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Abstract—Wireless sensor networks (WSNs) are distributed systems that have proliferated across diverse application domains (e.g.,

security/defense, health care, etc.). One commonality across all WSN domains is the need to meet application requirements (i.e.,

lifetime, responsiveness, etc.) through domain specific sensor node design. Techniques such as sensor node parameter tuning enable

WSN designers to specialize tunable parameters (i.e., processor voltage and frequency, sensing frequency, etc.) to meet these

application requirements. However, given WSN domain diversity, varying environmental situations (stimuli), and sensor node

complexity, sensor node parameter tuning is a very challenging task. In this paper, we propose an automated Markov Decision

Process (MDP)-based methodology to prescribe optimal sensor node operation (selection of values for tunable parameters such as

processor voltage, processor frequency, and sensing frequency) to meet application requirements and adapt to changing

environmental stimuli. Numerical results confirm the optimality of our proposed methodology and reveal that our methodology more

closely meets application requirements compared to other feasible policies.

Index Terms—Wireless sensor networks, dynamic optimization, MDP.

Ç

1 INTRODUCTION AND MOTIVATION

WIRELESS sensor networks are distributed systems
consisting of spatially distributed autonomous sensor

nodes that span diverse application domains (e.g., security
and defense, industrial automation, and logistics, etc.).
However, this wide application diversity combined with
increasing complexity, functionality requirements, and
highly constrained operating environments make WSN
design very challenging.

One critical WSN design challenge involves meeting
application requirements such as reliability, lifetime, through-
put, delay (responsiveness), etc., for myriad of application
domains. For example, a vineyard irrigation system may
require less responsiveness to environmental stimuli (i.e.,
decreased irrigation during wet periods), but have a long
lifetime requirement. On the other hand, in a disaster relief
application, sensor nodes may require high responsiveness
but have a short lifetime. Additional requirements may
include high adaptability to rapid network changes as sensor
nodes are destroyed. Meeting these application specific
requirements is critical to accomplishing the application’s
assigned function. Nevertheless, satisfying these demands in
a scalable and cost-effective way is a challenging task.

Commercial off-the-shelf (COTS) sensor nodes have
difficulty meeting application requirements due to inherent

manufacturing traits. In order to reduce manufacturing
costs, generic COTS sensor nodes capable of implementing
nearly any application are produced in large volumes, and
are not specialized to meet any specific application
requirements. In order to meet application requirements,
sensor nodes must possess tunable parameters. Fortunately,
some COTS have tunable parameters such as processor
voltage, processor frequency, sensing frequency, radio
transmission power, and radio transmission frequency, etc.

Sensor node parameter tuning is the process of determin-
ing appropriate parameter values which meet application
requirements. However, determining such values presents
several tuning challenges. First, application managers (the
individuals responsible for WSN deployment and manage-
ment) typically lack sufficient technical expertise [1], [2], as
many managers are nonexperts (i.e., biologists, teachers,
structural engineers, agriculturists, etc.). In addition, para-
meter value tuning is still a cumbersome and time-
consuming task even for expert application managers due
to unpredictable WSN environments and difficulty in
creating accurate simulation environments. Second, se-
lected parameter values may not be optimal. Given a highly
configurable sensor node with many tunable parameters
and with many values for each tunable parameter, choosing
the optimal combination is difficult. In addition, unantici-
pated changes in the sensor node’s environment can alter
optimal parameter values. For example, a sensor node
designed to monitor a short-lived volcanic eruption may
need to operate for more months/years than expected if
earthquakes alter magma flow.

To ease parameter value selection, dynamic optimizations
enable sensor nodes to dynamically tune their parameter
values in situ according to application requirements and
environmental stimuli. This dynamic tuning of parameters
ensures that a WSN performs the assigned task optimally,
enabling the sensor node to constantly conform to the
changing environment. Besides, the application manager
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need not know sensor node and/or dynamic optimization
specifics, thus easing parameter tuning for nonexpert
application managers.

There is a lot of research in the area of dynamic
optimizations [3], [4], [5], [6], but, however, most previous
work focuses on the processor or memory (cache) in
computer systems. Whereas these endeavors can provide
valuable insights into WSN dynamic optimizations, they are
not directly applicable to WSNs due to different design
spaces, platform particulars, and a sensor node’s tight
design constraints.1

In this paper, we propose an application-oriented
dynamic tuning methodology for WSNs based on Markov
Decision Process (MDP). Our MDP-based application-
oriented tuning methodology performs dynamic voltage,
frequency, and sensing (sampling) frequency scaling
(DVFS2). MDP is an appropriate candidate for WSN
dynamic optimizations where dynamic decision making is
a requirement in light of changing environmental stimuli
and wireless channel condition. We focus on DVFS2 for
several reasons. Traditional microprocessor-based systems
use dynamic voltage and frequency scaling (DVFS) for
energy optimizations. However, sensor nodes are distinct
from traditional systems in that they have embedded
sensors coupled with an embedded processor. Therefore,
DVFS only provides a partial tuning methodology and does
not consider sensing frequency. Sensing frequency tuning is
essential for sensor nodes to meet application requirements
because the sensed data delay (the delay between the sensor
sensing the data and the data’s reception by the application
manager) depends upon the sensor node sensing frequency
as it influences the amount of processed and communicated
data. Thus, DVFS2 provides enhanced optimization poten-
tial as compared to DVFS with respect to WSNs.

Our main contributions in this paper are

. To the best of our knowledge, we propose for the
first time a Markov Decision Process for WSN
dynamic optimization. MDP is suitable for WSN
dynamic optimization because of MDP’s inherent
ability to perform dynamic decision making. This
paper presents a first step toward MDP-based
dynamic optimization.

. Our MDP-based dynamic optimization methodol-
ogy gives an optimal policy that performs DVFS2
and specifies optimal sensor node parameters for
WSN lifetime.

. Our MDP-based dynamic tuning methodology is
optimal in any given situation.

. Our MDP-based dynamic tuning methodology can
adapt to changing application requirements and
environmental stimuli.

. We provide implementation guidelines for our
proposed dynamic tuning methodology in sensor
nodes.

We compare our proposed MDP-based application oriented
dynamic tuning methodology with several fixed heuristics.
The results show that our proposed methodology outper-
forms other heuristics for given application requirements.

The broader impacts of our research includes facilitating

WSN designers (persons who design WSNs for an applica-

tion) to better meet application requirements by selecting

optimal tunable parameter values for each sensor node. As

this paper presents a first step toward MDP-based dynamic

optimization, our work can potentially spark further
research in MDP-based optimizations for WSNs.

2 MDP-BASED TUNING OVERVIEW

In this section, we present our MDP-based tuning methodol-

ogy along with an MDP overview with respect to WSNs [7].

2.1 MDP-Based Dynamic Optimization Methodology
for Wireless Sensor Networks

Fig. 1 depicts the process diagram for our MDP-based

dynamic optimization methodology. Our methodology

consists of three logical domains: the application character-

ization domain, the communication domain, and the sensor

node tuning domain.
The application characterization domain refers to the WSN

application’s characterization/specification. In this domain,

the application manager defines various application metrics

(e.g., tolerable power consumption, tolerable delay, etc.),

which are calculated from (or based on) application

requirements. The application manager also assigns weight

factors to application metrics to signify the weightage or

importance of each application metric with respect to each

other. Weight factors provide application managers with an

easy method to relate the relative importance of each

application metric. The application manager defines an

MDP reward function which signifies the overall reward

(revenue) for given application requirements. The applica-
tion metrics along with associated weight factors, represent

the MDP reward function parameters.
The communication domain contains the sink node (which

gathers statistics from the sensor nodes) and encompasses

the communication network between the application

manager and the sensor nodes. The application manager

transmits the MPD reward function parameters to the sink
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1. Additional related work in the literature is presented in Section 2 of
the supplementary material document posted online.

Fig. 1. Process diagram for our MDP-based dynamic optimization
methodology for wireless sensor networks.



node via the communication domain. The sink node in turn
relays reward function parameters to the sensor nodes.

The sensor node tuning domain consists of sensor nodes and
performs sensor node tuning (determination of optimal
parameter values for the sensor node to meet application
requirements). Each sensor node contains an MDP controller
module which implements our MDP-based dynamic optimi-
zation methodology. After a sensor node receives reward
function parameters from the sink node through the
communication domain, the sensor node invokes the MDP
controller module. The MDP controller module calculates the
MDP-based optimal policy. The MDP-based optimal policy
prescribes the optimal sensor node actions to meet applica-
tion requirements over the lifetime of the sensor node. An
action prescribes the sensor node state (defined by processor
voltage, processor frequency, and sensing frequency) in
which to transition from the current state. The sensor node
identifies its current operating state, determines an action “a”
prescribed by the MDP-based optimal policy (i.e., whether to
continue operation in the current state or transition to
another state) and subsequently executes action “a.”

Our proposed MDP-based dynamic tuning methodology
can adapt to changes in application requirements (since
application requirements may change with time, e.g., a
defense system initially deployed to monitor enemy troop
position for four months may later be required to monitor
troop activity for an extended period of six months).
Whenever application requirements change, the application
manager updates the reward function (and/or associated
parameters) to reflect the new application requirements.
Upon receiving the updated reward function, the sensor
node reinvokes MDP controller module and determines the
new MDP-based policy to optimally meet the new applica-
tion requirements.

Our MDP-based dynamic optimization methodology
reacts to environmental stimuli via a dynamic profiler module
in the sensor node tuning domain. The dynamic profiler
module monitors environmental changes over time and
captures unanticipated environmental situations not pre-
dictable at design time [8]. The dynamic profiler module
may be connected to the sensor node and profiles the
profiling statistics (e.g., wireless channel condition, number
of packets dropped, packet size, radio transmission power,
etc.) when triggered by the WSN application. The dynamic
profiler module informs the application manager of the
profiled statistics via the communication domain. After
receiving the profiling statistics, the application manager
evaluates the statistics and possibly updates the reward
function parameters. This reevaluation process may be
automated, thus eliminating the need for continuous
application manager input. Based on these received profil-
ing statistics and updated reward function parameters, the
sensor node MDP controller module determines whether
application requirements are met or not met. If application
requirements are not met, the MDP controller module
reinvokes the MDP-based optimal policy to determine a
new operating state to better meet application require-
ments. This feedback process continues to ensure that the
application requirements are met in the presence of
changing environmental stimuli.

2.2 MDP Overview with Respect to Wireless Sensor
Networks

In this section, we define basic MDP terminology in the
context of WSNs and give an overview of our proposed
MDP-based dynamic optimization methodology for sensor
nodes. MDPs, also known as stochastic dynamic program-
ming, are used to model and solve dynamic decision
making problems. We use standard notations as defined in
[9] for our MDP-based problem formulation.2

The basic elements of an MDP model are: decision epochs
and periods, states, action sets, transition probabilities, and
rewards. An MDP is Markovian (memoryless) because the
transition probabilities and rewards depend on the past
only through the current state and the action selected by the
decision maker in that state.

Decision epochs. The decision epochs refer to the points of
time during a sensor node’s lifetime at which the sensor node
makes a decision. Specifically, a sensor node makes a
decision regarding its operating state at these decision
epochs, i.e., whether to continue operating at the current
state (processor voltage, frequency, and sensing frequency),
or transition to another state. We consider a discrete time
process where time is divided into periods and a decision
epoch corresponds to the beginning of a period. The set of
decision epochs can be denoted as T ¼ f1; 2; 3; . . . ; Ng,
where N � 1 and denotes the sensor node’s lifetime (each
individual time period in T can be denoted as time t). The
decision problem is referred to as a finite horizon problem when
the decision making horizon N is finite and infinite horizon
otherwise. In a finite horizon problem, the final decision is
made at decision epoch N � 1; hence, the finite horizon
problem is also known as the N � 1 period problem.

State space and action set. The system (a sensor node)
operates in a particular state at each decision epoch, where S
denotes the complete set of possible system states (i.e., state
space). States specify particular sensor node parameter
values and each state represents a different combination of
these values.

The state space for our MDP-based tuning methodology
is a composite state space containing the Cartesian product
of sensor node tunable parameters’ state spaces. We define
the state space S as

S ¼ S1 � S2 � � � � � SM : jSj ¼ I; ð1Þ

where � denotes the Cartesian product, M is the total
number of sensor node tunable parameters, Sk denotes the
state space for tunable parameter k where k 2 f1; 2; . . . ;Mg,
and jSj denotes the state space S cardinality (the number of
states in S).

An action set represents all allowable actions in all
possible states. At each decision epoch, the sensor node
decides whether to continue operating in the current state
or to switch to another state. The sensor node state (in our
problem) represents a tuple consisting of processor voltage
ðVpÞ, processor frequency ðFpÞ, and sensing frequency ðFsÞ.
If the system is in state s 2 S at a decision epoch, the sensor
node can choose an action a from the set of allowable
actions As in state s. Thus, an action set can be written as
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A ¼
S
s2S As. We assume that S and As do not vary with

time t [9].
Decision rule. A decision rule prescribes an action in each

state at a specified decision epoch. Our decision rule for
sensor nodes is a function dt : S ! As which specifies the
action at time t when the system is in state s for each s 2 S,
dtðsÞ 2 As. This decision rule is both Markovian and
deterministic.

State dynamics. When a sensor node selects action a 2
As in state s, the sensor node receives a reward rtðs; aÞ and
the transition probability distribution ptð�js; aÞ determines the
system state at the next decision epoch. The real-valued
function rtðs; aÞ denotes the value of the reward received at
time t in period t. The reward is referred to as income or
cost depending on whether or not rtðs; aÞ is positive or
negative, respectively. When the reward depends on the
system state at the next decision epoch, we let rtðs; a; jÞ
denote the value of the reward received at time t when the
system state at decision epoch t is s. The sensor node selects
action a 2 As, and the system occupies the state j at decision
epoch tþ 1. The sensor node evaluates rtðs; aÞ using [9]

rtðs; aÞ ¼
X
j2S

rtðs; a; jÞptðjjs; aÞ; ð2Þ

where the nonnegative function ptðjjs; aÞ is called a
transition probability function which governs the state
dynamics. ptðjjs; aÞ denotes the probability that the system
occupies state j 2 S at time tþ 1 when the sensor node
selects action a 2 As in state s at time t and usuallyP

j2S ptðjjs; aÞ ¼ 1. Formally, an MDP is defined as the
collection of objects fT; S;As; ptð�js; aÞ; rtðs; aÞg.

Policy. A policy specifies the decision rule for all decision
epochs. In the case of sensor nodes, the policy prescribes
action selection under any possible system state. A policy �
is a sequence of decision rules, i.e., � ¼ ðd1; d2; d3; . . . ; dN�1Þ
for N � 1. A policy is stationary if dt ¼ d 8 t 2 T , i.e., for
stationary policy � ¼ ðd; d; d; . . . ; dÞ.

Reward. As a result of selecting and implementing a
particular policy, the sensor node receives rewards at time
periods f1; 2; 3; . . . ; Ng. The reward sequence is random,
because the rewards received in different periods are not
known prior to policy implementation. The sensor node’s
optimization objective is to determine a policy which
maximizes the corresponding random reward sequence.

As a result of selecting an action, the sensor node receives
a reward rðXt; YtÞ at time t. The expected total reward denotes
the expected total reward over the decision making horizon
given a specific policy. Let ��ðsÞ denote the expected total
reward over the decision making horizon when the horizon
length N is a random variable, the system is in state s at the
first decision epoch, and policy � is used [10], [9]

��ðsÞ ¼ E�
s EN

XN
t¼1

rðXt; YtÞ
( )" #

; ð3Þ

where E�
s represents the expected reward with respect to

policy � and the initial state s (the system state at the time of
the expected reward calculation), and EN denotes the
expected reward with respect to the probability distribution
of the random variable N . We can write (3) as [9]

��ðsÞ ¼ E�
s

X1
t¼1

�t�1rðXt; YtÞ
( )

; ð4Þ

which gives the expected total discounted reward. We assume
that the random variableN is geometrically distributed with
parameter � and hence the distribution mean is 1=ð1� �Þ
[10]. The parameter � can be interpreted as a discount factor,
which measures the present value of one unit of reward
received one period in the future. Thus, ��ðsÞ represents the
expected total present value of the reward (income) stream
obtained using policy � [9].

The reward function captures application metrics and
sensor node characteristics. Our reward function character-
ization considers the power consumption (which affects the
sensor node lifetime), throughput, and delay application
metrics. We define the reward function fðs; aÞ given the
current sensor node state s and the sensor node’s selected
action a as

fðs; aÞ ¼ !pfpðs; aÞ þ !tftðs; aÞ þ !dfdðs; aÞ; ð5Þ

where fpðs; aÞ denotes the power reward function, ftðs; aÞ
denotes the throughput reward function, and fdðs; aÞ
denotes the delay reward function; !p, !t, and !d represent
the weight factors for power, throughput, and delay,
respectively. The weight factors’ constraints are given asP

m !m ¼ 1 where m ¼ fp; t; dg such that 0 � !p � 1,
0 � !t � 1, and 0 � !d � 1. The weight factors are selected
based on the relative importance of application metrics with
respect to each other.

We define linear reward functions for application
metrics because an application metric reward (objective
function) typically varies linearly, or piecewise linearly,
between the minimum and the maximum allowed values of
the metric [10], [11]. We define the power reward function
in (5) as

fpðs; aÞ ¼
1; 0 < pa � LP
ðUP � paÞ=ðUP � LP Þ; LP < pa < UP
0; pa � UP ;

8<
: ð6Þ

where pa denotes the power consumption of the current state
given action a taken at time t and the constant parametersLP
and UP denote the minimum and maximum allowed/
tolerated sensor node power consumption, respectively.3

Optimality equation. The optimality equation, also
known as Bellman’s equation, for expected total discounted
reward criterion is given as [9]

�ðsÞ ¼ max
a2As

rðs; aÞ þ
X
j2S

�pðjjs; aÞ�ðjÞ
( )

; ð7Þ

where �ðsÞ denotes the maximum expected total discounted
reward.

3 NUMERICAL RESULTS

In this section, we compare the performance (based on the
expected total discounted reward criterion (4)) of our
proposed MDP-based DVFS2 optimal policy �� ð�MDP Þ
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with several fixed heuristic policies using a representative

WSN platform. We use the Matlab MDP tool box [12]
implementation of our policy iteration algorithm [9] to solve

Bellman’s equation (7) to determine the MDP-based optimal

policy. We select sensor node state parameters based on

eXtreme Scale Motes (XSM) [13], [14]. The XSM motes have

an average lifetime of 1,000 hours of continuous operation
with two AA alkaline batteries, which can deliver 6 Whr or

an average of 6 mW [13]. The XSM platform integrates an

Atmel ATmega128L microcontroller [15], a Chipcon CC1000

radio operating at 433 MHz, and a 4 Mbit serial flash
memory. The XSM motes contain infrared, magnetic,

acoustic, photo, and temperature sensors.
To represent sensor node operation, we analyze sample

application domains that represent a typical security system

or defense application (henceforth referred to as a security/

defense system) [7], health care application, and ambient

conditions monitoring application.4 For brevity, we select a
single sample WSN platform configuration and several

application domains, but we point out that our proposed

MDP model and methodology works equally well for any

other WSN platform and application.
For each application domain, we evaluate the effects of

different discount factors, different state transition costs, and
different application metric weight factors on the expected

total discounted reward for our MDP-based optimal policy

and several fixed heuristic policies (Section 3.1). The

magnitude of difference in the total expected discounted
reward for different policies is important as it provides

relative comparisons between the different policies.

3.1 Fixed Heuristic Policies for Performance
Comparisons

Due to the infancy of WSN dynamic optimizations, there

exist no dynamic sensor node tuning methods for compar-
ison with our MDP-based policy. Therefore, we compare to

several fixed heuristic policies (heuristic policies have been

shown to be a viable comparison method [10]). To provide a

consistent comparison, fixed heuristic policies use the same
reward function and associated parameter settings as that

of our MDP-based policy. We consider the following four

fixed heuristic policies:

. A fixed heuristic policy �POW which always selects
the state with the lowest power consumption.

. A fixed heuristic policy �THP which always selects
the state with the highest throughput.

. A fixed heuristic policy �EQU which spends an equal
amount of time in each of the available states.

. A fixed heuristic policy �PRF which spends an
unequal amount of time in each of the available
states based on a specified preference for each state.
For example, given a system with four possible
states, the �PRF policy may spend 40 percent of time
in the first state, 20 percent of time in the second
state, 10 percent of time in the third state, and
30 percent of time in the fourth state.

3.2 MDP Specifications

We compare different policies using the expected total
discounted reward performance criterion (7). The state
transition probability for each sensor node state is governed
by state dynamics (Section 2.2). The sensor node’s lifetime
and the time between decision epochs are subjective and
may be assigned by an application manager according to
application requirements. A sensor node’s mean lifetime is
given by 1=ð1� �Þ time units, which is the time between
successive decision epochs (which we assume to be 1 hour).
For instance for � ¼ 0:999, the sensor node’s mean lifetime
is 1=ð1� 0:999Þ ¼ 1;000 hours � 42 days.

For our numerical results, we consider a sensor node
capable of operating in four different states, i.e., I ¼ 4 in (1).
Table 1 summarizes state parameter values for each of the
four states s1, s2, s3, and s4. We define each state using a
½Vp; Fp; Fs	 tuple where Vp is specified in volts, Fp in MHz,
and Fs in KHz. For instance, state one s1 is defined as
½2:7; 2; 2	, which corresponds to a processor voltage of
2.7 volts, a processor frequency of 2 MHz, and a sensing
frequency of 2 KHz (2,000 samples per second). We
represent state si 8 i 2 f1; 2; 3; . . . ; Ig power consumption,
throughput and delay as multiples of power, throughput,
and delay base units, respectively. We assume one base
power unit is equal to 1 mW, one base throughput unit is
equal to 0.5 Millions of Instructions per Second (MIPS), and
one base delay unit is equal to 50 ms. We assign base units
such that these units provide a convenient representation of
application metrics (power, throughput, delay). We point
out, however, any other feasible base unit values can be
assigned [10]. We assume, without loss of generality, that
the transition cost for switching from one state to another is
Hi;a ¼ 0:1 if i 6¼ a. The transition cost could be a function of
power, throughput, and delay but we assume a constant
transition cost for simplicity as it is typically constant for
different state transitions [15].

Our selection of the state parameter values in Table 1
corresponds to XSM mote specifications [13], [15]. The XSM
mote’s Atmel ATmega128L microprocessor has an operat-
ing voltage range of 2.7 to 5.5 V and a processor frequency
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4. Numerical results for an ambient conditions monitoring application
are presented in Section 6.1 of the supplementary material document posted
online.

TABLE 1
Parameters for Wireless Sensor Node State si ¼ ½Vp; Fp; Fs	 (Vp is specified in volts, Fp in MHz, and Fs in KHz)

Parameters are specified as a multiple of a base unit where one power unit is equal to 1 mW, one throughput unit is equal to 0.5 MIPS, and one delay
unit is equal to 50 ms. Parameter values are based on the XSM mote.



range of 0 to 8 MHz. The ATmega128L throughput varies
with processor frequency at 1 MIPS per MHz, thus allowing
an application manager to optimize power consumption
versus processing speed [15]. Our chosen sensing frequency
also corresponds with standard sensor node specifications.
The Honeywell HMC1002 magnetometer sensor [16] con-
sumes on average 15 mW of power and can be sampled in
0.1 ms on the Atmel ATmega128L microprocessor, which
results in a maximum sampling frequency of approximately
10 KHz (10,000 samples per second). The acoustic sensor
embedded in the XSM mote has a maximum sensing
frequency of approximately 8.192 KHz [13]. Although the
power consumption in a state depends upon not only the
processor voltage and frequency but also on the processor
utilization, which also depends upon sensing frequency, we
report the average power consumption values in a state as
derived from the data sheets [15], [16].

Table 2 summarizes the minimum L and maximum U
reward function parameter values for application metrics
(power, throughput, and delay) and associated weight
factors for a security/defense system, health care, and
ambient conditions monitoring application. Our selected
reward function parameter values represent typical appli-
cation requirements [17]. We describe below the relative
importance of these application metrics with respect to our
considered applications.

Although power is a primary concern for all WSN
applications and tolerable power consumption values are
specified based on the desired WSN lifetime considering
limited battery resources of sensor nodes. However, a
relative importance in power for different applications can
be delineated mainly by the infeasibility of sensor node’s
battery replacement due to hostile environments. For
example, sensor nodes in a war zone for a security/
defense application and an active volcano monitoring
application makes battery replacement almost impractical.
For a health care application with sensors attached to a
patient to monitor physiological data (e.g., heart rate,
glucose level, etc.), sensor node’s battery may be replaced
though power is constrained because excessive heat
dissipation could adversely affect a patient’s health.
Similarly, delay can be an important factor for security/
defense in case of enemy target tracking and health care for
a patient in intensive health conditions whereas delay may
be relatively less important for a humidity monitoring
application. A data sensitive security/defense system may

require a comparatively large minimum throughput in
order to obtain a sufficient number of sensed data samples
for meaningful analysis. Although relative importance and
minimum and maximum values of these application
metrics can vary widely with an application domain and
between application domains, we pick our parameter
values (Table 2) for demonstration purposes to provide
an insight into our optimization methodology.

We point out that all of our considered application
metrics specifically throughput depends upon the traffic
pattern. WSN throughput is a complex function of the
number of nodes, traffic volume and patterns, and the
parameters of the medium access technique. As the number
of nodes and traffic volume increases, contention-based
medium access methods result in an increased number of
packet collisions which waste energy without transmitting
useful data. This contention and packet collision results in
saturation which decreases the effective throughput and
increases the delay sharply. We briefly outline the variance
in WSN traffic patterns for our considered applications. The
security/defense application would have infrequent bursts
of heavy traffic (e.g., when an enemy target appears within
the sensor nodes’ sensing range), health care applications
would have a steady flow of medium to high traffic, and
ambient conditions monitoring applications would have a
steady flow of low to medium traffic except for emergencies
(e.g., volcano eruption). Although modeling of application
metrics with respect to traffic patterns would result in a
better characterization of these metric values at particular
instants/times in WSN, however, these metric values can
still be bounded by a lower minimum and upper maximum
value as captured by our reward functions (Section 2.2).

Given the reward function, sensor node state parameters
corresponding to XSM mote, and transition probabilities,
our Matlab MDP tool box [12] implementation of policy
iteration algorithm solves Bellman’s equation (7) to deter-
mine the MDP-based optimal policy and determines the
expected total discounted reward (4).

3.3 Results for a Security/Defense System
Application

3.3.1 The Effects of Different Discount Factors on the

Expected Total Discounted Reward

Table 3 and Fig. 2 depict the effects of different discount
factors � on the heuristic policies and �MDP for a
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TABLE 2
Minimum L and Maximum U Reward Function Parameter Values and Application Metric Weight Factors

for a Security/Defense System, Health Care, and Ambient Conditions Monitoring Application



security/defense system when the state transition cost Hi;j

is held constant at 0.1 for i 6¼ j, and !p; !t, and !d are

equal to 0.45, 0.2, and 0.35, respectively. Since we assume

the time between successive decision epochs to be 1 hour,

the range of � from 0.94 to 0.99999 corresponds to a range

of average sensor node lifetime from 16.67 to 100,000 hours

� 4;167 days � 11:4 years. Table 3 and Fig. 2 show that

�MDP results in the highest expected total discounted

reward for all values of � and corresponding average

sensor node lifetimes.
We calculate the percentage improvement in expected

total discounted reward for �MDP for a security/defense

system as compared to the fixed heuristic policies as

½ðRMDP �RXÞ=RMDP 	 � 100 where RMDP denotes the ex-

pected total discounted reward for �MDP and RX denotes

the expected total discounted reward for the X fixed

heuristic policy where X ¼ fPOW;THP;EQU;PRFg. For

instance, when the average sensor node lifetime is

1,000 hours (� ¼ 0:999), �MDP results in a 26.08, 9.67,

28.35, and 25.58 percent increase in expected total dis-

counted reward compared to �POW , �THP , �EQU , and �PRF ,

respectively. We observe that �MDP shows increased

savings as the average sensor node lifetime increases due

to an increase in the number of decision epochs and thus

prolonged operation of sensor nodes in optimal states as

prescribed by �MDP . On average over all discount factors �,

�MDP results in a 25.57, 9.48, 27.91, and 25.1 percent increase

in expected total discounted reward compared to �POW ,

�THP , �EQU , and �PRF , respectively.

3.3.2 The Effects of Different State Transition Costs on

the Expected Total Discounted Reward

Fig. 3 depicts the effects of different state transition costs
on the expected total discounted reward for a security/
defense system with a fixed average sensor node lifetime
of 1,000 hours (� ¼ 0:999) and !p; !t, and !d equal to 0.45,
0.2, and 0.35, respectively. Fig. 3 shows that �MDP results in
the highest expected total discounted reward for all
transition cost values.

Fig. 3 also shows that the expected total discounted
reward for �MDP is relatively unaffected by state transi-
tion cost. This relatively constant behavior can be
explained by the fact that our MDP optimal policy does
not perform many state transitions. Relatively few state
transitions to reach the optimal state according to the
specified application metrics may be advantageous for
some application managers who consider the number of
state transitions prescribed by a policy as a secondary
evaluation criteria [10]. �MDP performs state transitions
primarily at sensor node deployment or whenever a new
MDP-based optimal policy is determined as the result of
changes in application requirements.

We further analyze the effects of different state transition
costs on the fixed heuristic policies, which consistently
result in a lower expected total discounted reward as
compared to �MDP . The expected total discounted rewards
for �POW and �THP are relatively unaffected by state
transition cost. The explanation for this behavior is that
these heuristics perform state transitions only at initial
sensor node deployment when the sensor node transitions
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Fig. 2. The effects of different discount factors on the expected total
discounted reward for a security/defense system. Hi;j ¼ 0:1 if i 6¼ j,
!p ¼ 0:45; !t ¼ 0:2; !d ¼ 0:35.

TABLE 3
The Effects of Different Discount Factors for a Security/Defense System

Hi;j ¼ 0:1 if i 6¼ j, !p ¼ 0:45; !t ¼ 0:2; !d ¼ 0:35.

Fig. 3. The effects of different state transition costs on the expected total
discounted reward for a security/defense system. � ¼ 0:999,
!p ¼ 0:45; !t ¼ 0:2; !d ¼ 0:35.



to the lowest power state and the highest throughput state,
respectively, and remain in these states for the entire sensor
node’s lifetime. On the other hand, state transition cost has
the largest affect on the expected total discounted reward
for �EQU due to high state transition rates because the policy
spends an equal amount of time in all states. Similarly, high
switching costs have a large affect on the expected total
discounted reward for �PRF (although less severely than
�EQU ) because �PRF spends a certain percentage of time in
each available state (Section 3.1), thus requiring compara-
tively fewer transitions than �EQU .

3.3.3 The Effects of Different Reward Function Weight

Factors on the Expected Total Discounted Reward

Fig. 4 shows the effects of different reward function weight
factors on the expected total discounted reward for a
security/defense system when the average sensor node
lifetime is 1,000 hours (� ¼ 0:999) and the state transition
cost Hi;j is held constant at 0.1 for i 6¼ j. We explore various
weight factors that are appropriate for different security/
defense system specifics, i.e., ð!p; !t; !dÞ ¼ fð0:35; 0:1; 0:55Þ;
ð0:45; 0:2; 0:35Þ; ð0:5; 0:3; 0:2Þ; ð0:55; 0:35; 0:1Þg. Fig. 4 reveals
that �MDP results in the highest expected total discounted
reward for all weight factor variations.

3.4 Results for a Health Care Application

3.4.1 The Effects of Different Discount Factors on the

Expected Total Discounted Reward

Fig. 5 depicts the effects of different discount factors � for a
health care application when the state transition cost Hi;j is

held constant at 0.1 for i 6¼ j, and !p; !t, and !d are equal to
0.5, 0.3, and 0.2, respectively. Fig. 5 shows that �MDP results
in the highest expected total discounted reward for all
values of � and corresponding average sensor node
lifetimes as compared to other fixed heuristic policies.

We calculate the percentage improvement in expected
total discounted reward for �MDP for a health care
application as compared to the fixed heuristic policies.
We observe that when the average sensor node lifetime is
1,000 hours (� ¼ 0:999), �MDP results in a 16.39, 10.43, 27.22,
and 21.47 percent increase in expected total discounted
reward compared to �POW , �THP , �EQU , and �PRF , respec-
tively. On average over all discount factors �, �MDP results
in a 16.07, 10.23, 26.8, and 21.04 percent increase in expected
total discounted reward compared to �POW , �THP , �EQU ,
and �PRF , respectively.

3.4.2 The Effects of Different State Transition Costs on

the Expected Total Discounted Reward

We observe the effects of different state transition costs on
the expected total discounted reward for a health care
application with a fixed average sensor node lifetime of
1,000 hours ð� ¼ 0:999Þ and !p; !t, and !d equal to 0.5, 0.3,
and 0.2, respectively. Results reveal that �MDP results in
the highest expected total discounted reward for all
transition cost values. The fixed heuristic policies consis-
tently result in a lower expected total discounted reward
as compared to �MDP .

3.4.3 The Effects of Different Reward Function Weight

Factors on the Expected Total Discounted Reward

Fig. 6 depicts the effects of different reward function weight
factors on the expected total discounted reward for a health
care application when the average sensor node lifetime is
1,000 hours ð� ¼ 0:999Þ and the state transition cost Hi;j is
kept constant at 0.1 for i 6¼ j. We explore various weight
factors that are appropriate for different health care
application specifics (i.e., ð!p; !t; !dÞ ¼ fð0:42; 0:36; 0:22Þ;
ð0:45; 0:4; 0:15Þ; ð0:5; 0:3; 0:2Þ; ð0:58; 0:28; 0:14ÞgÞ. Fig. 6 shows
that �MDP results in the highest expected total discounted
reward for all weight factor variations.

Figs. 4 and 6 show that the expected total discounted
reward of �POW gradually increases with as the power
weight factor increases and eventually exceeds that of �THP

for a security/defense system and a health care application,
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Fig. 4. The effects of different reward function weight factors on the
expected total discounted reward for a security/defense system.
� ¼ 0:999, Hi;j ¼ 0:1 if i 6¼ j.

Fig. 5. The effects of different discount factors on the expected total
discounted reward for a health care application. Hi;j ¼ 0:1 if i 6¼ j,
!p ¼ 0:5; !t ¼ 0:3; !d ¼ 0:2.

Fig. 6. The effects of different reward function weight factors on the
expected total discounted reward for a health care application.
� ¼ 0:999, Hi;j ¼ 0:1 if i 6¼ j.



respectively. However, close observation reveals that the
expected total discounted reward of �POW for a security/
defense system is affected more sharply than a health care
application, because of the more stringent constraint on
maximum acceptable power for a health care application
(Table 2). Figs. 4 and 6 show that �PRF tends to perform
better than �EQU with increasing power weight factors
because �PRF spends a greater percentage of time in low
power states.

4 CONCLUSIONS AND FUTURE WORK

In this paper, we present the first (to the best of our
knowledge) dynamic optimization methodology for WSNs
based on Markov Decision Processes. Our MDP-based
dynamic optimization methodology tunes sensor node
processor voltage, frequency, and sensing frequency in
accordance with application requirements over the lifetime
of a sensor node. Our proposed methodology is adaptive
and dynamically determines the new MDP-based optimal
policy whenever application requirements change (which
may be in accordance with changing environmental
stimuli). We compared our MDP-based optimal policy
with four fixed heuristic policies and conclude that our
proposed MDP-based optimal policy outperforms each
heuristic policy for all sensor node lifetimes, state transi-
tion costs, and application metric weight factors. We
provided the implementation guidelines of our proposed
policy in sensor nodes. We proved that our proposed
policy has fast convergence rate, computationally inexpen-
sive and thus can be considered for implementation in
sensor nodes with limited processing resources.

Future work includes enhancing our MDP model to
incorporate additional high-level application metrics (e.g.,
security, reliability, energy, lifetime, etc.) as well as
additional sensor node tunable parameters (such as radio
transmission power, radio transmission frequency, etc.).
Furthermore, we plan to incorporate wireless channel
condition in the MDP state space, thus formulating a
stochastic dynamic program that enables sensor node
tuning in accordance with changing wireless channel
condition. We plan to implement our MDP-based meth-
odology on hardware sensor nodes for further verification
of results. In addition, we will enhance sensor node
tuning automation using profiling statistics by architect-
ing mechanisms that enable the sensor node to auto-
matically react to environmental stimuli without the need
for an application manager’s feedback. Future work also
includes the extension of our MDP-based dynamic
optimization methodology for performing global optimiza-
tion (i.e., selection of sensor node tunable parameter
settings to ensure that application requirements are met
for WSN as a whole where different sensor nodes
collaborate with each other in optimal tunable parameter
settings determination).
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