where the random variable N corresponds to the sensor
node’s lifetime.

At each decision epoch, a sensor node’s action
determines the next state to transition to given the
current state. The sensor node action in state i ∈ S is
defined as:

Ai = {ai,j} ∈ {0, 1} (4)

where ai,j denotes the action taken at time t that causes
the sensor node to transition to state j at time t+1 from
the current state i. A policy determines whether an action
is taken or not. If ai,j = 1, the action is taken and if
ai,j = 0, the action is not taken. For a given state i ∈ S,
a selected action can not result in a transition to a state
that is not in S. The action space can be defined as:

A =
{

a = [ai,j ] : {ai,j} ∈ {0, 1},

i = {1, 2, 3, ..., I}, j = {1, 2, 3, ..., I}
}

(5)

3.3 State Dynamics

The state dynamics of the system can be delineated
by the state transition probabilities of the embedded
Markov chain. We formulate our sensor node policy
as a deterministic dynamic program (DDP) because the

choice of an action determines the subsequent state with
certainty. Our sensor node DDP policy formulation uses
a transfer function to specify the next state. A transfer
function defines a mapping τt(s, a) from S × As → S,
which specifies the system state at time t + 1 when the
sensor node selects action a ∈ As in state s at time t. To
formulate our DDP as an MDP, we define the transition
probability function as:

pt(j|s, a) =

{

1 if τt(s, a) = j

0 if τt(s, a) 6= j.
(6)

3.4 Policy and Performance Criterion

For each given state s ∈ S, a sensor node selects an action
a ∈ As according to a policy π ∈ Π where Π is a set of
admissible policies defined as:

Π = {π : S → As|dt(s) ∈ As, ∀ s ∈ S} (7)

A performance criterion compares the performance of
different policies. The sensor node selects an action
prescribed by a policy based on the sensor node’s current
state. If the random variable Xt denotes the state at
decision epoch t and the random variable Yt denotes
the action selected at decision epoch t, then for the
deterministic case, Yt = dt (Xt).

As a result of selecting an action, the sensor node
receives a reward r (Xt, Yt) at time t. The expected
total reward denotes the expected total reward over the
decision making horizon given a specific policy. Let
υπ(s) denote the expected total reward over the decision
making horizon when the horizon length N is a random
variable, the system is in state s at the first decision
epoch, and policy π is used [5][22]:

υπ(s) = Eπ
s

[

EN

{

N
∑

t=1

r(Xt, Yt)

}]

(8)

where Eπ
s represents the expected reward with respect

to policy π and the initial state s (the system state
at the time of the expected reward calculation), and
EN denotes the expected reward with respect to the
probability distribution of the random variable N . We
can write (8) as [22]:

υπ(s) = Eπ
s

{

∞
∑

t=1

λt−1r(Xt, Yt)

}

(9)

which gives the expected total discounted reward. We
assume that the random variable N is geometrically
distributed with parameter λ and hence the distribution
mean is 1/(1−λ) [5]. The parameter λ can be interpreted
as a discount factor, which measures the present value
of one unit of reward received one period in the future.
Thus, υπ(s) represents the expected total present value
of the reward (income) stream obtained using policy π
[22]. Our objective is to find a policy that maximizes
the expected total discounted reward i.e., a policy π∗ is
optimal if

υπ∗

(s) ≥ υπ(s) ∀ π ∈ Π (10)
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3.5 Reward Function

The reward function captures application metrics
and sensor node characteristics. Our reward function
characterization considers the power consumption
(which affects the sensor node lifetime), throughput, and
delay application metrics. We define the reward function
f(s, a) given the current sensor node state s and the
sensor node’s selected action a as:

f(s, a) = ωpfp(s, a) + ωtft(s, a) + ωdfd(s, a) (11)

where fp(s, a) denotes the power reward function,
ft(s, a) denotes the throughput reward function, and
fd(s, a) denotes the delay reward function; ωp, ωt, and
ωd represent the weight factors for power, throughput,
and delay, respectively. The weight factors’ constraints
are given as

∑

m ωm = 1 where m = {p, t, d} such that
0 ≤ ωp ≤ 1, 0 ≤ ωt ≤ 1, and 0 ≤ ωd ≤ 1. The weight
factors are selected based on the relative importance
of application metrics with respect to each other, e.g.,
a habitat monitoring application taking camera images
of the habitat requires a minimum image resolution
to provide meaningful analysis that necessitates a
minimum throughput and therefor throughput can be
assigned a higher weight factor than the power metric
for this application.

We define linear reward functions for application
metrics because an application metric reward (objective
function) typically varies linearly, or piecewise linearly,
between the minimum and the maximum allowed
values of the metric [5][19]. However, a non-linear
characterization of reward functions is also possible and
depends upon the particular application. We point out
that our methodology works for any characterization of
reward function. The reward function characterization
only defines the reward obtained from operating in
a given state. Our MDP-based policy determines the
optimal reward by selecting an optimal operating state
given the sensor node design space and application
requirements for any reward function characterization.
We consider linear reward functions as a typical example
from the space of possible reward functions (e.g.,
piecewise linear, non-linear) to illustrate our MDP-based
policy. We define the power reward function (Fig. 1(a))in
(11) as:

fp(s, a) =















1, 0 < pa ≤ LP

(UP − pa)/(UP − LP ), LP < pa < UP

0, pa ≥ UP .

(12)
where pa denotes the power consumption of the
current state given action a taken at time t and the
constant parameters LP and UP denote the minimum
and maximum allowed/tolerated sensor node power
consumption, respectively.

We define the throughput reward function (Fig. 1(b))in

Fig. 1. Reward functions: (a) Power reward function
fp(s, a); (b) Throughput reward function ft(s, a); (c) Delay
reward function fd(s, a).

(11) as:

ft(s, a) =















1, ta ≥ UT

(ta − LT )/(UT − LT ), LT < ta < UT

0, ta ≤ LT .

(13)
where ta denotes the throughput of the current state
given action a taken at time t and the constant
parameters LT and UT denote the minimum and
maximum allowed/tolerated throughput, respectively.

We define the delay reward function (Fig. 1(c)) in (11)
as:

fd(s, a) =















1, 0 < da ≤ LD

(UD − da)/(UD − LD), LD < da < UD

0, da ≥ UD.

(14)
where da denotes the delay in the current state and the
constant parameters LD and UD denote the minimum
and maximum allowed/tolerated delay, respectively.

State transitioning incurs a cost associated with
switching parameter values from the current state to
the next state (typically in the form of power and/or
execution overhead). We define the transition cost
function h(s, a) as:

h(s, a) =

{

Hi,a if i 6= a

0 if i = a.
(15)

where Hi,a denotes the transition cost to switch from the
current state i to the next state as determined by action
a. Note that a sensor node incurs no transition cost if
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action a prescribes that the next state is the same as the
current state.

Hence, the overall reward function r(s, a) given state
s and action a at time t is:

r(s, a) = f(s, a)− h(s, a) (16)

which accounts for the power, throughput, and delay
application metrics as well as state transition cost.

We point out that many other application metrics
(e.g., security, reliability, and lifetime) are of immense
significance to WSNs. For example, WSNs are vulnerable
to security attacks such as distributed denial of
service and Sybil attacks for which a security reward
function can be included. A reliability reward function
can encompass the reliability aspect of WSNs since
sensor nodes are often deployed in unattended and
hostile environments and are susceptible to failures.
Similarly, considering sensor nodes’ constrained battery
resources, power optimization techniques exist that
put sensor nodes in sleep or low-power mode
(where communication and/or processing functions are
disabled) for power conservation when less activity
is observed in the sensed region as determined by
previously sensed data. These power optimizations
can be captured by a lifetime reward function. These
additional metrics incorporation in our model is the
focus of our future work.

3.6 Optimality Equation

The optimality equation, also known as Bellman’s
equation, for expected total discounted reward criterion
is given as [22]:

υ(s) = max
a∈As







r(s, a) +
∑

j∈S

λp(j|s, a)υ(j)







(17)

where υ(s) denotes the maximum expected total
discounted reward. The salient properties of the
optimality equation are: the optimality equation has
a unique solution; an optimal policy exists given
conditions on states, actions, rewards, and transition
probabilities; the value of the discounted MDP satisfies
the optimality equation; and the optimality equation
characterizes stationary policies.

The solution of (17) gives the maximum expected total
discounted reward υ(s) and the MDP-based optimal
policy π∗ (or πMDP ), which gives the maximum υ(s).
πMDP prescribes the action a from action set As given
the current state s for all s ∈ S. There are several
methods to solve the optimality equation (17) such as
value iteration, policy iteration, and linear programming,
however in this work we use the policy iteration
algorithm.

3.7 Policy Iteration Algorithm

The policy iteration algorithm can be described in four
steps:

1) Set l = 0 and choose any arbitrary decision rule
d0 ∈ D where D is a set of all possible decision
rules.

2) Policy evaluation - Obtain υl(s) ∀ s ∈ S by solving
the equations:

υl(s) = r(s, a) + λ
∑

j∈S

p(j|s, a)υl(j) (18)

3) Policy improvement - Select dl+1 ∀ s ∈ S to satisfy
the equations:

dl+1(s) ∈ argmax
a∈As







r(s, a) + λ
∑

j∈S

p(j|s, a)υl(j)







(19)
and setting dl+1 = dl if possible.

4) If dl+1 = dl, stop and set d∗ = dl where d∗ denotes
the optimal decision rule. If dl+1 6= dl, set l = l + 1
and go to step 2.

Step 2 is referred to as policy evaluation, because by
solving (18), we obtain the expected total discounted
reward for decision rule dl. Step 3 is referred to as policy
improvement, because this step selects a υl-improving
decision rule. In step 4, dl+1 = dl quells cycling, because
a decision rule is not necessarily unique.

4 IMPLEMENTATION GUIDELINES AND
COMPLEXITY

In this section, we describe the implementation
guidelines and computational complexity for
our proposed MDP-based optimal policy. The
implementation guidelines describe the mapping
of MDP-specifics (e.g., state space, reward function) in
our problem formulation (Section 3) to actual sensor
node hardware. The computational complexity focuses
on the convergence of the policy iteration algorithm and
the data memory analysis for our MDP-based dynamic
tuning methodology. The prototype implementation
of our MDP-based tuning methodology on hardware
sensor platforms is the focus of our future work.

4.1 Implementation Guidelines

In order to implement our MDP-based optimal policy,
particular values must be initially defined. The reward
function (16) uses the power, throughput, and delay
values offered in a sensor node state si (Section 3.1).
An application manager specifies the minimum and
maximum power, throughput, and delay values required
by (12), (13), and (14), respectively, and the power,
throughput, and delay weight factors required in (11)
according to application specifications.

A sensor node’s embedded processor defines
the transition cost Hi,a as required in (15), which
is dependent on a processor’s particular power
management and switching techniques. Processors have
a set of available voltage and frequency pairs, which
defines the Vp and Fp values, respectively, in a sensor
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node state tuple (Section 3.1). Embedded sensors can
operate at different defined sensing rates, which define
the Fs value in a sensor node state tuple (Section 3.1).
The embedded processor and sensor characteristics
determine the value of I , which characterizes the state
space in (1) (i.e., number of allowable processor voltage,
processor frequency, and sensing frequency values
determine the total number of sensor node operating
states, and thus the value of I).

The sensor nodes perform parameter tuning decisions
at decision epochs (Section ??). The decision epochs
can be guided by the dynamic profiler module to
adapt to the environmental stimuli. For instance, for a
target tracking application and a fast moving target, the
decision epoch period should be small to better capture
the fast moving target. On the other hand, for stationary
or slow moving targets, decision epoch period should
be large to conserve battery energy. However, since the
exact decision epoch period is application specific, the
period should be adjusted to control the sensor node
lifetime.

Both the MDP controller module (which implements
the policy iteration algorithm to calculate the MDP-based
optimal policy πMDP ) and the dynamic profiler module
(Section ??) can either be implemented as software
running on a sensor node’s embedded processor or
custom hardware for faster execution.

One of the drawbacks for MDP-based policy is that
computational and storage overhead increases as the
number of states increases. Therefore, WSN designer
would like to restrict the sensor states (e.g., 2, 4, or 16,
etc.) to reduce the computational and storage overhead.
If state restriction is not a viable option, the WSN
configuration could be augmented with a back end base
station node to run our MDP-based optimization and the
sensor node operating states would be communicated
to the sensor nodes. This communication of operating
state information to sensor nodes by the base station
node would not consume enough power resources given
that this state information is transmitted periodically
and/or aperiodically after some minimum duration
determined by the agility of the environmental stimuli
(e.g., more frequent communication would be required
for a rapidly changing environmental stimuli as opposed
to a slow changing environmental stimuli). This WSN
configuration could also consider global optimizations,
which are optimizations that take into account sensor
node interactions and dependencies and is a focus of
our future work. We point out that global optimization
storage and processing overhead increases rapidly as the
number of sensor nodes in WSN increases.

4.2 Computational Complexity

Since sensor nodes have limited energy reserves and
processing resources, it is critical to analyze our
proposed MDP-based optimal policy’s computational
complexity, which is related to the convergence of

the policy iteration algorithm. Since our problem
formulation (Section 3) consists of finite states and
actions, [22] proves a theorem that establishes the
convergence of the policy iteration algorithm for finite
states and actions in a finite number of iterations.
Another important computational complexity factor is
the algorithm’s convergence rate. [22] shows that for a
finite number of states and actions, the policy iteration
algorithm converges to the optimal value function at
least quadratically fast. Empirical observations suggest
that the policy iteration algorithm can converge in
O(ln |S|) iterations where each iteration takes O(|S|3)
time (for policy evaluation), however, no proof yet
exists to verify these empirical observations [23]. Based
on these empirical observations for convergence, policy
iteration algorithm can converge in 4 iterations for |S| =
64 .

4.3 Data Memory Analysis

We performed data memory analysis using the 8-bit
Atmel ATmega128L microprocessor [24] in XSM sensor
nodes [25]. The Atmel ATmega128L microprocessor
contains 128 KB of on-chip in-system reprogrammable
flash memory for program storage, 4 KB of internal
SRAM data memory, and up to 64 KB of external SRAM
data memory. Integer and floating point data types
require 2 and 4 bytes of storage, respectively. Our data
memory analysis considers all storage requirements for
our MDP-based dynamic tuning formulation (Section 3)
including state space, action space, state dynamics
(transition probability matrix), Bellman’s equation (17),
MDP reward function calculation (reward matrix), and
policy iteration algorithm. We estimate data memory size
for three sensor node configurations:

• 4 sensor node states with 4 allowable actions in each
state (16 actions in the action space) (Fig. ??)

• 8 sensor node states with 8 allowable actions in each
state (64 actions in the action space)

• 16 sensor node states with 16 allowable actions in
each state (256 actions in the action space)

Data memory analysis revealed that 4, 8, and 16 sensor
node state configurations required approximately 1.55
KB, 14.8 KB, and 178.55 KB, respectively. Thus, currently
available sensor node platforms contain enough memory
resources to implement our MDP-based dynamic tuning
methodology with 16 sensor nodes states or fewer.
However, the memory requirements increase rapidly as
the number of states increases due to the transition
probability matrix and reward matrix specifications.
Therefore, depending upon available memory resources,
an application developer could restrict the number of
states accordingly or otherwise would have to resort
to back-end base station based computational policy as
outlined in Section 4.1 to conserve power and storage.
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5 MODEL EXTENSIONS

Our proposed MDP-based dynamic tuning methodology
for WSNs is highly adaptive to different WSN
characteristics and particulars, including additional
sensor node tunable parameters (e.g., radio transmission
power) and application metrics (e.g., reliability).
Furthermore, our problem formulation can be extended
to form MDP-based stochastic dynamic programs.
Our current MDP-based dynamic optimization
methodology provides a basis for MDP-based stochastic
dynamic optimization that would react to changing
environmental stimuli and wireless channel conditions
to autonomously switch to an appropriate operating
state. This stochastic dynamic optimization would
provide a major incentive to use an MDP-based policy
(because of the capability of MDP to formulate stochastic
dynamic programs) as opposed to using lightweight
heuristic policies (e.g., greedy- or simulated annealing-
based) for parameter tuning that can determine an
appropriate operating state out of a large state space
without requiring large computational and memory
resources [26].

To exemplify additional tuning parameters, we
consider a sensor node’s transceiver (radio) transmission
power. The extended state space can be written as:

S = Vp × Fp × Fs × Ptx (20)

where Ptx denotes the state space for a sensor node’s
radio transmission power.

We define the sensor node’s radio transmission power
state space Ptx as:

Ptx = {Ptx1
, Ptx2

, Ptx3
, . . . , Ptxm

} : |Ptx| = m (21)

where Ptxi
∈ Ptx ∀ i ∈ {1, 2, 3, ...,m} denotes a radio

transmission power, m denotes the number of radio
transmission power values, and |Ptx| = m denotes the
radio transmission power state space cardinality.

To exemplify the inclusion of additional application
metrics, we consider reliability, which measures the
reliability of sensed data, such as the total number
of sensed data packets received at the sink node
without error in an arbitrary time window. The
reliability can be interpreted as the packet reception
rate, which is the complement of the packet error
rate (PER) [27]. The factors that affect reliability
include wireless channel condition, network topology,
traffic patterns, and the physical phenomenon that
triggered the sensor node communication activity [27].
In general, the wireless channel condition has the most
affect on the reliability metric, because sensed data
packets may experience different error rates depending
upon the channel condition. A sensor node may
maintain application specified reliability in different
wireless channel conditions by tuning/changing the
error correcting codes, modulation schemes, and/or
transmission power. The dynamic profiler module in
our proposed tuning methodology helps estimating the

Fig. 2. Reliability reward functions: (a) linear variation; (b)
quadratic variation.

reliability metric at runtime by profiling the number of
packet transmissions from each sensor node and the
number of packet receptions at the sink node.

The sensor node’s reliability can be added to the
reward function and the extended reward function can
be written as:

f(s, a) = ωpfp(s, a) + ωtft(s, a)

+ ωdfd(s, a) + ωrfr(s, a) (22)

where fr(s, a) denotes the reliability reward function,
ωr represents the weight factor for reliability, and the
remainder of the terms in (22) have the same meaning
as in (11). The weight factors’ constraints are given as
∑

m ωm = 1 where m = {p, t, d, r} such that 0 ≤ ωp ≤ 1,
0 ≤ ωt ≤ 1, 0 ≤ ωd ≤ 1, and 0 ≤ ωr ≤ 1.

The reliability reward function (Fig. 2(a)) in (22) can
be defined as:

fr(s, a) =















1, ra ≥ UR

(ra − LR)/(UR − LR), LR < ra < UR

0, ra ≤ LR.

(23)
where ra denotes the reliability offered in the current
state given action a taken at time t and the constant
parameters LR and UR denote the minimum and
maximum allowed/tolerated reliability, respectively. The
reliability may be represented as a multiple of a base
reliability unit equal to 0.1, which represents a 10%
packet reception rate [27].

The reward function capturing an application’s
metrics can be defined according to particular
application requirements, and may vary quadratically
(Fig. 2(b)) instead of linearly (as defined above) over
the minimum and maximum allowed parameter values
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and can be expressed as:

fr(s, a) =















1, ra ≥ UR

(ra − LR)
2/(UR − LR)

2, LR < ta < UR

0, ra ≤ LR.

(24)
Thus, our proposed MDP-based dynamic tuning
methodology works with any reward function
formulation.

Currently, our problem formulation considers a DDP
with fixed states and state transition probabilities equal
to 1 (Section 3.3), however, our formulation can be
extended to form stochastic dynamic programs with
different state transition probabilities [28]. One potential
extension could include environmental stimuli and
wireless channel condition in the state space. The
environmental stimuli and wireless channel condition
vary with time and have a different probability of being
in a certain state at a given point in time. For instance,
considering the wireless channel condition along with
the sensor node state, the state space vector s(t) can be
given as:

s(t) = [ss(t), sc(t)]

= [ss,1(t), ss,2(t), . . . , ss,I(t),

sc,1(t), sc,2(t), . . . , sc,J(t)] (25)

where ss(t) and sc(t) represent sensor state and wireless
channel state at time t assuming that there are I total
sensor states and J total wireless channel states. The
state dynamics could be given by pt(j|t, s, a) which
denotes the probability that the system occupies state
j in t time units given s and a. If the wireless
channel condition does not change state with time
then pt(j|t, s, a) = 1 ∀ t thus forming a DDP.
The determination of pt(j|t, s, a) requires probabilistic
modeling of wireless channel condition over time and
is the focus of our future work.

6 NUMERICAL RESULTS

In this section, we present sensitivity analysis and
convergence results for our MDP-based policy. Rest of
the results are presented int the main paper.

6.1 Sensitivity Analysis

An application manager can assign values to MDP
reward function parameters, such as Hi,a, LP , UP ,
LT , UT , LD, UD, ωp, ωt, and ωd,0 before a WSN’s
initial deployment according to projected/anticipated
application requirements. However, the average sensor
node lifetime (calculated from λ) may not be accurately
estimated at the time of initial WSN deployment, as
environmental stimuli and wireless channel conditions
vary with time and may not be accurately anticipated.
The sensor node lifetime depends on sensor node
activity (both processing and communication), which
varies with the changing environmental stimuli and

wireless channel conditions. Sensitivity analysis analyzes
the effects of changes in average sensor node lifetime
after initial deployment on the expected total discounted
reward. Thus, if the actual lifetime is different than the
estimated lifetime, what is the loss in total expected
discounted reward if the actual lifetime had been
accurately predicted at deployment.

WSN sensitivity analysis can be carried out with the
following steps: [5]:

1) Determine the expected total discounted reward
given the actual average sensor node lifetime l =
1/(1− λ), referred to as the Optimal Reward Ro.

2) Let l̂ denote the estimated average sensor node
lifetime and δl denote the percentage change
from the actual average sensor node lifetime (i.e.,
l̂ = (1 + δl)l). l̂ results in a suboptimal policy
with a corresponding suboptimal total expected
discounted reward, referred to as Suboptimal
Reward Rso.

3) The Reward Ratio r is the ratio of the suboptimal
reward to the optimal reward (i.e., r = Rso/Ro),
which indicates suboptimal expected total
discounted reward variation with the average
sensor node lifetime estimation inaccuracy.

It can be shown that the reward ratio varies from
(0,2] as δl varies from (-100%, 100%]. The reward ratio’s
ideal value is 1, which occurs when the average sensor
node lifetime is accurately estimated/predicted (l̂ = l
corresponding to δl = 0). Sensitivity analysis revealed
that our MDP-based policy is sensitive to accurate
determination of parameters, especially average lifetime,
because inaccurate average sensor node lifetime results
in a suboptimal expected total discounted reward. The
dynamic profiler module (Fig. ??) measures/profiles
the remaining battery energy (lifetime) and sends this
information to the application manager along with
other profiled statistics (Section ??), which helps in
accurate estimation of λ. Estimating λ using the dynamic
profiler’s feedback ensures that the estimated average
sensor node lifetime differs only slightly from the
actual average sensor node lifetime, and thus helps in
maintaining a reward ratio close to 1.

6.2 Number of Iterations for Convergence

The policy iteration algorithm determines πMDP and
the corresponding expected total discounted reward on
the order of O(ln(|S|)) (Section 4.2). In our numerical
results with four sensor node states, the policy iteration
algorithm converges in two iterations on average.
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