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Abstract—With Moore’s law supplying billions of transistors on-chip, embedded systems are undergoing a transition from single-core

to multicore to exploit this high-transistor density for high performance. Embedded systems differ from traditional high-performance

supercomputers in that power is a first-order constraint for embedded systems; whereas, performance is the major benchmark for

supercomputers. The increase in on-chip transistor density exacerbates power/thermal issues in embedded systems, which

necessitates novel hardware/software power/thermal management techniques to meet the ever-increasing high-performance

embedded computing demands in an energy-efficient manner. This paper outlines typical requirements of embedded applications and

discusses state-of-the-art hardware/software high-performance energy-efficient embedded computing (HPEEC) techniques that help

meeting these requirements. We also discuss modern multicore processors that leverage these HPEEC techniques to deliver high

performance per watt. Finally, we present design challenges and future research directions for HPEEC system development.

Index Terms—High-performance computing (HPC), multicore, energy-efficient computing, green computing, low power, embedded

systems.
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1 INTRODUCTION

EMBEDDED system design is traditionally power centric
but there has been a recent shift toward high-

performance embedded computing (HPEC) due to the
proliferation of compute-intensive embedded applications.
For example, the signal processing for a 3G mobile
handset requires 35-40 Giga operations per second (GOPS)
for a 14.4 Mbps channel and 210-290 GOPS for a 100 Mbps
orthogonal frequency-division multiplexing (OFDM) chan-
nel. Considering the limited energy of a mobile handset
battery, these performance levels must be met with a
power dissipation budget of approximately 1 W, which
translates to a performance efficiency of 25 mW/GOP or
25 pJ/operation for the 3G receiver and 3-5 pJ/operation
for the OFDM receiver [1], [2]. These demanding and
competing power-performance requirements make mod-
ern embedded system design challenging.

The high-performance energy-efficient embedded com-
puting (HPEEC) domain addresses the unique design
challenges of high-performance and low-power/energy
(can be termed as green, however, green may refer to a
bigger notion of environmental impact) embedded comput-
ing. These design challenges are competing because high
performance typically requires maximum processor speeds
with enormous energy consumption, whereas low power

typically requires nominal or low-processor speeds that
offer modest performance. HPEEC requires thorough
consideration of the thermal design power (TDP) and
processor frequency relationship while selecting an appro-
priate processor for an embedded application. For example,
decreasing the processor frequency by a fraction of the
maximum operating frequency (e.g., reducing from 3.16 to
3.0 GHz) can cause 10 percent performance degradation but
can decrease power consumption by 30-40 percent [3]. To
meet HPEEC power-performance requirements, embedded
system design has transitioned from a single-core to a
multicore paradigm that favors multiple low-power cores
running at low-processors speeds rather than a single high-
speed power-hungry core.

Chip multiprocessors (CMPs) provide a scalable HPEEC
platform as performance can be increased by increasing the
number of cores as long as the increase in the number of
cores offsets the clock frequency reduction by maintaining
a given performance level with less power [4]. Multi-
processor systems-on-chip (MPSoCs), which are multi-
processor version of systems-on-chip (SoCs), are another
alternative HPEEC platform, which provide an unlimited
combination of homogeneous and heterogeneous cores.
Though both CMPs and MPSoCs are HPEEC platforms,
MPSoCs differ from CMPs in that MPSoCs provide custom
architectures (including specialized instruction sets) tai-
lored for meeting peculiar requirements of specific em-
bedded applications (e.g., real-time, throughput-intensive,
reliability-constrained). Both CMPs and MPSoCs rely on
HPEEC hardware/software techniques for delivering high
performance per watt and meeting diverse application
requirements.

Even though literature discusses high-performance
computing (HPC) for supercomputers [7], [8], [9], [10],
there exists little discussion on HPEEC [11]. The distinction
between HPC for supercomputers and HPEEC is important
because performance is the most significant metric for
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supercomputers with less emphasis given to energy
efficiency, whereas energy efficiency is a primary concern
for HPEEC. For example, each of the 10 most powerful
contemporary supercomputers has a peak power require-
ment of up to 10 MW, which is equivalent to the power
needs of a city with a population of 40,000 [5], [11]. To
acknowledge the increasing significance of energy-efficient
computing, the Green500 list ranks supercomputers using
the FLOPS per watt performance metric [6]. Table 1 lists the
top 5 green supercomputers along with their top 500
supercomputer ranking. The table shows that the top
performing supercomputers are not necessarily energy
efficient [5], [6]. Table 1 indicates that most of the top green
supercomputers consist of low-power embedded processor
clusters aiming at achieving high performance per watt and
high performance per unit area [12].

Fig. 1 gives an overview of the HPEEC domain, which
spans architectural approaches to middleware and software

approaches. In this paper, we focus on high performance
and energy-efficient techniques that are applicable to
embedded systems (CMPs, SoCs, or MPSoCs) to meet
particular application requirements. Although the main
focus of the paper is on embedded systems, many of the
energy and performance issues are equally applicable to
supercomputers since state-of-the-art supercomputers
leverage embedded processors/chips (e.g., Jaguar super-
computer comprising of 2,24,162 processor cores leverages
AMD Opteron six-core CMPs [5]). However, we summarize
several differences between supercomputing applications
and embedded applications as follows:

1. Supercomputing applications tend to be highly data
parallel where the goal is to decompose a task with a
large data set across many processing units where
each subtask operates on a portion of the data set.
On the other hand, embedded applications tend to
consist of many tasks where each task is executed on
a single processing unit and may have arrival and
deadline constraints.

2. Supercomputing applications tend to focus on
leveraging a large number of processors, whereas
the scale of embedded applications is generally
much smaller.

3. Supercomputing applications’ main optimization
objective is performance (although energy is increas-
ingly becoming a very important secondary metric),
while performance and energy are equally important
objectives for embedded applications. Also, relia-
bility and fault tolerance play a more important role
in embedded applications as compared to super-
computing applications.

The HPEEC domain benefits from architectural innova-
tions in processor core layouts (e.g., heterogeneous CMP,
tiled multicore architectures), memory design (e.g., transac-
tional memory, cache partitioning), and interconnection
networks (e.g., packet-switched, photonic, wireless). The
HPEEC platforms provide hardware support for function-
alities that can be controlled by middleware such as
dynamic voltage and frequency scaling (DVFS), hyper-
threading, helper threading, energy monitoring and man-
agement, dynamic thermal management (DTM), and
various power-gating techniques. The HPEEC domain
benefits from software approaches such as task scheduling,
task migration, and load balancing. Many of the HPEEC
techniques at different levels (e.g., architectural, middle-
ware, and software) are complementary in nature and work
in conjunction with one another to better meet application
requirements. To the best of our knowledge, this is the first
paper targeting HPEEC that provides a comprehensive
classification of various HPEEC techniques in relation to
meeting diverse embedded application requirements.
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TABLE 1
Top Green500 and Top500 Supercomputers as of June 2011 [5], [6]

Fig. 1. High-performance energy-efficient embedded computing domain.



2 EMBEDDED APPLICATIONS

The proliferation of embedded systems in various domains
(e.g., consumer electronics, automotive, industrial automa-
tion, networking, medical, defense, space, etc.) due to
technological advancements has given rise to a plethora of
embedded applications. Thus, embedded systems require
HPEEC hardware/software techniques to meet the ever
increasing processing demands of the embedded applica-
tions. Since economic pressures have a large influence on
embedded system development, many embedded applica-
tions require embedded systems to be reliable and robust,
easy to use, able to connected with other devices, and low
cost. Since many embedded application requirements are
competing, trade-offs must be made between these require-
ments, such as size versus flexibility, robustness versus
richness of functionality, and power consumption versus
performance. Therefore, embedded system vendors market
domain-specific platforms that are specialized for a parti-
cular domain and offer appropriate trade-offs to better meet
that domain’s typical application requirements [13].

Different embedded applications have different charac-
teristics. Although a complete characterization of em-
bedded applications with respect to applications’
characteristics is outside the scope of this paper, Fig. 2
provides a concise classification of embedded applications
based on their characteristics. We discuss below some of
these application characteristics in context of their asso-
ciated embedded domains.

Throughput-intensive. Throughput-intensive embedded
applications are applications that require high-processing
throughput. Networking and multimedia applications,

which constitute a large fraction of embedded applications
[13], are typically throughput intensive due to ever
increasing quality of service (QoS) demands. An embedded
system containing an embedded processor requires a
network stack and network protocols to connect with other
devices. Connecting an embedded device or a widget to a
network enables remote device management including
automatic application upgrades. On a large scale, net-
worked embedded systems can enable HPEC for solving
complex large problems traditionally handled only by
supercomputers (e.g., climate research, weather forecasting,
molecular modeling, physical simulations, and data
mining). However, connecting hundreds to thousands of
embedded systems for HPC requires sophisticated and
scalable interconnection technologies (e.g., packet switched,
wireless interconnects). Examples of networking applica-
tions include server I/O devices, network infrastructure
equipment, consumer electronics (mobile phones, media
players), and various home appliances (e.g., home automa-
tion including networked TVs, VCRs, stereos, refrigerators,
etc.). Multimedia applications, such as video streaming,
require very high throughput of the order of several GOPs.
A broadcast video with a specification of 30 frames per
second with 720� 480 pixels per frame requires approxi-
mately 400,000 blocks (group of pixels) to be processed per
second. A telemedicine application requires processing of
5 million blocks per second [14].

Thermal-constrained. An embedded application is ther-
mal-constrained if an increase in temperature above a thresh-
old could lead to incorrect results or even the embedded
system failure. Depending on the target market, embedded
applications typically operate above 45�C (e.g., telecommu-
nication embedded equipment temperature exceeds 55�C)
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Fig. 2. Classification of high-performance energy-efficient embedded computing techniques based on embedded application characteristics.



in contrast to traditional computer systems, which normally
operate below 38�C [15]. Meeting embedded application
thermal constraints is challenging due to typically harsh and
high-temperature operating environments. Limited space
and energy budgets exacerbate these thermal challenges
since active cooling systems (fans-based) are typically
infeasible in most embedded systems, resulting in only
passive and fanless thermal solutions.

Reliability-constrained. Embedded systems with high
reliability constraints are typically required to operate for
many years without errors and/or must recover from errors
since many reliability-constrained embedded systems are
deployed in harsh environments where postdeployment
removal and maintenance is infeasible. Hence, hardware
and software for reliability-constrained embedded systems
must be developed and tested more carefully than tradi-
tional computer systems. Safety critical embedded systems
(e.g., automotive airbags, space missions, aircraft flight
controllers) have very high-reliability requirements (e.g.,
the reliability requirement for a flight-control embedded
system on a commercial airliner is 10�10 failures per hour
where a failure could lead to aircraft loss [16]).

Real-time. In addition to correct functional operation,
real-time embedded applications have additional stringent
timing constraints, which impose real-time operational
deadlines on the embedded system’s response time.
Although real-time operation does not strictly imply high
performance, real-time embedded systems require high
performance only to the point that the deadline is met, at
which time high performance is no longer needed. Hence,
real-time embedded systems require predictable high-per-
formance. Real-time operating systems (RTOSs) provide
guarantees for meeting the stringent deadline requirements
for embedded applications.

Parallel and distributed. Parallel and distributed em-
bedded applications leverage distributed embedded de-
vices to cooperate and aggregate their functionalities or
resources. Wireless sensor network (WSN) applications use
sensor nodes to gather sensed information (statistics and
data) and use distributed fault-detection algorithms. Mobile
agent (autonomous software agent)-based distributed em-
bedded applications allow the process state to be saved and
transported to another new embedded system where the
process resumes execution from the suspended point (e.g.,
virtual migration). Many embedded applications exhibit
varying degrees (low to high levels) of parallelism, such as
instruction level parallelism (ILP) and thread-level paralle-
lism (TLP). Innovative architectural and software HPEEC
techniques are required to exploit an embedded applica-
tion’s available parallelism to achieve high performance
with low-power consumption.

Various HPEEC techniques at different levels (e.g.,
architecture, middleware, and software) can be used to
enable an embedded platform to meet the embedded
application requirements. Fig. 2 classifies embedded appli-
cation characteristics and the HPEEC techniques available at
architecture, middleware, and software levels that can be
leveraged by the embedded platforms executing these
applications to meet the application requirements (we
describe the details of these techniques in later sections of

the paper). For example, throughput-intensive applications
can leverage architectural innovations (e.g., tiled multicore
architectures, high-bandwidth interconnects), hardware-
assisted middleware techniques (e.g., speculative ap-
proaches, DVFS, hyperthreading), and software techniques
(e.g., data forwarding, task scheduling, and task migration).
We point out that HPEEC techniques are not orthogonal and
many of these techniques can be applied in conjunction with
one another to more closely meet application requirements.
Furthermore, HPEEC techniques that benefit one application
requirement (e.g., reliability) may also benefit other applica-
tion requirements (e.g., throughput, real-time deadlines). For
example, the interconnection network not only determines
the fault-tolerance characteristics of embedded systems but
also affects the attainable throughput and response time.

3 ARCHITECTURAL APPROACHES

Novel HPEEC architectural approaches play a dominant
role in meeting varying application requirements. These
architectural approaches can be broadly categorized into
four categories: core layout, memory design, interconnec-
tion networks, and reduction techniques. In this section, we
describe these HPEEC architectural approaches.

3.1 Core Layout

In this section, we discuss various core layout techniques
encompassing chip and processor design since high-
performance cannot be achieved only from semiconductor
technology advancements. There exist various core layout
considerations during chip and processor design such as
whether to use homogeneous (cores of the same type) or
heterogeneous cores (cores of varying types), whether to
position the cores in a 2D or 3D layout on the chip, whether
to design independent processor cores with switches that
can turn on/off processor cores, or to have a reconfigurable
integrated circuit that can be configured to form processor
cores of different granularity. In this section, we describe a
few core layout techniques including heterogeneous CMP,
conjoined-core CMP, tiled multicore architectures, 3D
multicore architectures, composable multicore architec-
tures, multicomponent architectures, and stochastic proces-
sors. We also discuss the power/energy issues associated
with these architectural approaches.

Heterogeneous CMP. Heterogeneous CMPs consist of
multiple cores of varying size, performance, and complexity
on a single die. Since the amount of ILP or TLP varies for
different workloads, building a CMP with some large cores
with high single-thread performance and some small cores
with greater throughput per die area provides an attractive
approach for chip design. Research indicates that the best
heterogeneous CMPs contain cores customized to a subset of
application characteristics (since no single core can be well
suited for all embedded applications) resulting in nonmono-
tonic cores (i.e., cores cannot be strictly ordered in terms of
performance or complexity for all the applications) [17]. To
achieve high performance, applications are mapped to the
heterogeneous cores such that the assigned core best meets
an application’s resource requirements. Heterogeneous
CMPs can provide performance gains as high as 40 percent
but at the expense of additional customization cost [18].
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Conjoined-core CMP. Conjoined-core CMPs are multi-
processors that allow topologically feasible resource sharing
(e.g., floating-point units (FPUs), instruction and data
caches) between adjacent cores to reduce die area with
minimal impact on performance and improve the overall
computational efficiency. Since conjoined-core CMPs are
topology oriented, the layout must be codesigned with the
architecture; otherwise, the architectural specifications for
resource sharing may not be topologically possible or may
incur higher communication costs. In general, the shared
resources should be large enough so that the cost of the
additional wiring required for sharing may not exceed
the area benefits achieved by sharing. Static scheduling is
the simplest way to organize resource sharing in conjoined-
core CMPs where cores share resources in different
nonoverlapping cycles (e.g., one core may use the shared
resource during even cycles and the other core may use the
shared resource during odd cycles, or one core may share
the resource for the first five cycles, another core for the
next five cycles, and so on). Results indicate that conjoined-
core CMPs can reduce area requirements by 50 percent and
maintain performance within 9-12 percent of conventional
cores without conjoining [19].

Tiled multicore architectures. Tiled multicore architec-
tures exploit massive on-chip resources by combining each
processor core with a switch to create a modular element
called a tile, which can be replicated to create a multicore
embedded system with any number of tiles. Tiled multicore
architectures contain a high-performance interconnection
network that constrains interconnection wire length to no
longer than the tile width and a switch (communication
router) interconnects neighboring switches. Examples of
tiled multicore architectures include the Raw processor,
Intel’s Tera-Scale research processor, Tilera TILE64, TILE-
Pro64, and TILE-Gx processor family [20].

3D multicore architectures. A 3D multicore architecture
is an integrated circuit that orchestrates architectural units
(e.g., processor cores and memories) across cores in a 3D
layout. The architecture provides HPEEC by decreasing the
interconnection lengths across the chip, which results in
reduced communication latency. Research reveals that 3D
multicore processors can achieve 47 percent performance
gain and 20 percent power reduction on average over 2D
multicore processors [21]. The 3D multicore architectures’
disadvantages include high-power density that exacerbates
thermal challenges as well as increased interconnect capaci-
tance due to electrical coupling between different layers [22].

Composable Multicore Architectures. The composable
multicore architecture is an integrated circuit that allows
the number of processors and each processor’s granularity to
be configured based on application requirements (i.e., large
powerful processors for applications (tasks) with more ILP
and small less powerful processors for tasks with more TLP).
The architecture consists of an array of composable light-
weight processors (CLPs) that can be aggregated to form
large powerful processors to achieve high performance
depending upon the task granularity. Examples of compo-
sable multicore architectures include TRIPS and TFlex [20].

Stochastic processors. Stochastic processors are proces-
sors used for fault-tolerant computing that are scalable with

respect to performance requirements and power constraints
while producing outputs that are stochastically correct in the
worst case. Stochastic processors maintain scalability by
exposing multiple functionally equivalent units to the
application layer that differ in their architecture and exhibit
different reliability levels. Applications select appropriate
functional units for a program or program phase based on
the program and/or program phase’s reliability require-
ments. Stochastic processors can provide significant power
reduction and throughput improvement especially for
stochastic applications (applications with a priori knowledge
of reliability requirements, such as multimedia applications,
where computational errors are considered an additional
noise source). Results indicate that stochastic processors can
achieve 20-60 percent power savings in the motion estima-
tion block of H.264 video encoding application [23].

3.2 Memory Design

The cache miss rate, fetch latency, and data transfer
bandwidth are some of the main factors impacting the
performance and energy consumption of embedded systems.
The memory subsystem encompasses the main memory and
cache hierarchy and must take into consideration issues such
as consistency, sharing, contention, size, and power dissipa-
tion. In this section, we discuss HPEEC memory design
techniques, which include transactional memory, cache
partitioning, cooperative caching, and smart caching.

Transactional memory. Transactional memory incorpo-
rates the definition of a transaction (a sequence of instructions
executed by a single process with the following properties:
atomicity, consistency, and isolation) in parallel program-
ming to achieve lock-free synchronization efficiency by
coordinating concurrent threads. A computation within a
transaction executes atomically and commits on successful
completion, making the transaction’s changes visible to other
processes, or aborts, causing the transaction’s changes to be
discarded. A transaction ensures that concurrent reads and
writes to shared data do not produce inconsistent or incorrect
results. The isolation property of a transaction ensures that a
transaction produces the same result as if no other transac-
tions were running concurrently [24]. In transactional
memories, regions of code in parallel programming can be
defined as a transaction. Transactional memory benefits
from hardware support that ranges from complete execution
of transactions in hardware to hardware-accelerated soft-
ware implementations of transactional memory [20].

Cache partitioning. One of the major challenges in using
multicore embedded systems for real-time applications is
timing unpredictability due to core contention for on-chip
shared resources (e.g., level two (L2) or level three (L3)
caches, interconnect networks). Worst-case execution time
(WCET) estimation techniques for single-core embedded
systems are not directly applicable to multicore embedded
systems because a task running on one core may evict
useful L2 cache contents of another task running on another
core. Cache partitioning is a cache space isolation technique
that exclusively allocates different portions of shared caches
to different cores to avoid cache contention for hard real-
time tasks, thus ensuring a more predictable runtime.
Cache partitioning-aware scheduling techniques allow each
task to use a fixed number of cache partitions ensuring that
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a cache partition is occupied by at most one scheduled task
at any time [25]. Cache partitioning can enhance perfor-
mance by assigning larger portions of shared caches to
cores with higher workloads as compared to the cores with
lighter workloads.

Cooperative caching. Cooperative caching is a hardware
technique that creates a globally managed shared cache
using the cooperation of private caches. Cooperative
caching allows remote L2 caches to hold and serve data
that would not fit in the local L2 cache of a core and
therefore improves average access latency by minimizing
off-chip accesses [26]. Cooperative caching provides three
performance enhancing mechanisms: cooperative caching
facilitates cache-to-cache transfers of unmodified data to
minimize off-chip accesses, cooperative caching replaces
replicated data blocks to make room for unique on-chip
data blocks called singlets, and cooperative caching allows
eviction of singlets from a local L2 cache to be placed in
another L2 cache. Cooperative caching implementation
requires placement of cooperation-related information in
private caches and the extension of cache coherence
protocols to support data migration across private caches
for capacity sharing. Results indicate that for an 8-core CMP
with 1 MB L2 cache per core, cooperative caching improves
the performance of multithreaded commercial workloads
by 5-11 percent and 4-38 percent as compared to shared L2
cache and private L2 caches, respectively [27].

Smart caching. Smart caching focuses on energy-efficient
computing and leverages cache set (way) prediction and
low-power cache design techniques [14]. Instead of waiting
for the tag array comparison, way prediction predicts the
matching way prior to the cache access. Way prediction
enables faster average cache access time and reduces power
consumption because only the predicted way is accessed if
the prediction is correct. However, if the prediction is
incorrect, the remaining ways are accessed during the
subsequent clock cycle (s), resulting in a longer cache access
time and increased energy consumption as compared to a
cache without way prediction. The drowsy cache is a low-
power cache design technique that reduces leakage power
by periodically setting the unused cache line’s SRAM cells
to a drowsy, low-power mode. A drowsy cache is
advantageous over turning off cache lines completely
because the drowsy mode preserves the cache line’s data,
whereas turning off the cache line loses the data. However,
drowsy mode requires transitioning the drowsy cache line
to a high-power mode before accessing cache line’s data.
Research reveals that 80-90 percent of cache lines can be put
in drowsy mode with less than a 1 percent performance
degradation and result in a cache static and dynamic energy
reduction of 50-75 percent [28].

3.3 Interconnection Network

As the number of on-chip cores increases, a scalable and
high-bandwidth interconnection network to connect on-chip
resources becomes crucial. Interconnection networks can be
static or dynamic. Static interconnection networks consist of
point-to-point communication links between computing
nodes and are also referred to as direct networks (e.g., bus,
ring, hypercube). Dynamic interconnection networks consist
of switches (routers) and links and are also referred to as

indirect networks (e.g., packet-switched networks). This
section discusses prominent interconnect topologies (e.g.,
bus, 2D mesh, hypercube) and interconnect technologies
(e.g., packet-switched, photonic, wireless).

Interconnect topology. One of the most critical inter-
connection network parameters is the network topology,
which determines the on-chip network cost and perfor-
mance. The interconnect topology governs the number of
hops or routers a message must traverse as well as the
interconnection length. Therefore, the interconnect topology
determines the communication latency and energy dissipa-
tion (since message traversal across links and through
routers dissipates energy). Furthermore, the interconnect
topology determines the number of alternate paths between
computing nodes, which affects reliability (since messages
can route around faulty paths) as well as the ability to evenly
distribute network traffic across multiple paths, which
affects the effective on-chip network bandwidth and
performance. The interconnect topology cost is dictated by
the node degree (the number of links at each computing node)
and length of the interconnecting wires. Examples of on-chip
interconnection network topologies include buses (linear 1D
array or ring), 2D mesh, and hypercube. In bus topology, the
processor cores share a common bus for exchanging data.
Buses are the most prevalent interconnect network in
multicore embedded systems due to the bus’s low cost and
ease of implementation. Buses provide lower costs than other
interconnect topologies because of a lower node degree: the
node degree for a bus interconnect is two, for a 2D mesh is
four, and for a hypercube is log p where p is the total number
of computing nodes. However, buses do not scale well as the
number of cores in the CMP increases. The 2D mesh
interconnect topology provides short channel lengths and
low router complexity; however, the 2D mesh diameter is
proportional to the perimeter of the mesh, which can lead to
energy inefficiency and high-network latency (e.g., the
diameter of 10 � 10 mesh is 18 hops) [29]. The hypercube
topology is a special case of a d-dimensional mesh (a d-
dimensional mesh has a node degree of 2d) when d ¼ log p.

Packet-switched interconnect. Packet-switched intercon-
nection networks replace buses and crossbar interconnects as
scalability and high-bandwidth demand increases for multi-
core embedded systems. Packet-switched networks connect
a router to each computing node and routers are connected to
each other via short-length interconnect wires. Packet-
switched interconnection networks multiplex multiple pack-
et flows over the interconnect wires to provide highly
scalable bandwidth [20]. Tilera’s TILE architectures leverage
the packet-switched interconnection network.

Photonic interconnect. As the number of on-chip cores in a
CMP increases, global on-chip communication plays a promi-
nent role in overall performance. While local interconnects
scale with the number of transistors, the global wires do not
because the global wires span across the entire chip to connect
distant logic gates and the global wires’ bandwidth require-
ments increases as the number of cores increases. A photonic
interconnection network—consisting of a photonic source,
optical modulators (rates exceed 12.5 Gbps), and symmetrical
optical waveguides—can deliver higher bandwidth and
lower latencies with considerably lower power consumption
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than an electronic signaling-based interconnect network. In
photonic interconnects, once a photonic path is established
using optical waveguides, data can be transmitted end-to-end
without repeaters, regenerators, or buffers as opposed to the
electronic interconnects that requires buffering, regeneration,
and retransmission of messages multiple times from source to
destination [30]. The photonic interconnection network is
divided into zones each with a drop point such that the clock
signal is optically routed to the drop point where the optical
clock signal is converted to the electrical signal. Analysis
reveals that power dissipation in an optical clock distribution
is lower than an electrical clock distribution [22].

The photonic interconnection networks can benefit sev-
eral classes of embedded applications, including real-time
and throughput-intensive applications (especially applica-
tions with limited data reuse such as streaming applications)
(Fig. 2). However, even though photonic interconnection
networks provide many benefits, these networks have
several drawbacks such as delays associated with the rise
and fall times of optical emitters and detectors, losses in the
optical waveguides, signal noise due to waveguides cou-
pling, limited buffering, and signal processing [22].

Wireless interconnect. Wireless interconnect is an
emerging technology that promises to provide high
bandwidth, low latency, and low-energy dissipation by
eliminating lengthy wired interconnects. Carbon nanotubes
(CNT) are a good candidate for wireless antennas due to a
CNT’s high-aspect ratio (virtually a one-dimensional wire),
high conductance (low losses), and high-current carrying
capacity (109 A=cm2, which is much higher than silver and
copper) [22]. Wireless interconnect can deliver high
bandwidth by providing multiple channels and using
time-division, code-division, frequency-division, or some
hybrid of these multiplexing techniques. Experiments
indicate that a wireless interconnect can reduce the
communication latency by 20-45 percent as compared to a
2D-mesh interconnect while consuming a comparable
amount of power [29]. A wireless interconnect’s perfor-
mance advantage increases as the number of on-chip cores
increases. For example, a wireless interconnect can provide
a performance gain of 217, 279, 600 percent over a 2D-mesh
interconnect when the number of on-chip cores is equal to
128, 256, and 512, respectively [31].

3.4 Reduction Techniques

Due to an embedded system’s constrained resources,
embedded system architectural design must consider
power dissipation reduction techniques. Power reduction
techniques can be applied at various design levels: the
complementary metal-oxide-semiconductor (CMOS)-level tar-
gets leakage and short circuit current reduction, the
processor-level targets instruction/data supply energy re-
duction as well as power-efficient management of other
processor components (e.g., execution units, reorder buf-
fers, etc.), and the interconnection network-level targets
minimizing interconnection length using an appropriate
network layout. In this section, we present several power
reduction techniques including leakage current reduction,
short circuit current reduction, peak power reduction, and
interconnection length reduction.

Leakage current reduction. As advances in the chip
fabrication process reduces the feature size, the CMOS
leakage current and associated leakage power has in-
creased. Leakage current reduction techniques include back
biasing, silicon on insulator technologies, multithreshold
MOS transistors, and power gating [14].

Short circuit current reduction. Short circuit current
flows in a CMOS gate when both nMOSFET and pMOSFET
are on, which causes a large amount of current to flow
through transistors and can result in increased power
dissipation or even transistor burn out. The short circuit
effect is exacerbated as the clock period approaches the
transistor switching period due to increasing clock frequen-
cies. The short circuit current can be reduced using low-
level design techniques that aim to reduce the time during
which both nMOSFET and pMOSFET are on [14].

Peak power reduction. Peak power reduction not only
increases power supply efficiency but also reduces packa-
ging, cooling, and power supply cost as these costs are
proportional to the peak power dissipation rather than the
average power dissipation. Adaptive processors can reduce
peak power by centrally managing architectural component
configurations (e.g., instruction and data caches, integer
and floating point instruction queues, reorder buffers, load-
store execution units, integer and floating point registers,
register renaming, etc.) to ensure that not of all these
components are maximally configured simultaneously.
Adaptive processors incur minimal performance loss and
high-peak power reduction by restricting maximum con-
figuration to a single resource or a few resources (but not
all) at a time. Research reveals that adaptive processors
reduce peak power consumption by 25 percent with only a
5 percent performance degradation [32].

Interconnection length reduction. The interconnecting
wire length increases as the number of on-chip devices
increases, resulting in both increased power dissipation and
delay. An energy-efficient design requires reduced inter-
connection wire lengths for high-switching activity signals
and use of placement and routing optimization algorithms
for reduced delay and power consumption [14]. Chip
design techniques (e.g., 3D multicore architectures) and
various interconnect topologies (e.g., 2D-mesh, hypercube)
help in reducing interconnection wire lengths.

Instruction and data fetch energy reduction. Hard-
wired ASICs typically provide 50� more efficient comput-
ing as compared to general purpose programmable
processors; however, architecture-level energy consump-
tion analysis can help in energy-efficient design of
programmable processors [1]. Previous work indicates that
the programmable processors spend approximately 70 per-
cent of the total energy consumption fetching instructions
(42 percent) and data (28 percent) to the arithmetic units,
whereas performing the arithmetic consumes a small
fraction of the total energy (around 6 percent). Moreover,
the instruction cache consumes the majority of the
instruction fetch energy (67 percent) [1]. Research indicates
that reducing instruction and data fetch energy can reduce
the energy-efficiency gap between ASICs and program-
mable processors to 3�. Specifically, instruction fetch
techniques that avoid accessing power-hungry caches are
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required for energy-efficient programmable processors
(e.g., the Stanford efficient low-power microprocessor
(ELM) fetches instructions from a set of distributed
instruction registers rather than the cache) [1].

4 HARDWARE-ASSISTED MIDDLEWARE

APPROACHES

Various HPEEC techniques (Fig. 1) are implemented as
middleware and/or part of an embedded OS to meet
application requirements. The HPEEC middleware techni-
ques are assisted and/or partly implemented in hardware
to provide the requested functionalities (e.g., power gating
support in hardware enables middleware to power gate
processor cores). HPEEC hardware-assisted middleware
techniques include dynamic voltage and frequency scaling
(DVFS), advanced configuration and power interface
(ACPI), threading techniques (hyperthreading, helper
threading, and speculative threading), energy monitoring
and management, dynamic thermal management, depend-
able HPEEC (DHPEEC) techniques (N-modular redun-
dancy (NMR), dynamic constitution, and proactive
checkpoint deallocation), and various low-power gating
techniques (power gating, per-core power gating, split
power planes, and clock gating).

4.1 Dynamic Voltage and Frequency Scaling

DVFS is a dynamic power management (DPM) technique in
which the performance and power dissipation is regulated
by adjusting the processor’s voltage and frequency. The one-
to-one correspondence between processor’s voltage and
frequency in CMOS circuits imposes a strict constraint on
dynamic voltage scaling (DVS) techniques to ensure that the
voltage adjustments do not violate application timing
(deadline) constraints (especially for real-time applications).
Multicore embedded systems leverage two DVFS techni-
ques: global DVFS scales the voltages and frequencies of all
the cores simultaneously and local DVFS scales the voltage
and frequency on a per-core basis [14]. Experiments indicate
that local DVFS can improve performance (throughput) by
2:5� on average and can provide an 18 percent higher
throughput than global DVFS on average [33], [34].

DVFS-based optimizations can be employed for real-time
applications to conform with tasks’ deadlines in an energy-
efficient manner. For example, if a task deadline is
impending, DVFS can be adjusted to operate at the highest
frequency to meet the task deadline, whereas if the task
deadline is not close, then DVFS can be adjusted to lower
voltage and frequency settings to conserve energy while
still meeting the task deadline.

Although DVFS is regarded as one of the most efficient
energy saving technique, the associated overhead of
performing DVFS needs to be considered. DVFS requires
a programmable DC-DC converter and a programmable
clock generator (mostly phase lock loop (PLL)-based) that
incurs time and energy overhead whenever the processor
changes its voltage and frequency setting. This overhead
dictates the minimum duration of time that the target
system should stay in a particular voltage-frequency state
for the DVS to produce a positive energy gain [35].

4.2 Advanced Configuration and Power Interface

Though DPM techniques can be implemented in hardware
as part of the electronic circuit, hardware implementation
complicates the modification and reconfiguration of power
management policies. The advanced configuration and
power interface specification is a platform-independent
software-based power management interface that attempts
to unify existing DPM techniques (e.g., DVFS, power and
clock gating) and put these techniques under the OS control
[36]. ACPI defines various states for an ACPI-compliant
embedded system, but the processor power states (C-states)
and the processor performance states (P-states) are most
relevant to HPEEC. ACPI defines four C-states: C0 (the
operating state where the processor executes instructions
normally), C1 (the halt state where the processor stops
executing instructions but can return to C0 instanta-
neously), C2 (the stop-clock state where the processor and
cache maintains state but can take longer to return to C0),
and C3 (the sleep state where the processor goes to sleep,
does not maintain the processor and cache state, and takes
longest as compared to other C-states to return to C0). ACPI
defines n P-states (P1;P2; . . . ;Pn) where n � 16, corre-
sponding to the processor C0 state. Each P-state designates
a specific DVFS setting such that P0 is the highest
performance state while P1 to Pn are successively lower
performance states. ACPI specification is implemented in
various manufactured chips (e.g., Intel names P-states as
SpeedStep while AMD as Cool“n”Quiet).

4.3 Gating Techniques

To enable low-power operation and meet an application’s
constrained energy budget, various hardware-supported
low power gating techniques can be controlled by the
middleware. These gating techniques can switch off a
component’s supply voltage or clock signal to save power
during otherwise idle periods. In this section, we discuss
gating techniques such as power gating, per-core power
gating, split power planes, and clock gating.

Power gating. Power gating is a power management
technique that reduces leakage power by switching off the
supply voltage to idle logic elements after detecting no
activity for a certain period of time. Power gating can be
applied to idle functional units, cores, and cache banks [14].

Per-core power gating. Per-core power gating is a fine-
grained power gating technique that individually switches
off idle cores. In conjunction with DVFS, per-core power
gating provides more flexibility in optimizing performance
and power dissipation of multicore processors running
applications with varying degrees of parallelism. Per-core
power gating increases single-thread performance on a
single active core by increasing the active core’s supply
voltage while power gating the other idle cores, which
provides additional power- and thermal-headroom for the
active core. Experiments indicate that per-core power gating
in conjunction with DVFS can increase the throughput of a
multicore processor (with 16 cores) by 16 percent on average
for different workloads exhibiting a range of parallelism
while maintaining the power and thermal constraints [37].

Split power planes. Split power planes is a low-power
technique that allows different power planes to coexist on
the same chip and minimizes both static and dynamic
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power dissipation by removing power from idle portions of
the chip. Each power plane has separate pins, a separate (or
isolated) power supply, and independent power distribu-
tion routing. For example, Freescale’s MPC8536E Power-
QUIC III processor has two power planes: one plane for the
processor core (e500) and L2 cache arrays, and a second
plane for the remainder of the chip’s components [38].

Clock gating. Clock gating is a low-power technique
that allows gating off the clock signal to registers, latches,
clock regenerators, or entire subsystems (e.g., cache banks).
Clock gating can yield significant power savings by gating
off the functional units (e.g., adders, multipliers, and
shifters) not required by the currently executing instruc-
tion, as determined by the instruction decode unit. Clock
gating can also be applied internally for each functional
unit to further reduce power consumption by disabling the
functional unit’s upper bits for small operand values that
do not require the functional unit’s full bit width. The
granularity at which clock gating can be applied is limited
by the overhead associated with the clock enable signal
generation [14].

4.4 Threading Techniques

Different threading techniques target high performance by
either enabling a single processor to execute multiple
threads or by speculatively executing multiple threads.
Prominent high-performance threading techniques include
hyperthreading, helper threading, and speculative thread-
ing. We point out that helper and speculative threading are
performance-centric and may lead to increased power
consumption in case of misspeculation where speculative
processing needs to be discarded. Therefore, helper and
speculative threading should be used with caution in
energy critical embedded systems. Below we describe a
brief description of these threading techniques.

Hyperthreading. Hyperthreading leverages simulta-
neous multithreading to enable a single processor to appear
as two logical processors and allows instructions from both
of the logical processors to execute simultaneously on the
shared resources [26]. Hyperthreading enables the OS to
schedule multiple threads to the processor so that different
threads can use the idle execution units. The architecture
state, consisting of general-purpose registers, interrupt
controller registers, control registers, and some machine
state registers, is duplicated for each logical processor.
However, hyperthreading does not offer the same perfor-
mance as a multiprocessor with two physical processors.

Helper threading. Helper threading leverages special
execution modes to provide faster execution by reducing
cache miss rates and miss latency [26]. Helper threading
accelerates performance of single-threaded applications
using speculative preexecution. This preexecution is most
beneficial for irregular applications where data prefetching is
ineffective due to challenging data addresses prediction. The
helper threads run ahead of the main thread and reduce
cache miss rates and miss latencies by preexecuting regions
of the code that are likely to incur many cache misses. Helper
threading can be particularly useful for applications with
multiple control paths where helper threads preexecute all
possible paths and prefetch the data references for all paths
instead of waiting until the correct path is determined. Once

the correct execution path is determined, all the helper
threads executing incorrect paths are aborted.

Speculative threading. Speculative threading ap-
proaches provide high performance by removing unneces-
sary serialization in programs. We discuss two speculative
approaches: speculative multithreading and speculative
synchronization.

Speculative multithreading divides a sequential program
into multiple contiguous program segments called tasks
and execute these tasks in parallel on multiple cores. The
architecture provides hardware support for detecting
dependencies in a sequential program and rolling back
the program state on misspeculations. Speculative multi-
threaded architectures exploit high-transistor density by
having multiple cores and relieves programmers from
parallel programming, as is required for conventional
CMPs. Speculative multithreaded architectures provide
instruction windows much larger than conventional uni-
processors by combining the instruction windows of multi-
ple cores to exploit distant TLP as opposed to the nearby
ILP exploited by conventional uniprocessors [20].

Speculative synchronization removes unnecessary serial-
ization by applying thread-level speculation to parallel
applications and preventing speculative threads from
blocking at barriers, busy locks, and unset flags. Hardware
monitors detect conflicting accesses and roll back the
speculative threads to the synchronization point prior to
the access violation. Speculative synchronization guaran-
tees forward execution using a safe thread that ensures that
the worst case performance of the order of conventional
synchronization (i.e., threads not using any speculation)
when speculative threads fail to make progress.

4.5 Energy Monitoring and Management

Profiling the power consumption of various components
(e.g., processor cores, caches) for different embedded
applications at a fine granularity identifies how, when,
and where power is consumed by the embedded system
and the applications. Power profiling is important for
energy-efficient HPEEC system design. Energy monitoring
software can monitor, track, and analyze performance and
power consumption for different components at the
function-level or block-level granularity. PowerPack is an
energy monitoring tool that uses a combination of hardware
(e.g., sensors and digital meters) and software (e.g., drivers,
benchmarks, and analysis tools). PowerPack profiles power
and energy, as well as power dynamics, of DVFS in CMP-
based cluster systems for different parallel applications at
the component and code segment granularity [39].

Power management middleware dynamically adapts the
application behavior in response to fluctuations in work-
load and power budget. PowerDial is a power management
middleware that transforms static application configuration
parameters into dynamic control variables stored in the
address space of the executing application [40]. These
control variables are accessible via a set of dynamic knobs
to change the running application’s configuration dynami-
cally to trade-off computation accuracy (as far as the
applications minimum accuracy requirements are satisfied)
and resource requirements, which translates to power
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savings. Experiments indicate that PowerDial can reduce
power consumption by 75 percent.

Green is a power management middleware that enables
application programmers to exploit approximation oppor-
tunities to meet performance demands while meeting
quality of service guarantees [41]. Green provides a frame-
work that enables application programmers to approximate
expensive functions and loops. Green operates in two
phases: the calibration phase and the operation phase. In the
calibration phase, Green creates a QoS loss model for the
approximated functions to quantify the approximation
impact (loss in accuracy). The operational phase uses this
QoS loss model to make approximation decisions based on
programmer-specified QoS constraints. Experiments indi-
cate that Green can improve the performance and energy
consumption by 21 and 14 percent, respectively, with only a
0.27 percent QoS degradation.

4.6 Dynamic Thermal Management

Temperature has become an important constraint in HPEEC
embedded systems because high temperature increases
cooling costs, degrades reliability, and reduces perfor-
mance. Furthermore, an embedded application’s distinct
and time-varying thermal profile necessitates dynamic
thermal management approaches. DTM for multicore
embedded systems is more challenging than for the
single-core embedded systems because a core’s configura-
tion and workload has a significant impact on the
temperature of neighboring cores due to lateral heat
transfer between adjacent cores. The goal of DTM techni-
ques is to maximize performance while keeping tempera-
ture below a defined threshold.

Temperature determination for DTM. DTM requires
efficient chip thermal profiling, which can be done using
sensor-based, thermal model-based, or performance counters-
based methods. Sensor-based methods leverage physical
sensors to monitor the temperature in real time. DTM
typically uses one of the two sensor placement techniques:
global sensor placement monitors global chip hotspots and
local sensor placement places sensors in each processor
component to monitor local processor components. Ther-
mal model-based methods use thermal models that exploit
the duality between electrical and thermal phenomena by
leveraging lumped-RC (resistor/capacitor) models. Ther-
mal models can either be low-level or high-level. Low-level
thermal models estimate temperature accurately and report
the steady state as well as provide transient temperature
estimation, however, are computationally expensive. High-
level thermal models leverage a simplified lumped-RC model
that can only estimate the steady state temperature,
however, are computationally less expensive than the
low-level thermal methods. Performance counters-based
methods estimate the temperature of different on-chip
functional units using temperature values read from
specific processor counter registers. These counter readings
can be used to estimate the access rate and timing
information of various on-chip functional units.

Techniques assisting DTM. DVFS is one of the major
technique that helps DTM in maintaining a chip’s thermal
balance and alleviates a core’s thermal emergency by
reducing the core voltage and frequency. DVFS can be global

or local. Global DVFS provides less control and efficiency as a
single core’s hotspot could result in unnecessary stalling or
scaling of all the remaining cores. Local DVFS control each
core’s voltage and frequency individually to alleviate
thermal emergency of the affected cores, however, intro-
duces design complexity. A hybrid local-global thermal
management approach has the potential to provide better
performance than local DVFS while maintaining the simpli-
city of global DVFS. The hybrid approach applies global
DVFS across all the cores but specializes the architectural
parameters (e.g., instruction window size, issue width, fetch
throttling/gating) of each core locally. Research reveals that
the hybrid approach achieves a 5 percent better throughput
than the local DVFS [34]. Although DVFS can help DTM to
maintain thermal balance, there exists other techniques to
assist DTM, e.g., Zhou et al. [42] suggested that adjusting
microarchitectural parameters such as instruction window
size and issue width have relatively lower overhead than
DVFS-based approaches.

4.7 Dependable Techniques

To achieve performance efficiency while meeting an appli-
cation’s reliability requirements defines the dependable
HPEEC domain, which ranges from redundancy techniques
to dependable processor design. DHPEEC platforms are
critical for space exploration, space science, and defense
applications with ever increasing demands for high-data
bandwidth, processing capability, and reliability. We de-
scribe several hardware-assisted middleware techniques
leveraged by DHPEEC including N-modular redundancy,
dynamic constitution, and proactive checkpoint deallocation.

N-modular redundancy. The process variation, technol-
ogy scaling (deep submicron and nanoscale devices), and
computational energy approaching thermal equilibrium
leads to high-error rates in CMPs, which necessitates
redundancy to meet reliability requirements. Core-level
N-modular redundancy runs N program copies on N
different cores and can meet high-reliability goals for
multicore processors. Each core performs the same compu-
tation and the results are voted (compared) for consistency.
Voting can either be time-based or event-based. Based on
the voting result, program execution continues or rolls back
to a checkpoint (a previously stored, valid architectural
state). A multicore NMR framework can provide either
static or dynamic redundancy. Static redundancy uses a set
of statically configured cores, whereas dynamic redun-
dancy assigns redundant cores during runtime based on the
application’s reliability requirements and environmental
stimuli [43]. Static redundancy incurs high-area require-
ment and power consumption due to the large number of
cores required to meet an application’s reliability require-
ments, whereas dynamic redundancy provides better
performance, power, and reliability trade-offs.

The dependable multiprocessor (DM) is an example of a
DHPEEC platform which leverages NMR. The DM design
includes a fault-tolerant embedded message passing inter-
face (FEMPI) (a lightweight fault-tolerant version of the
Message Passing Interface (MPI) standard) for providing
fault-tolerance to parallel embedded applications [44].
Furthermore, DM can leverage HPEC platforms such as
the TilePro64 [45].
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Dynamic constitution. Dynamic constitution, an exten-
sion of dynamic redundancy, permits an arbitrary core on a
chip to be a part of an NMR group, which increases
dependability as compared to the static NMR configuration
by scheduling around cores with permanent faults. For
example, if an NMR group is statically constituted and the
number of cores with permanent faults drops below the
threshold to meet the application’s reliability requirements,
the remaining nonfaulty cores in the NMR group are
rendered useless. Dynamic constitution can also be helpful
in alleviating thermal constraints by preventing NMR
hotspots [46].

Proactive checkpoint deallocation. Proactive checkpoint
deallocation is a high-performance extension for NMR that
permits cores participating in voting to continue execution
instead of waiting on the voting logic results. After a voting
logic decision, only the cores with correct results are
allowed to continue further execution.

5 SOFTWARE APPROACHES

The performance and power efficiency of an embedded
platform not only depends upon the built-in hardware
techniques but also depends upon the software’s ability to
effectively leverage the hardware support. Software-based
HPEEC techniques assist DPM by signaling the hardware of
the resource requirements of an application phase. Software
approaches enable high performance by scheduling and
migrating tasks statically or dynamically to meet applica-
tion requirements. HPEEC software-based techniques in-
clude data forwarding, task scheduling, task migration, and
load balancing.

5.1 Data Forwarding

Data forwarding benefits HPEEC by hiding memory latency,
which is more challenging in multiprocessor systems as
compared to uniprocessor systems because uniprocessor
caches can hide memory latency by exploiting spatial and
temporal locality, whereas coherent multiprocessors have
sharing misses in addition to the nonsharing misses present
in uniprocessor systems. In a shared memory architecture,
processors that cache the same data address are referred as
sharing processors. Data forwarding integrates fine-grained
message passing capabilities in a shared memory architec-
ture and hides the memory latency associated with sharing
accesses by sending the data values to the sharing processors
as soon as the data values are produced [47]. Data
forwarding can be performed by the compiler where the
compiler inserts write and forward assembly instructions in
place of ordinary write instructions. Compiler-assisted data
forwarding uses an extra register to indicate the processors
that should receive the forwarded data. Another data
forwarding technique referred as programmer-assisted data
forwarding requires a programmer to insert a poststore
operation that causes a copy of an updated data value to be
sent to all the sharing processors. Experiments indicate that
remote writes together with prefetching improve perfor-
mance by 10-48 percent relative to the base system (no data
forwarding and prefetching), whereas remote writes im-
prove performance by 3-28 percent relative to the base
system with prefetching [26].

5.2 Load Distribution

A multicore embedded system’s performance is dictated by
the workload distribution across the cores, which in turn
dictates the execution time and power/thermal profile of
each core. Load distribution techniques focus on load
balancing between the executing cores via task scheduling
and task migration.

Task scheduling. The task scheduling problem can be
defined as determining an optimal assignment of tasks to
cores that minimizes the power consumption while main-
taining the chip temperature below the DTM enforced
ceiling temperature with minimal or no performance
degradation given the total energy budget. Task scheduling
applies for both DPM and DTM and plays a pivotal role in
extending battery life for portable embedded systems,
alleviating thermal emergencies, and enabling long-term
savings from reduced cooling costs. Task scheduling can be
applied in conjunction with DVFS to meet real-time task
deadlines as a higher processing speed results in faster task
execution and shorter scheduling lengths, but at the expense
of greater power consumption. Conversely, the decrease in
processor frequency reduces power consumption but in-
creases the scheduling length, which may increase the
overall energy consumption. Since the task scheduling
overhead increases as the number of cores increases,
hardware-assisted task scheduling techniques are the focus
of emerging research (e.g., thread scheduling in graphics
processing units (GPUs) is hardware assisted). Experiments
indicate that hardware-assisted task scheduling can improve
the scheduling time by 8.1 percent for CMPs [48].

Task migration. In a multithreaded environment,
threads periodically and/or aperiodically enter and leave
cores. Thread migration is a DPM and DTM technique that
allows a scheduled thread to execute, preempt, or migrate
to another core based on the thread’s thermal and/or power
profile. The OS or thread scheduler can dynamically
migrate threads running on cores with limited resources
to the cores with more resources as resources become
available. Depending on the executing workloads, there can
be a substantial temperature variation across cores on the
same chip. Thread migration-based DTM periodically
moves threads away from the hot cores to the cold cores
based on this temperature differential to maintain the cores’
thermal balance. A thread migration technique must take
into account the overhead incurred due to thread migration
communication costs and address space updates. Tempera-
ture determination techniques (e.g., performance counter-
based, sensor-based) assist thread management techniques
in making migration decisions.

Thread migration techniques can be characterized as
rotation-based, temperature-based, or power-based [49]. The
rotation-based technique migrates a thread from core ðiÞ
to core ððiþ 1Þ mod NÞ where N denotes the total number
of processor cores. The temperature-based technique orders
cores based on the cores’ temperature and the thread on
core ðiÞ is swapped with the thread on core ðN � i� 1Þ (i.e.,
the thread on the hottest core is swapped with the thread on
the coldest core, the thread on the second hottest core is
swapped with the thread on the second coldest core, and so
on). The power-based technique orders cores based on the
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cores’ temperature in ascending order and orders threads
based on the threads’ power consumption in descending
order. The power-based technique then schedules thread ðiÞ
to core ðiÞ (e.g., the most power-hungry thread is scheduled
to the coldest core).

Thread migration can be applied in conjunction with
DVFS to enhance performance. Research indicates that
thread migration alone can improve performance by 2� on
average, whereas thread migration in conjunction with
DVFS can improve performance by 2:6� on average [33].

Load balancing and unbalancing. Load balancing
techniques distribute a workload equally across all the
cores in a multicore embedded system. Load unbalancing
can be caused by either extrinsic or intrinsic factors. Extrinsic
factors are associated with the OS and hardware topology.
For example, the OS can schedule daemon processes during
the execution of a parallel application and an asymmetric
hardware topology can result in varying communication
latencies for different processes. Intrinsic factors include
imbalanced parallel algorithms, imbalanced data distribu-
tion, and changes in the input data set. An unbalanced task
assignment can lead to a performance degradation because
cores executing light workloads may have to wait/stall for
other cores executing heavier workloads to reach a
synchronization point. Load balancing relies on efficient
task scheduling techniques as well as balanced parallel
algorithms. Cache partitioning can assist load balancing by
assigning more cache partitions to the cores executing
heavier workloads to decrease the cache miss rate and
increase the core’s execution speed, and thus reduce the
stall time for the cores executing light workloads [50].

Although load balancing provides a mechanism to
achieve high performance in embedded systems, load
balancing may lead to high-power consumption if not
applied judiciously because load balancing focuses on
utilizing all the cores even for a small number of tasks. A
load unbalancing strategy that considers workload char-
acteristics (i.e., periodic or aperiodic) can achieve better
performance and lower power consumption as compared
to a load balancing or a load unbalancing strategy that

ignores workload characteristics. A workload-aware load
unbalancing strategy assigns repeatedly executed periodic
tasks to a minimum number of cores and distributes
aperiodic tasks that are not likely to be executed repeatedly
to a maximum number of cores. We point out that the
critical performance metric for periodic tasks is deadline
satisfaction rather than faster execution (a longer waiting
time is not a problem as long as the deadline is met),
whereas the critical performance metric for aperiodic tasks
is response time rather than deadline satisfaction. The
periodic tasks not distributed over all the cores leave more
idle cores for scheduling aperiodic tasks, which shortens the
response time of aperiodic tasks. Results on an ARM11MP-
Core chip demonstrate that the workload-aware load
unbalancing strategy reduces power consumption and the
mean waiting time of aperiodic tasks by 26 and 82 percent,
respectively, as compared to a load balancing strategy. The
workload-aware load unbalancing strategy reduces the
mean waiting time of aperiodic tasks by 92 percent with
similar power efficiency as compared to a workload
unaware load unbalancing strategy [51].

6 HIGH-PERFORMANCE ENERGY-EFFICIENT

MULTICORE PROCESSORS

Silicon and chip vendors have developed various high-
performance multicore processors that leverage the various
HPEEC techniques discussed in this paper. Although
providing an exhaustive list of all the prevalent high-
performance multicore processors that can be used in
embedded applications is outside of the scope of this paper,
we discuss some prominent multicore processors (summar-
ized in Table 2) and focus on their HPEEC features.1

Tilera TILEPro64 and TILE-Gx. Tilera revolutionizes
high-performance multicore embedded computing by
leveraging a tiled multicore architecture (e.g., the TILEPro64
and TILE-Gx processor family [52], [53]). The TILEPro64
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and TILE-Gx processor family feature an 8� 8 grid and an
array of 16 to 100 tiles (cores), respectively, where each tile
consists of a 32-bit very long instruction word (VLIW)
processor, three deep pipelines delivering up to three
instructions per cycle (IPC), integrated L1 and L2 cache, and
a nonblocking switch that integrates the tile into a power-
efficient interconnect mesh. The TILEPro64 and TILE-Gx
processors offer 5.6 and 32 MB of on-chip cache, respec-
tively, and implement Tilera’s dynamic distributed cache
(DDC) technology that provides a 2� improvement on
average in cache coherence performance over traditional
cache technologies using a cache coherence protocol. Each
tile can independently run a complete OS or multiple tiles
can be grouped together to run a multiprocessing OS like
SMP Linux. The TILEPro64 and TILE-Gx processor family
employs DPM to put idle tiles into a low-power sleep mode.
The TILEPro64 and TILE-Gx family of processor can
support a wide range of computing applications including
advanced networking, wireless infrastructure, telecom,
digital multimedia, and cloud computing.

Intel Xeon processor. Intel leverages Hafnium Hi-K and
metal gates in next generation Xeon processors to achieve
higher clock speeds and better performance per watt. The
Xeon processors also implement hyperthreading and wide
dynamic execution technologies for high performance. The
wider execution pipelines enable each core to simulta-
neously fetch, dispatch, execute, and retire up to four
instructions per cycle [54]. The Intel Xeon 5,500 processor
family features 15 power states and a fast transition
between these power states (less than 2 microseconds) [3].
The Xeon processors are based on Intel Core 2 Duo
microarchitecture where the two cores share a common L2
cache to provide faster intercore communication. The
shared L2 cache can be dynamically resized depending on
individual core’s needs. Intel’s deep power down technology
enables both cores and the L2 cache to be powered down
when the processor is idle [55]. Intel’s dynamic power
coordination technology allows software-based DPM to alter
each core’s sleep state to trade-off between power dissipa-
tion and performance. The processor incorporates digital
temperature sensors on each core to monitor thermal
behavior using Intel’s advanced thermal manager technology
[56]. The Dual-core Intel Xeon processor LV 5,148—a low-
power embedded processor—enables microgating of pro-
cessor circuitry to disable the processor’s inactive portions
with finer granularity [57]. Typical applications for the Intel
Xeon processor include medical imaging, gaming, indus-
trial control and automation systems, mobile devices,
military, and aerospace.

Graphics processing units. A graphics processing unit is
a massively parallel processor capable of executing a large
number of threads concurrently, and accelerates and off-
loads graphics rendering from the CPU. GPUs feature high-
memory bandwidth that is typically 10� faster than
contemporary CPUs. NVIDIA and AMD/ATI are the two
main GPU vendors. GPUs are suitable for high-definition
(HD) videos, photos, 3D movies, high-resolution graphics,
and gaming. Apart from high-graphics performance, GPUs
enable general-purpose computing on graphics processing
units (GPGPU), which is a computing technique that

leverages GPUs to perform compute-intensive operations
traditionally handled by CPUs. GPGPUs are realized by
adding programmable stages and higher precision arith-
metic to the rendering pipelines, which enables stream
processors to process nongraphics data. For example,
NVIDIA Tesla personal supercomputer consisting of 3 or
4 Tesla C1060 computing processors [58] offers up to 4
TFLOPS of compute capability with 4 GB of dedicated
memory per GPU [59].

NVIDIA’s PowerMizer technology—available on all
NVIDIA GPUs—is a DPM technique that adapts the GPU
to suit an application’s requirements [60]. Digital watchdogs
monitor GPU utilization and turn off idle processor engines.
NVIDIA’s Parallel DataCache technology accelerates algo-
rithms, such as ray-tracing, physics solvers, and sparse
matrix multiplication, where data addresses are not known a
priori [61]. ATI’s PowerPlay technology is a DPM solution
that monitors GPU activity and adjusts GPU power between
low, medium, and high states via DVFS based on workload
charateristics. For example, PowerPlay puts the GPU in a
low-power state when receiving and composing e-mails, and
switches the GPU to a high-power state for compute-
intensive gaming applications. PowerPlay incorporates on-
chip sensors to monitor the GPU’s temperature and triggers
thermal actions accordingly. The PowerPlay technology is
available on the ATI Radeon HD 3800 and 4800 series
graphics processors, the ATI Mobility Radeon graphics
processors, and the Radeon Express motherboard chipsets.

7 CONCLUSIONS, CHALLENGES, AND FUTURE

RESEARCH DIRECTIONS

HPEEC is an active and expanding research domain with
applications ranging from consumer electronics to super-
computers. The introduction of HPEEC into supercomput-
ing has boosted the significance of the HPEEC domain as
power is becoming a concern for modern supercomputing
considering the long-term operation and cooling costs.
Modern supercomputers are a combination of custom-
design and embedded processors, such as Opteron, Xeon,
and coprocessors such as NVIDIA Tesla general-purpose
graphics processing units, AMD graphics processing units,
etc. For example, the Tianhe-1A supercomputer (the
world’s second fastest supercomputer as of June 2011 and
located at the National Supercomputing Center in Tianjinin,
China [5]) leverages Intel Xeon processors as well as
NVIDIA Tesla GPGPUs. An increasing growth and expan-
sion of HPEEC is envisioned in the foreseeable future as
supercomputers rely more and more on HPEEC.

This paper gives an overarching survey of HPEEC
techniques that enable meeting diverse embedded applica-
tion requirements. We discuss state-of-the-art multicore
processors that leverage these HPEEC techniques. Despite
remarkable advancements, the HPEEC domain still faces
various arduous challenges, which require further research
to leverage the full-scale benefits of HPEEC techniques.
Although power is still a first-order constraint in HPEEC
platforms, we discuss several additional challenges facing
the HPEEC domain (summarized in Table 3) along with
future research directions.
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Heterogeneous CMPs provide performance efficiency,
but present additional design challenges as design space
increases considering various types of cores and the
flexibility of changing each core’s architectural parameters
(e.g., issue width, instruction window size, fetch gating) for
an arbitrary permutations of workloads. Furthermore, for a
given die size, there exists a fundamental trade-off between
number and type of cores and appropriate cache sizes for
these cores. Efficient distribution of available cache size
across the cache hierarchies (private and shared) to provide
high performance is challenging [17].

Synchronization between multiple threads running on
multiple cores introduces performance challenges. Threads
use semaphores or locks to control access to shared data,
which degrades performance due to the busy waiting of
threads. Furthermore, threads use synchronization barriers
(a defined point in the code where all threads must reach
before further execution), which decreases performance due
to idle waiting of faster threads for slower threads.

Although different threads can work independently on
private data, shared memory becomes a bottleneck due to
large number of shared-data accesses to different cache
partitions. Furthermore, threads can communicate via
shared memory, which requires cache state transitions to
transfer data between threads. Threads must stall until
cache state transitions occur, as there is likely insufficient
speculative or out-of-order work available for these threads.
Moreover, designing a common interface to the shared
cache, clock distribution, and cache coherence provides
additional design challenges [26].

Cache coherence is required to provide a consistent
memory view in shared-memory multicore processors with
various cache hierarchies. Embedded systems convention-
ally rely on software-managed cache coherency, which does
not scale well with the number of cores and thereby
necessitates hardware-assisted cache coherence. Hardware-
software codesign of cache coherence protocol defines
challenging trade-offs between performance, power, and
time-to-market [62].

Cache thrashing—an additional HPEEC challenge—is a
phenomenon where threads continually evict each others
working set from the cache, which increases the miss rate
and latency for all threads. Although direct-mapped caches
present an attractive choice for multicore embedded
systems due to a direct-mapped cache’s power efficiency
as compared to associative caches, direct-mapped caches
are more predisposed to thrashing as compared to set

associative caches. Cache thrashing can be minimized by
providing larger and more associative caches; however,
these opportunities are constrained by strict power require-
ments for embedded systems. Victim caches employed
alongside direct-mapped caches help to alleviating cache
thrashing by providing associativity for localized cache
conflict regions [63].

Various new avenues are emerging in HPEEC such as
energy-efficient data centers, grid and cluster embedded
computing and dependable HPEEC. Various vendors are
developing energy-efficient high-performance architectures
for data centers by leveraging a huge volume of low-power
mobile processors (e.g., SeaMicro’s SM10000 servers family
integrates 512 low-power X86 1.66 GHz, 64-bit, Intel Atom
cores [64]). Advances are being made in grid and cluster
embedded computing, e.g., AMAX’s ClusterMax SuperG
GPGPU clusters consisting of NVIDIA Tesla 20-series GPU
computing platforms feature 57,344 GPU cores and offer
131.84 TFLOPS of single precision performance and 65.92
TFLOPS of double precision performance [65]. Though grid
embedded computing has revolutionized HPEEC, but
requires further investigation in associated task scheduling
policies due to the unique dynamics of grid embedded
computing. Different heterogeneous embedded processors
can be added to or removed from the grid dynamically,
which requires intelligent dynamic task scheduling policies
to map tasks to the best available computing nodes. The
task scheduling policies must consider the impact of
dynamic changes in available computing resources on time
and energy requirements of tasks.

As the number of on-chip cores increases to satisfy
performance demands, communicating data between these
cores in an energy-efficient manner becomes challenging
and requires scalable, high-bandwidth interconnection
networks. Although wireless interconnects provide a
power-efficient high-performance alternative to wired
interconnects, associated research challenges include parti-
tioning of wired and wireless interconnect domains,
directional antenna design, and lightweight medium access
control (MAC) protocols. Since many supercomputing
applications leverage multiple many-core chips (CMOS
technology and power dissipation limit restricts the
number of processor cores on a single chip), design of
high-bandwidth and low-power interconnection networks
between these many-core chips is also an emerging
research avenue. Although photonic network designs have
been proposed in literature as a prospective low-power

MUNIR ET AL.: HIGH-PERFORMANCE ENERGY-EFFICIENT MULTICORE EMBEDDED COMPUTING 697

TABLE 3
High-Performance Energy-Efficient Embedded Computing Challenges



and high-bandwidth solution to interconnect many-core
CMPs [66], [67], the domain of scalable interconnection
networks (inter- and intrachip) requires further research.

Dynamic optimization techniques that can autono-
mously adapt embedded systems according to changing
application requirements and environmental stimuli pre-
sent an interesting research avenue. The task scheduling
techniques in real-time embedded systems are typically
based on tasks’ worst-case execution times, which can
produce slack time whenever a task finishes execution
before the task’s deadline. Therefore, dynamic task sche-
duling techniques that leverage this slack time information
at runtime to reduce energy consumption are crucial for
HPEEC systems and require further research.

To keep up with the Moore’s law, innovative transistor
technologies are needed that can permit high-transistor
density on-chip facilitating chip miniaturization while
allowing operation at higher speeds with lower power
consumption as compared to the contemporary CMOS
transistor technology. Miniaturized embedded multicore
processor/memory design and fabrication using new
transistor technologies (e.g., multiple gate field-effect
transistors (MuGFETs), FinFETs, Intel’s tri-gate) is an
interesting HPEEC lithography research avenue [68].

Finally, advanced power monitoring and analysis tools
are required for HPEEC platforms to monitor power at a
fine granularity (i.e., the functional unit-level in relation to
an application’s code segments) and profile architectural
components with respect to power consumption for
different code segments. Specifically, power measurement
and analysis tools for GPUs are required considering the
proliferation of GPUs in the HPEEC domain [69].
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