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Abstract—Technological advancements in the silicon industry, as predicted by Moore’s law, have enabled integration of billions of
transistors on a single chip. To exploit this high transistor density for high performance, embedded systems are undergoing a transition
from single-core to multi-core. Although a majority of embedded wireless sensor networks (EWSNs) consist of single-core embedded
sensor nodes, multi-core embedded sensor nodes are envisioned to burgeon in selected application domains that require complex in-
network processing of the sensed data. In this paper, we propose an architecture for heterogeneous hierarchical multi-core embedded
wireless sensor networks (MCEWSNs) as well as an architecture for multi-core embedded sensor nodes used in MCEWSNs. We
elaborate several compute-intensive tasks performed by sensor networks and application domains that would especially benefit from
multi-core embedded sensor nodes. This paper also investigates the feasibility of two multi-core architectural paradigms—symmetric
multiprocessors (SMPs) and tiled many-core architectures (TMAs)—for MCEWSNs. We compare and analyze the performance of
an SMP (an Intel-based SMP) and a TMA (Tilera’s TILEPro64) based on a parallelized information fusion application for various
performance metrics (e.g., runtime, speedup, efficiency, cost, and performance per watt). Results reveal that TMAs exploit data locality
effectively and are more suitable for MCEWSN applications that require integer manipulation of sensor data, such as information fusion,
and have little or no communication between the parallelized tasks. To demonstrate the practical relevance of MCEWSNs, this paper
also discusses several state-of-the-art multi-core embedded sensor node prototypes developed in academia and industry. We further
discuss research challenges and future research directions for MCEWSNs.
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1 INTRODUCTION AND MOTIVATION

EMbedded wireless sensor networks (EWSNs) consist
of sensor nodes with embedded sensors to sense

data about a phenomenon and these sensor nodes
communicate with neighboring sensor nodes over
wireless links. Many emerging EWSN applications (e.g.,
surveillance, volcano monitoring) require a plethora
of sensors (e.g., acoustic, seismic, temperature, and,
more recently, image sensors and/or smart cameras)
embedded in the sensor nodes. Although traditional
EWSNs equipped with scalar sensors (e.g., temperature,
humidity) transmit most of the sensed information to
a sink node (base station node), this sense-transmit
paradigm is becoming infeasible for information-hungry
applications equipped with a plethora of sensors,
including image sensors and/or smart cameras.

Processing and transmission of the large amount
of sensed data in emerging applications exceeds
the capabilities of traditional EWSNs. For example,
consider a military EWSN deployed in a battlefield,
which requires various sensors, such as imaging,
acoustic, and electromagnetic sensors. This application
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presents various challenges for existing EWSNs since
transmission of high-resolution images and video
streams over bandwidth-limited wireless links from
sensor nodes to the sink node is infeasible. Furthermore,
meaningful processing of multimedia data (acoustic,
image, and video in this example) in real-time exceeds
the capabilities of traditional EWSNs consisting of
single-core embedded sensor nodes [1][2], and requires
more powerful embedded sensor nodes to realize this
application.

Since single-core EWSNs will soon be unable to
meet the increasing requirements of information-
rich applications (e.g., video sensor networks), next
generation sensor nodes must possess enhanced
computation and communication capabilities. For
example, the transmission rate for the first generation
Mica motes was 38.4 kbps whereas the second
generation Mica motes (MicaZ motes) can communicate
at 250 kbps using IEEE 802.15.4 (Zigbee) [3]. Despite
these advances in communication, limited wireless
bandwidth from sensor nodes to the sink node makes
timely transmission of multimedia data to the sink node
infeasible. In traditional EWSNs, the communication
energy dominates the computation energy. For example,
an embedded sensor node produced by Rockwell
Automation [4] expends 2000x more energy for
transmitting a bit than that of executing a single
instruction [5]. Similarly, transmitting a 15 frames
per second (FPS) digital video stream over a wireless
Bluetooth link takes 400 mW [6].

Fortunately, there exists a tradeoff between
transmission and computation in an EWSN, which is
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well-suited for in-network processing for information-
rich applications and allows transmission of only event
descriptions (e.g., detection of a target of interest)
to the sink node to conserve energy. Technological
advancements in multi-core architectures have made
multi-core processors a viable and cost-effective choice
for increasing the computational ability of embedded
sensor nodes. Multi-core embedded sensor nodes can
extract the desired information from the sensed data
and communicate only this processed information,
which reduces the data transmission volume to the sink
node. By replacing a large percentage of communication
with in-network computation, multi-core embedded
sensor nodes could realize large energy savings that
would increase the sensor network’s overall lifetime.

Multi-core embedded sensor nodes enable energy
savings over traditional single-core embedded sensor
nodes in two ways. First, reducing the energy expended
in communication by performing in-situ computation
of sensed data and transmitting only processed
information. Second, a multi-core embedded sensor node
allows the computations to be split across multiple cores
while running each core at a lower processor voltage
and frequency, as compared to a single-core system,
which results in energy savings. Utilizing a single-core
embedded sensor node for information processing in
information-rich applications requires the sensor node
to run at a high processor voltage and frequency
to meet the application’s delay requirements, which
increases the power dissipation of the processor. A multi-
core embedded sensor node reduces the number of
memory accesses, clock speed, and instruction decoding,
thereby enabling higher arithmetic performance at a
lower power consumption as compared to a single-core
processor [6].1

This paper investigates the feasibility of two multi-
core architectures that can be used in processing
units of embedded sensor nodes for multi-core
embedded wireless sensor networks (MCEWSNs):
symmetric multiprocessors (SMPs) and tiled many-
core architectures (TMAs).2 We consider SMPs
because SMPs are ubiquitous and pervasive, which
provides a standard/fair basis for comparing with
other novel architectures (e.g., TMAs) [7]. We consider
Tilera’s TILEPro64 for TMAs because of Tilera’s
innovative architectural features (e.g., three-way issue
superscalar tiles, on-chip mesh interconnect, and
dynamic distributed cache (DDC) technology). Despite
the diversity of application domains for MCEWSNs
(e.g., military, health, satellites), many application
domains have information fusion as one of the most
critical applications, and hence we parallelize the
information fusion application both for SMPs and

1. The supplementary material document posted online discusses
prior work related to multi-core embedded sensor nodes.

2. The discussion of sensor nodes’ multi-core architectures and
parallel computing metrics that we use to evaluate these architectures
is presented in Section 3 of the supplementary material document.

TMAs. We compare and analyze the performance of
an SMP (an Intel-based SMP) and a TMA (Tilera’s
TILEPro64) for performance evaluation.

The choice of a multi-core architecture dictates the
high-level parallel languages since some multi-core
architectures support proprietary parallel languages
whose benchmarks are not available open source
(e.g., Tilera’s TILEPro64). Tilera provides a multi-core
development environment (MDE) ilib API [8] whereas
many SMPs (e.g., the Intel-based SMP) support OpenMP
(Open Multi-processing), hence the cross-architectural
evaluation results may be affected by the parallel
language’s efficiency. However, our analysis provides
insights into the attainable performance per watt from
these two multi-core architectures for MCEWSNs. To
the best of our knowledge, this paper is the first
to highlight the feasibility and application of multi-
core technology in EWSNs. Although few initiatives
study the feasibility of multi-core technology for
EWSNs [9][10], no prior work proposes an MCEWSN
architecture based on multi-core embedded sensor
nodes. Furthermore, motives and application domains
for MCEWSNs have not yet been characterized. Our
main contributions are as follows:

• Proposal of a heterogeneous hierarchical MCEWSN
and associated multi-core embedded sensor node
architecture.

• Elaboration on several computation-intensive tasks
performed by sensor networks that would especially
benefit from multi-core embedded sensor nodes.

• Characterization and discussion of various
application domains for MCEWSNs.

• Discussion of several state-of-the-art multi-core
embedded sensor node prototypes developed in
academia and industry.3

• Parallelization of an information fusion application
for two multi-core architectures (SMPs and TMAs)
that can be used in embedded sensor nodes’
processing units.

• Comparison and analysis of the performance and
performance per watt of SMPs and TMAs based
on our parallelized information fusion application.
This analysis demonstrates performance and
performance per watt advantages attained by
multi-core embedded sensor nodes as compared to
single-core embedded sensor nodes.

The remainder of this paper is organized as
follows. Section 2 proposes an MCEWSN architecture.
Potential application domains amenable to MCEWSNs
are discussed in Section 3. Results are presented in
Section 4. Section 5 discusses the research challenges and
future research directions for MCEWNS and Section 6
concludes this paper.

3. Detailed in Section 5 of the supplementary material document.
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2 MULTI-CORE EMBEDDED WIRELESS
SENSOR NETWORK ARCHITECTURE
Fig. 1 depicts our proposed heterogeneous hierarchical
MCEWSN architecture, which satisfies the increasing in-
network computational requirements of emerging
EWSN applications. The heterogeneity in the
architecture subsumes the integration of numerous
single-core embedded sensor nodes and several
multi-core embedded sensor nodes. We note that
homogeneous hierarchical single-core EWSNs have
been discussed in literature for large EWSNs (EWSNs
consisting of a large number of sensor nodes) [11][12].
Our proposed architecture is hierarchical since the
architecture comprises of various clusters (a group of
embedded sensor nodes in communication range with
each other) and a sink node. A hierarchical network is
well suited for large EWSNs since small EWSNs, which
consist of only a few sensor nodes, can send the sensed
data directly to the base station or sink node.

Each cluster consists of several leaf sensor nodes and
a cluster head. Leaf sensor nodes contain a single-
core processor and are responsible for sensing, pre-
processing sensed data, and transmitting sensed data
to the cluster head nodes. Since leaf sensor nodes are
not intended to perform complex processing of sensed
data in our proposed architecture, a single-core processor
sufficiently meets the computational requirements of leaf
sensor nodes. Cluster head nodes consist of a multi-core
processor and are responsible for coalescing/fusing the
data received from leaf sensor nodes for transmission
to the sink node in an energy- and bandwidth-efficient
manner. Our proposed architecture with multi-core
cluster heads is based on practical reasons since sending
all the collected data from the cluster heads to the
sink node is not feasible for bandwidth limited EWSNs,
which warrants complex processing and information
fusion to be carried out at cluster head nodes and only
the concise processed information is transmitted to the
sink node.4

The sink node contains a multi-core processor
and is responsible for transforming high-level user
queries from the control and analysis center (CAC) to
network-specific directives, querying the MCEWSN for
the desired information, and returning the requested
information to the user/CAC. The sink node’s multi-core
processor facilitates post-processing of the information
received from multiple cluster heads. The post-
processing at the sink node includes information fusion
and event detection based on aggregated data from all
of the sensor nodes in the network. The CAC further
analyzes the information received from the sink node
and issues control commands and queries to the sink
node.

MCEWSNs can be coupled with a satellite backbone

4. Section 4 of the supplementary material document elaborates
on several compute-intensive tasks that motivated the emergence of
MCEWSNs.
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Fig. 1: A heterogeneous multi-core embedded wireless
sensor network (MCEWSN) architecture.

network that provides long-haul communication from
the sink node to the CAC since MCEWSNs are often
deployed in remote areas with no wireless infrastructure,
such as a cellular network infrastructure. The satellites in
the satellite backbone network communicate with each
other via inter-satellite links (ISLs). Since a satellite’s
uplink and downlink bandwidth is limited, a multi-
core processor in the sink node is required to process,
compress, and/or encrypt the information sent to the
satellite backbone network.

Even though this paper focuses on heterogeneous
MCEWSNs, homogenous MCEWSN architectures are
an extension of our proposed architecture (Fig. 1)
where leaf sensor nodes also contain a multi-core
processor. In a homogeneous MCEWSN equipped with
multiple sensors, each processor core in a multi-core
embedded sensor node can be assigned to process one
sensing task (e.g., one processor core handles sensed
temperature data and another processor core handles
sensed humidity data and so on) as opposed to single-
core embedded sensor nodes where the single processor
core is responsible for processing all of the sensed data
from all of the sensors. We focus on heterogeneous
MCEWSNs as we believe that heterogeneous MCEWSNs
would serve as a first step towards integration of multi-
core and sensor networking technology because of the
following reason. Due to the dominance of single-core
embedded sensor nodes in existing EWSNs, replacing all
of the single-core embedded sensor nodes with multi-
core embedded sensor nodes may not be feasible and
cost-effective given that only a few multi-core embedded
sensor nodes operating as cluster heads could meet
an application’s in-network computation requirements.
Hence, our proposed heterogeneous MCEWSN would
enable a smooth transition from single-core to multi-core
EWSNs.5

3 MCEWSN APPLICATION DOMAINS
MCEWSNs are suitable for sensor networking
application domains that require complex in-network

5. Section 2 of the supplementary material document depicts the
architecture of a multi-core embedded sensor node in our MCEWSN.
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information processing such as wireless video sensor
networks, wireless multimedia sensor networks,
satellite-based wireless sensor networks, space shuttle
sensor networks, aerial-terrestrial hybrid sensor
networks, and fault-tolerant sensor networks. In
this section, we discuss these application domains for
MCEWSNs.6

3.1 Wireless Video Sensor Networks (WVSNs)
Wireless video sensor networks (WVSNs) are WSNs
in which smart cameras and/or image sensors are
embedded in the sensor nodes. WVSNs emulate the
compound eye found in certain arthropods. Although
WVSNs are a subset of wireless multimedia sensor
networks (WMSNs), we discuss WVSNs separately
to emphasize the WVSNs’ stand-alone existence.
WVSNs are suitable for applications in areas such as
homeland security, battlefield monitoring, and mining.
For example, video sensors deployed at airports,
borders, and harbors provide a level of continuous and
accurate monitoring and protection that is otherwise
unattainable. We discuss the application of multi-core
embedded sensor nodes both for image- and video-
centric WVSNs.

In image-centric WVSNs, multiple image/camera
sensors observe a scene from multiple directions and are
able to describe objects in their true three-dimensional
appearance by overcoming occlusion problems. Low-
cost imaging sensors are readily available, such as
CCD and CMOS imaging sensors from Kodak, and
the Cyclops camera from the University of California
at Los Angeles (UCLA) designed as an add-on for
Mica sensor nodes [6]. Image pre-processing involves
convolutions and data-dependent operations using a
limited neighborhood of pixels. The signal processing
algorithms for image processing in WVSNs typically
exhibit a high degree of parallelism and are dominated
by a few regular kernels (e.g., FFT) that are responsible
for a large fraction of the execution time and
energy consumption. Accelerating these kernels on
multi-core embedded sensor nodes would achieve
significant speedup in execution time and reduction in
energy consumption, and would help achieve real-time
computational requirements for many applications in
energy-constrained domains.

Video-centric WVSNs rely on multiple video streams
from multiple embedded sensor nodes. Since sensor
nodes can only serve low-resolution video streams
given the sensor nodes’ resource limitations, a single
video stream alone does not contain enough information
for vision analysis such as event detection and
tracking, however, multiple sensor nodes can capture
video streams from different angles and distances
together providing enormous visual data [3]. Video
encoders rely on intraframe compression techniques that

6. Section 5 of the supplementary material document describes
several state-of-the-art multi-core embedded sensor node prototypes.

reduce redundancy within one frame and interframe
compression techniques (e.g., predictive coding) that
exploit redundancy among subsequent frames [1]. Video
coding techniques require complex algorithms that
exceed the computing power of single-core embedded
sensor nodes. The visual data from numerous sensor
nodes can be combined to give high-resolution video
streams, however, this processing requires multi-core
embedded sensor nodes and/or cluster heads.

3.2 Wireless Multimedia Sensor Networks (WMSNs)
A wireless multimedia sensor network (WMSN) consists
of wirelessly connected embedded sensor nodes that can
retrieve multimedia content such as video and audio
streams, still images, and scalar sensor data of the
observed phenomenon. WMSNs target a large variety of
distributed, wireless, streaming multimedia networking
applications ranging from home surveillance to military
and space applications. A multimedia sensor captures
audio and image/video streams using an embedded
microphone and a micro-camera.

Various sensors in a WMSN coordinate closely to
achieve application goals. For example, in a military
application for target detection and tracking, acoustic
and electromagnetic sensors can enable early detection
of a target but may not provide adequate information
about the target. Additional target details, such as
type of vehicle, equipped armaments, and onboard
personnel, are often required and gathering these
details requires image sensors. Although the sensing
ability in most sensors is isotropic and attenuates
with distance, a distinct characteristic of video/image
sensors is these sensors’ directional sensing ranges.
Recently, omnicameras have become available, which
can provide complete coverage of the scene around a
sensor node, however, applications are limited to close
range scenarios to guarantee sufficient image resolution
for moving objects [3]. To ensure full coverage of the
sensor field, a set of directional cameras is required
to capture enough information for activity detection.
The image and video sensors high sensing cost limits
these sensors continuous activation given constrained
embedded sensor node resources. Hence, the image and
video sensors in a WMSN require sophisticated control
such that the image and video sensors are triggered only
after a target is detected based on sensed data from other
lower cost sensors, such as acoustic and electromagnetic.

Desirable WMSN characteristics include the ability
to store, process in real-time, correlate, and fuse
multimedia data originating from heterogeneous sources
[1]. Multimedia contents, especially video streams,
require data rates that are orders of magnitude
higher than those supported by traditional single-core
embedded sensor nodes. To process multimedia data in
real-time and to reduce the wireless bandwidth demand,
multi-core embedded sensor nodes in the network are
required. Multi-core embedded sensor nodes facilitate
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in-situ processing of voluminous information from
various sensors, notifying the CAC only once an event
is detected (e.g., target detection).

3.3 Satellite-based Wireless Sensor Networks
(SBWSN)
A satellite-based wireless sensor network (SBWSN) is
a wireless communication sensing network composed
of many satellites, each equipped with multi-functional
sensors, long-range wireless communication modules,
thrusters for attitude adjustment, and a computational
unit (potentially multi-core) to carry out processing
of the sensed data. Traditional satellite missions are
extremely expensive to design, build, launch, and
operate, thereby motivating the aerospace industry to
focus on distributed space missions, which would
consist of multiple small, inexpensive, and distributed
satellites coordinating to attain mission goals. SBWSNs
would enable robust space missions by tolerating the
failure of a single or a few satellites as compared to
a large single satellite, where a single failure could
compromise the success of a mission. SBWSNs can be
used for a variety of missions, such as space weather
monitoring, studying the impact of solar storms on
Earth’s magnetosphere and ionosphere, environmental
monitoring (e.g., pollution, land, and ocean surface
monitoring), and hazard prediction (e.g., flood and
earthquake prediction).

Each SBWSN mission requires specific orbits and
constellations to meet mission requirements and GPS
provides an essential tool for orbit determination
and navigation. Typical constellations include string-
of-pearls, flower constellation, and satellite cluster. In
particular, the flower constellation provides stable orbit
configurations, which are suitable for micro-satellite (mass
< 100 kg), nano-satellite (mass < 10 kg), and pico-
satellite (mass < 1 kg) missions. Important orbital
factors to consider in SBWSN design are relative
range (distance) and speed between satellites, the inter-
satellite link (ISL) access opportunity, and the ground-
link access opportunity. The access time is the time
for two satellites to communicate with each other and
depends on the distance between the satellites (range).
Satellites in an SBWSN can be used as an interferometer,
which correlates different images acquired from slightly
different angles/view points in order to get better
resolution and more meaningful insights.

All of the satellites in an SBWSN collaborate to
sense the desired phenomenon, communicate over long
distances through beam-forming over an ISL, and
maintain the network topology through self-organized
mobility [13]. Studies indicate that IEEE 802.11b (Wi-Fi)
and IEEE 802.16 (WiMax) can be used for inter-satellite
communications (communication between satellites) and
IEEE 802.15.4 (Zigbee) can be used for intra-satellite
(communication between sensor nodes within a satellite)
communications [14]. We point out that the IEEE

802.11b protocol requires modifications for use in an
ISL where the distance between satellites is more
than one kilometer since the IEEE 802.11b standard
normally supports a communication range within 300
meters. The feasibility of wireless protocols for inter-
satellite communication depends on the range, power
requirements, medium access control (MAC) features,
and support for mobility. The intra-satellite protocols are
mainly selected based on power since the range is small
within a satellite. A low duty cycle and the ability to put
the radio to sleep are desirable features for intra-satellite
communication protocols. For example, the MICA2DOT
mote, which requires 24 mW of active power and 3 µW
of standby power, supplied by a 3 V 750 mAh battery cell
can last for 27,780 hours ≈ three years and two months,
while operating at a duty cycle of 0.1% (supported by
Zigbee) [15].

Since an individual satellite within an SBWSN may
not have sufficient power to communicate with a ground
station, a sink satellite in an SBWSN can communicate
with a ground station, which is connected to the CAC.
Ground communication in SBWSNs takes place in very-
high frequency (VHF) (30 MHz – 300 MHz) and ultra-
high frequency (UHF) (300 MHz – 3 GHz) bands.
VHF frequencies pass through the ionosphere with
effects, such as scintillation, fading, Faraday’s rotation,
and multi-path effects during intense solar cycles due
to reflection of the VHF signals. UFH frequencies,
in which both S- and L-bands lie, can suffer severe
disruptions during a solar storm. For a formation of
several SNAP-1 nano-satellites, the typical downlink
data rate is 38.4 kbps or 76.8 kbps maximum [15],
which necessitates multi-core embedded sensor nodes in
SBWSNs to perform in-situ processing so that only event
descriptions are sent to the CAC.

3.4 Space Shuttle Sensor Networks (3SN)
A space shuttle sensor network (3SN) corresponds to
a network of sensors aimed to monitor a space shuttle
during pre-flight, ascent, on-orbit, and re-entry phases.
Battery-operated embedded wireless sensors can be
easily bonded to the space shuttle’s structure and enable
real-time monitoring of temperature, triaxial vibration,
strain, pressure, tilt, chemical, and ultrasound data.
MCEWSNs would enable real-time monitoring of space
vehicles not possible by ground-based sensing systems.
For example, the Columbia space shuttle accident was
caused by damage done when foam shielding dislodged
from the external fuel tank during the shuttle’s launch,
which damaged the wing’s leading edge panels [16]. The
vehicle lacked on-board sensors that could have enabled
ground personnel to determine the extent and location
of the damage. Ground-based cameras captured images
of the impact but were not able to reliably characterize
the location and severity of the impact and resulting
damage.

MCEWSNs for space shuttles, currently under
development, would be used for space shuttle main
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engine (SSME) crack investigation, space shuttle
environmental control life support system (ECLSS)
oxygen and nitrogen flexhose analysis, and wing
leading edge impact detection. Since the amount of data
acquired during the 10-minute ascent period is nearly
100 MB, the time to download all data, even for a single
event, via the radio frequency (RF) link is prohibitively
long. Hence, information fusion algorithms are required
in 3SNs to minimize the quantity and increase the
quality of data being transmitted via the RF link.
Furthermore, MCEWSNs would enable a 10x reduction
in the installation costs for the shuttle as compared
to the sensing systems based on traditional wired
approaches [16].

3.5 Aerial-Terrestrial Hybrid Sensor Networks
(ATHSNs)
Aerial-terrestrial hybrid sensor networks (ATHSNs),
which consist of ground sensors and aerial sensors,
integrate terrestrial sensor networks with aerial/space
sensor networks. To connect remote terrestrial EWSNs
to a CAC located far away in urban areas, ATHSNs
can include a satellite backbone network. The satellite
backbone network is widely available at remote
locations and provides a reliable and broadband
communication network [17][18]. Various satellite
communication choices are possible, such as WildBlue,
HughesNet, and NASA’s geostationary operational
environmental satellite (GOES) system. However, a
satellite’s uplink and downlink bandwidth is limited,
and requires pre-processing as well as compression of
sensed data, especially multimedia data such as image
and video streams. Multi-core embedded sensor nodes
are suitable for ATHSNs, and are capable of carrying
out the processing and compression of high-quality
image and video streams for transmission to and from
a satellite backbone network.

Aerial networks in ATHSNs may consist of unmanned
aerial vehicles (UAVs) and satellites. For example,
consider an ATHSN in which UAVs contain embedded
image and video sensors such that only the image
scenes that are of significant interest from a military
strategy perspective are sensed in greater detail. The
working of ATHSNs consisting of UAVs and satellites
can be described concisely in seven steps [17]: 1) Ground
sensors detect the presence of a hostile target in the
monitored field and store events in memory; 2) The
satellite periodically contacts multi-core cluster heads
in the terrestrial EWSN to download updates about
the target’s presence; 3) Satellites contact UAVs to
acquire image data about the scene where the intrusion
is detected; 4) UAVs gather image data through the
embedded image sensors; 5) The embedded multi-core
sensors in UAVs process and compress the image data
for transmission to the satellite backbone network in a
bandwidth-efficient manner; 6) The satellite backbone
network relays the processed information received from

the UAVs to the CAC; 7) The satellite backbone
network relays the commands (e.g., launching the UAVs’
arsenals) from the CAC to the UAVs.

Ye et al. [18] have implemented an ATHSN prototype
for an ecological study using temperature, humidity,
photosynthetically active radiation (PAR), wind speed,
and precipitation sensors. The prototype consists of a
small satellite dish and a communication modem for
integrating a terrestrial EWSN with the WildBlue satellite
backbone network, which provides commercial service.
The prototype uses Intel’s Stargate processor as the sink
node, which provides access control and manages the
use of the satellite link.

The transformational satellite (TSAT) system is a
future generation satellite system that is designed for
military applications by National Aeronautics and Space
Administration (NASA), the U.S. Department of Defense
(DoD), and the Intelligence Community (IC) [17]. The
TSAT system is a constellation of five satellites, placed
in geostationary orbit, that constitute a high-bandwidth
satellite backbone network, which allows terrestrial
units to access optical and radar imagery from UAVs
and satellites in real-time. TSAT provides broadband,
reliable, worldwide, and secure transmission of data.
TSAT supports RF communication links with data rates
up to 45 Mbps and laser communication links with data
rates up to 10-100 Gbps [17].

3.6 Fault-Tolerant (FT) Sensor Networks
The sensor nodes in an EWSN are typically deployed
in harsh and unattended environments, which makes
fault-tolerance (FT) an important consideration in EWSN
design, particularly for space-based WSNs. For example,
the temperature of aerospace vehicles varies from
cryogenic to extremely high temperature, and pressure
from vacuum to very high pressure. Additionally, shock
and vibration levels during launch can cause component
failures. Furthermore, high levels of ionizing radiation
requires electronics to be FT if not radiation-hardened
(rad-hard). Multi-core embedded sensors can provide
hardware-based (e.g., triple modular redundancy (TMR)
or self-checking pairs (SCP)) as well as software-
based (e.g., algorithm-based fault tolerance (ABFT)) FT
mechanisms for applications requiring high reliability.
Computations, such as pre-processing and data fusion,
can be replicated on multiple cores so that if radiation
corrupts processing on one core, processing on other
cores would still enable reliable computation of results.

4 RESULTS
In this section, we present performance and performance
per watt results for the two multi-core architectures
(SMPs and TMAs) that can be used in MCEWSNs. For
the SMP architecture, we evaluate an eight-core Intel-
based SMP consisting of two Intel Xeon E5430 quad-
core processors fabricated at 45nm CMOS lithography
[19] with a maximum clock frequency of 2.66 GHz
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TABLE 1: Performance results for the information fusion application for SMP2xQuadXeon when M = 40.

Problem Size # of Cores Execution Time (s) Speedup Efficiency Cost Perf. Perf. per watt

N p Tp S = Ts/Tp E = S/p C = Tp · p (MOPS) (MOPS/W)

3000,000 1 12.02 1 1 12.02 1073.2 22.36

3000,000 2 7.87 1.53 0.76 15.74 1639.14 25.61

3000,000 4 4.03 2.98 0.74 16.12 3201 33.34

3000,000 6 2.89 4.2 0.7 17.34 4463.67 34.87

3000,000 8 2.48 4.85 0.61 19.84 5201.6 32.51

TABLE 2: Performance results for the information fusion application for the TILEPro64 when M = 40.

Problem Size # of Tiles Execution Time (s) Speedup Efficiency Cost Perf. Perf. per watt

N p Tp S = Ts/Tp E = S/p C = Tp · p (MOPS) (MOPS/W)

3000,000 1 70.65 1 1 70.65 182.6 34.07

3000,000 2 35.05 2 1 70.1 368 64.33

3000,000 4 17.18 4.1 1.02 68.72 750.87 116.6

3000,000 6 11.48 6.2 1.03 68.9 1123.69 156.94

3000,000 8 8.9 7.94 0.99 71.2 1449.44 183.94

3000,000 10 6.79 10.4 1.04 67.9 1899.85 221.17

3000,000 50 1.46 48.4 0.97 73 8835.62 384.66

[7]. For conciseness, we will refer to this SMP as
SMP2xQuadXeon in the remainder of this paper. Results in
this paper focus only on parallelization to demonstrate
the performance and performance per watt advantages
that can be attained by leveraging multi-core embedded
sensor nodes. Implementation of a complete MCEWSN
architecture (Fig. 1) for real-world applications, such as
video surveillance, is a focus of our future research work.
Considering the significance of information fusion for
EWSNs, we parallelize an information fusion application
both for SMPs and TMAs to investigate the suitability
of the two architectures for MCEWSNs. We analyze
an information fusion application as an example to
demonstrate the performance and performance per
watt advantages of multi-core embedded sensor nodes
as compared to single-core embedded sensor nodes,
although other sensor applications can be parallelized
to demonstrate similar advantages.7

We parallelize the information fusion application for
SMPs and TMAs using OpenMP and Tilera’s MDE ilib
API. The purpose of this comparison between SMPs and
TMAs is to investigate the feasibility of SMPs and TMAs
as multi-core processor architectures for cluster heads
and sink nodes in MCEWSNs. This comparison also
reveals the advantages of using a multi-core processor
over a single-core processor in embedded sensor nodes
in terms of performance and performance per watt.

We obtain the power consumption values of the
SMPs and TMAs from the devices’ respective datasheets
and use these values in our power model8 [7]. For
example, the TILEPro64 has maximum active and
idle mode power consumptions of 28 W and 5 W,

7. Section 6 of the supplementary material document presents
further details on our experimental setup.

8. Eq. (1) in the supplementary material document.

respectively [20][21]. Intel’s Xeon E5430 has a maximum
power consumption of 80 W and a minimum power
consumption of 16 W in an extended HALT state
[19][22].

SMP2xQuadXeon’s performance results for the
information fusion application are depicted in Table 1,
where N = 3,000,000 event-triggered samples and
the moving average filter window size is M = 40.
Ts and Tp denote the serial and parallel run times,
respectively. MOPS denotes Mega operations per
second and MOPS/W denotes MOPS per watt. In order
to optimize the application to the architecture as much
as possible, we used compiler optimization level -O3.
As an example, SMP2xQuadXeon (an eight-core processor)
reveals a 4.85x speedup in MOPS as compared to a
single-core processor. Additionally, the performance
per watt results reveal the multi-core system’s power
efficiency. As an example, a four-core (p = 4) SMP-based
processor attains 49% better performance per watt as
compared to a single-core processor. These results verify
that SMP-based sensor nodes are more performance-
and power-efficient as compared to single-core sensor
nodes.

Table 2 depicts the performance results for the
information fusion application, obtained with the
compiler optimization level -O3, for the TMA-based
multi-core processor (TILEPro64) when N = 3,000,000
and M = 40. Results reveal that the TMA-based
multi-core processor speeds up the execution time
proportionally to the number of tiles p (i.e., ideal
speed up) as compared to a comparable single-core
processor (i.e., executing the application on a single TMA
tile). The efficiency remains close to one and the cost
remains nearly constant as the number of tiles increases
indicating ideal scalability of the TMA-based multi-core
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Fig. 2: Performance per watt (MOPS/W) comparison
between SMP2xQuadXeon and the TILEPro64 for the

information fusion application when N = 3,000,000.

processor for the information fusion application. For
example, the TMA-based multi-core processor increases
MOPS and MOPS/W by 48.4x and 11.3x, respectively,
for p = 50 as compared to a single TMA tile.

These results verify that TMAs provide better
performance per watt as compared to a comparable
single processor-core architecture. Hence, an embedded
sensor node using TMAs as processing units is more
performance- and power-efficient as compared to an
embedded sensor node using a single-core processing
unit.

Fig. 2 compares the SMP2xQuadXeon and the TILEPro64
with respect to performance per watt for a varying
number of cores/tiles for the information fusion
application. As an example, for an eight-core/tile
system, the TILEPro64’s performance per watt is 466%
higher than the SMP’s performance per watt. In
summary, results show that the TILEPro64 provides
improved performance per watt as compared to the
SMP2xQuadXeon mainly due to the fact that the information
fusion application operates on private data that can
be parallelized using the ilib API. This parallelization
exploits high data locality when operating on the sensed
data, which enables fast access to private data and
results in higher internal memory bandwidth, and thus
increased MOPS and MOPS/W.

There are two main reasons why the SMP2xQuadXeon

attains lower performance than the TILEPro64 for
information fusion. First, shared memory applications
are more suited to SMP architectures, which can exploit
data locality more effectively. Second, the OpenMP-
based parallel programming constructs sections and
parallel forces operating threads to share data even if
the data can be independently processed by each thread.
When we parallelized the information fusion application
for the SMP2xQuadXeon, we first tried using independent
copies of the data for each thread, similarly to the
TILEPro64, however, this introduced large memory
requirements and subsequently segmentation faults.
Therefore, we were forced to store the data in shared
memory since OpenMP currently does not support
specifying private data for individual threads, even
though private data can be indicated for all the parallel

computation threads. Consequently, inherent OpenMP
limitations that preclude the declaration of thread-
specific private data partially accounts for the SMP’s
lower performance. On the contrary, Tilera’s ilib API
permits ideal data distribution for the information fusion
application (i.e., data that is received from the first source
is only private to the first thread, and the other threads
have no information on this data, data that is received
from the second source is only private to the second
thread, and so forth).

5 RESEARCH CHALLENGES AND FUTURE
RESEARCH DIRECTIONS
Despite few initiatives towards MCEWSNs, the domain
is still in its infancy and requires addressing some
challenges to facilitate ubiquitous deployment of
MCEWSNs. In this section, we discuss several research
challenges and future research directions for MCEWSNs.

Application Parallelization: Parallelization of existing
serial applications and algorithms can be challenging
considering the limited number of parallel programmers
as compared to serial programmers. Parallel applications
with limited scalability present challenges for efficient
utilization of multi-core and future many-core embedded
sensor nodes. Furthermore, synchronization between
different cores by the use of barriers and locks
limit the attainable speedup from parallel applications.
A poor speedup due to limited scalability as the
number of cores increases can diminish the energy
and performance benefits attained by parallelization of
sensor applications. To minimize potential performance
degradation for parallel applications with limited
scalability, designers can restrict these applications to
a limited number of cores while turning off remaining
cores to save power or utilizing other cores by
multiprogramming other sensor applications on those
cores. Consequently, existing operating systems for
embedded sensor nodes (e.g., TinyOS [23], MANTIS [24])
would require updating their schedulers for efficient
scheduling of multi-programmed workloads and would
also require some middleware support (e.g., OpenMP)
to support multi-threading of parallel applications.

Signal Processing & Computer-Vision: Advances in
sensor technology have led to a dramatic increase in
the amount of data sensed, which is fueled by both
the reduced cost of sensors and increased deployment
over a large class of applications. This sensed data
deluge problem exacerbates for MCEWSNs and places
immense stress on our ability to process, store, and
obtain meaningful information from the data. The
fundamental reason behind the data deluge problem
comes from sensor designs that are based on the
Nyquist sampling theorem [25], which has been the
dogma in traditional signal processing. However, as we
build sensors and sensing platforms with increasing
capabilities (e.g., MCEWSNs involving hyper-spectral
imaging), designs based on Nyquist sampling are
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prohibitively costly because of high-resolution sensors
and extremely fast data processing requirements. The
failure of Nyquist sampling lies in its inability to
exploit redundant structures in signals. This redundancy
and compressibility in signals forms the basis of
Fourier and wavelet transforms. Research in sensing and
processing systems that exploit the redundant structures
in signals include sparse models, union-of-subspace
models, and low-dimensional manifold models. The
data deluge problem in MCEWSNs can be addressed
in three fundamental ways: 1) parsimonious signal
representations that facilitate efficient processing of
visual signals; 2) novel compressive and computational
imaging systems for sensing of data; and 3) scalable
algorithms for large scale machine learning systems.
These novel techniques to address the data deluge
problem in MCEWSNs requires further research.

Another related research avenue for MCEWSNs is
compressive sensing for high-dimensional visual signals,
which requires sensors with capabilities that go beyond
sensing two-dimensional (2D) images. Examples of these
novel sensors include the Lytro camera for sensing
light fields [26], the Kinect system that provides scene
depth [27], and flexible camera-arrays that provide
unique tradeoffs in the spatial, temporal, and angular
resolutions of the incident light. Design of novel
models, sensors, and technologies is imperative to better
characterize objects with complex visual properties.

Furthermore, distilling information from a large
number of low-resolution video streams obtained
from multiple video sensors requires novel algorithms
since current computer-vision and signal processing
algorithms can only analyze a few high-resolution
images.

Reconfigurability: Reconfigurability in MCEWSNs is
an important research avenue that would allow the
network to adapt to new requirements by integrating
code upgrades (e.g., a more efficient algorithm for video
compression may be discovered after deployment).
Mobility and self-adaptability of embedded sensor nodes
requires further research to obtain the desired view of
the sensor field (e.g., an image sensor facing downward
towards the earth may not be desirable).

Energy Harvesting: Considering that the battery energy
is the most critical resource constraint for sensor nodes
in MCEWSNs, research and development in energy-
efficient batteries and energy-harvesting systems would
be beneficial for MCEWSNs.

Near-Threshold Computing (NTC): NTC refers to using a
supply voltage (VDD) that is close to a single transistor’s
threshold voltage Vt (generally VDD is slightly above
Vt in near-threshold operation whereas VDD is below
Vt for sub-threshold operation). Lowering the supply
voltage reduces power consumption and increases
energy efficiency by lowering the energy consumed per
operation. With the advent of MCEWSNs leveraging
many-core chips, sub- or near-threshold designs become

a natural fit for these highly parallel architectures.
Considering the stringent power constraints of the
many-core chips leveraged in MCEWSNs, sub- or near-
threshold designs may be the only practical way to
power up all of the cores in these chips [28]. Hence, NTC
provides a promising solution for the dark silicon problem
(transistor under-utilization) in many-core architectures.
However, widespread adoption of NTC in MCEWSNs
for reduced power consumption requires addressing
NTC challenges such as increased process, voltage, and
temperature variations, subthreshold leakage power, and
soft error rates.

Heterogeneous Architectures: MCEWSNs would
benefit from parallel computer architecture research.
Specifically, a heterogeneous many-core architecture
that could leverage both super- and near-threshold
computing to meet performance and energy
requirements of sensing applications might provide a
promising solution for MCEWSNs. The heterogeneous
architecture can integrate super-threshold (nominal
voltage) SMP cores and near-threshold single instruction
multiple data (SIMD) cores [29]. Research indicates that
a combination of NTC and parallel SIMD computations
achieves excellent energy efficiency for easy-to-
parallelize applications [30]. With this heterogeneous
architecture, sensing applications’ tasks with less
parallelism can be scheduled to high-power SMP cores
whereas tasks with abundant parallelism will benefit
from scheduling on low-power near-threshold SIMD
cores. Hence, research in heterogeneous architectures
would enable a single architecture to serve a broad
range of sensing applications with varying degrees of
parallelism.

Transistor Technology: With ongoing technology
scaling, conventional planar CMOS devices suffer from
increasing susceptibility to numerous variations, such
as circuit performance, short channel effects, delay, or
leakage. Research in novel transistor technologies that
improve the energy efficiency, provide better resistance
to process variation, and are amenable for nano-scale
fabrication would benefit sensor nodes in MCEWSNs.
One of the promising transistor technologies for future
process nodes (22nm and below) is FinFET, in which the
channel is a slab (fin) of undoped silicon perpendicular
to the substrate [31]. The increased electrostatic control
of the FinFET gate over the channel enables high
on-current to off-current ratio, which improves carrier
mobility, and is promising for near-threshold low-power
designs. Other advantages of FinFET over planar
CMOS include reduced random dopant fluctuations,
lower parasitic junction capacitance, suppression of
short channel effects, leakage currents, and parametric
variations. However, the widespread transition to
FinFET requires further research in prediction models
for performance, energy, and process variation for this
transistor technology as well as a complete overhaul of
the current fabrication process.
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6 CONCLUSIONS
In this paper, we proposed an architecture for
heterogeneous hierarchical multi-core embedded
wireless sensor networks (MCEWSNs). Compute-
intensive tasks such as information fusion, encryption,
network coding, and software defined radio, will benefit
in particular from the increased computational power
offered by multi-core embedded sensor nodes. Many
wireless sensor networking application domains, such
as wireless video sensor networks, wireless multimedia
sensor networks, satellite-based sensor networks,
space shuttle sensor networks, aerial-terrestrial hybrid
sensor networks, and fault-tolerant sensor networks,
can benefit from MCEWSNs. Perceiving the potential
benefits of MCEWSNs, several initiatives have been
undertaken in both academia and industry to develop
multi-core embedded sensor nodes, such as InstraNode,
satellite-based sensor nodes, and smart camera motes.

This paper evaluated two multi-core architectures,
symmetric multiprocessors (SMPs) and tiled many-
core architectures (TMAs), for multi-core embedded
sensor nodes in an MCEWSN based on a parallelized
information fusion application. Results revealed that
the TILEPro64 exhibited better scalability and attained
better performance per watt than the SMPs for the
information fusion application. We further highlighted
the research challenges and future research avenues
for MCEWSNs. Specifically, MCEWSNs would benefit
from advancements in application parallelization, signal
processing, computer-vision, reconfigurability, energy
harvesting, near-threshold computing, heterogeneous
architectures, and transistor technology.
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Abstract—Technological advancements in the silicon industry, as predicted by Moore’s law, have enabled integration of billions of
transistors on a single chip. To exploit this high transistor density for high performance, embedded systems are undergoing a transition
from single-core to multi-core. Although a majority of embedded wireless sensor networks (EWSNs) consist of single-core embedded
sensor nodes, multi-core embedded sensor nodes are envisioned to burgeon in selected application domains that require complex in-
network processing of the sensed data. In this paper, we propose an architecture for heterogeneous hierarchical multi-core embedded
wireless sensor networks (MCEWSNs) as well as an architecture for multi-core embedded sensor nodes used in MCEWSNs. We
elaborate several compute-intensive tasks performed by sensor networks and application domains that would especially benefit from
multi-core embedded sensor nodes. This paper also investigates the feasibility of two multi-core architectural paradigms—symmetric
multiprocessors (SMPs) and tiled many-core architectures (TMAs)—for MCEWSNs. We compare and analyze the performance of
an SMP (an Intel-based SMP) and a TMA (Tilera’s TILEPro64) based on a parallelized information fusion application for various
performance metrics (e.g., runtime, speedup, efficiency, cost, and performance per watt). Results reveal that TMAs exploit data locality
effectively and are more suitable for MCEWSN applications that require integer manipulation of sensor data, such as information fusion,
and have little or no communication between the parallelized tasks. To demonstrate the practical relevance of MCEWSNs, this paper
also discusses several state-of-the-art multi-core embedded sensor node prototypes developed in academia and industry. We further
discuss research challenges and future research directions for MCEWSNs.

✦

Index Terms—wireless sensor networks, multi-core, embedded
systems, symmetric multiprocessors, tiled many-core architecture

1 INTRODUCTION

THis document presents additional details
supplementing our IEEE Transactions on Parallel

and Distributed (TPDS) paper with the title “Multi-core
Embedded Wireless Sensor Networks: Architecture and
Applications”.

Advancements in silicon technology, embedded
systems, sensors, micro-electro-mechanical systems, and
wireless communications have led to the emergence of
embedded wireless sensor networks (EWSNs). EWSNs
consist of sensor nodes with embedded sensors to sense
data about a phenomenon and these sensor nodes
communicate with neighboring sensor nodes over
wireless links (we refer to wireless sensor networks
(WSNs) as EWSNs since sensor nodes are embedded
in the physical environment/system). EWSNs have
applications in various domains, including surveillance,
environment monitoring, traffic monitoring, volcano
monitoring, and health care.

• Arslan Munir is with the Department of Electrical and Computer Engi-
neering, Rice University, Houston, Texas, USA. Ann Gordon-Ross is with
the Department of Electrical and Computer Engineering, University of
Florida, Gainesville, FL, USA. Ann Gordon-Ross is also affiliated with the
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at the University of Florida. Sanjay Ranka is with the Department of
Computer and Information Science and Engineering at the University of
Florida. e-mail: {arslan@rice.edu, ann@ece.ufl.edu, ranka@cise.ufl.edu}

Processing and transmission of the large amount
of sensed data in emerging applications exceeds the
capabilities of traditional EWSNs. For example, consider
a military EWSN deployed in a battlefield, which
requires various sensors, such as imaging, acoustic, and
electromagnetic sensors. In this application, images are
appropriate for visually monitoring the battlefield, and
electromagnetic and acoustic sensors enable efficient
detection and tracking of targets of interest. Once
a target is detected, high resolution images and/or
video sequences may be required in real-time for
detailed study of the target [1]. This application
presents various challenges for existing EWSNs since
transmission of high-resolution images and video
streams over bandwidth-limited wireless links from
sensor nodes to the sink node is infeasible. Furthermore,
meaningful processing of multimedia data (acoustic,
image, and video in this example) in real-time exceeds
the capabilities of traditional EWSNs consisting of
single-core embedded sensor nodes [2][3], and requires
more powerful embedded sensor nodes to realize this
application.

Technological advancements in multi-core
architectures have made multi-core processors a
viable and cost-effective choice for increasing the
computational ability of embedded sensor nodes.
Preliminary studies have demonstrated the energy-
efficiency of multi-core embedded sensor nodes as
compared to single-core embedded sensor nodes in an
EWSN. For example, Dogan et al. [4] evaluated single-
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and multi-core architectures for biomedical signal
processing in wireless body sensor networks (WBSNs)
where both energy-efficiency and real-time processing
are crucial design objectives. Results revealed that
the multi-core architecture consumed 66% less power
than the single-core architecture for high biosignal
computation workloads (i.e., 50.1 Mega operations per
seconds (MOPS)) whereas the multi-core architecture
consumed 10.4% more power than that of the single-core
architecture for relatively light computation workloads
(i.e., 681 Kilo operations per second (KOPS)).

This supplementary material document is organized
as follows. Section 2 proposes a multi-core embedded
sensor node architecture for multi-core embedded
wireless sensor networks (MCEWSNs). Section 3
discusses multi-core architectures for multi-core
embedded sensor nodes and parallel computing
metrics that we use to evaluate these architectures.
Section 4 elaborates on several compute-intensive
tasks that motivated the emergence of MCEWSNs.
Section 5 discusses several prototypes of multi-core
embedded sensor nodes. Experimental setup details
for the information fusion application are presented in
Section 6.

2 MULTI-CORE EMBEDDED SENSOR NODE
ARCHITECTURE
Fig. 1 depicts the architecture of a multi-core embedded
sensor node in our MCEWSN. The multi-core embedded
sensor node consists of a sensing unit, a processing unit,
a storage unit, a communication unit, a power unit, an
optional actuator unit, and an optional location finding
unit (optional units are represented by dotted lines in
Fig. 1) [2].

2.1 Sensing Unit
The sensing unit senses the phenomenon of
interest and is composed of two subunits: sensors
(e.g., camera/image, audio, and scalar sensors
(e.g., temperature, pressure)) and analog-to-digital
converters (ADCs). Image sensors can either leverage
traditional charge-coupled device (CCD) technology
or complementary metal-oxide-semiconductor (CMOS)
imaging technology. The CCD sensor accumulates the
incident light energy as the charge accumulated on a
pixel, which is then converted into an analog voltage
signal. In CMOS imaging technology, each pixel has its
own charge-to-voltage conversion and other processing
components, such as amplifiers, noise correction, and
digitization circuits. The CMOS imaging technology
enables integration of the lens, an image sensor, and
image compression and processing technology on a
single chip. ADCs convert the analog signals produced
by sensors to digital signals, which serve as input to
the processing unit.

2.2 Processing Unit
The processing unit consists of a multi-core processor
and is responsible for controlling sensors, gathering and
processing sensed data, executing the system software
that coordinates sensing, communication tasks, and
interfacing with the storage unit. The processing unit
for traditional sensor nodes consists of a single-core
processor for general-purpose applications, such as
periodic sensing of scalar data (e.g., temperature,
humidity). High-performance single-core processors
would be infeasible to meet computational requirements
since these single-core processors would require
operation at high processor voltage and frequency. A
processor operating at a high voltage and frequency
consumes an enormous amount of power since power
increases proportionally to the operating processor
frequency and square of the operating processor
voltage. Furthermore, even if these energy issues are
ignored, a single high-performance processor core may
not be able to meet the computational requirements
of emerging applications, such as multimedia sensor
networks, in real-time.

Multi-core processors distribute the computations
across the available cores, which speeds up the
computations as well as conserves energy by allowing
each processor core to operate at a lower processor
voltage and frequency. Multi-core processors are suitable
for streaming and complex, event-based monitoring
applications, such as in smart camera sensor networks,
that require data to be processed and compressed as
well as require extraction of key information features.
For example, the IC3D/Xetal single-instruction multiple-
data (SIMD) processor, which consists of a linear
processor array (LPA) with 320 reduced instruction set
computers (RISC)/processors, is being used in smart
camera sensor networks [5].

2.3 Storage Unit
The storage unit consists of the memory subsystem,
which can be classified as user memory and program
memory, and a memory controller, which coordinates
memory accesses between different processor cores.
The user memory stores sensed data when immediate
data transmission is not possible due to hardware
failures, environmental conditions, physical layer
jamming, limited energy reserves, or when the data
requires processing. The program memory is used
for programming the embedded sensor node and
using flash memory for the program memory provides
persistent storage of application code and text segments.
Static random-access memory (SRAM), which does not
need periodic refreshing but is expensive in terms of area
and power consumption, is used as dedicated processor
memory. Synchronous dynamic random-access memory
(SDRAM) is typically used as user memory. For
example, the Imote2 embedded sensor node, which
contains a Marvell PXA271 XScale processor operating
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Fig. 1: Multi-core embedded sensor node architecture.

between 13 and 416 Mhz, has 256 KB SRAM, 32 MB
Flash, and 32 MB SDRAM [6].

2.4 Communication Unit
The communication unit interfaces the embedded
sensor node to the wireless network and consists
of a transceiver unit (transceiver and antenna) and
the communication unit software. The communication
unit software mainly consists of the communication
protocol stack, and the physical layer software in the
case of software defined radio (SDR). The transceiver
unit consists of either a wireless local area network
(WLAN) card, such as an IEEE 802.11b compliant
card, or an IEEE 802.15.4 compatible card, such
as a Texas Instrument/Chipcon CC2420 chipset. The
choice of a transceiver unit card depends on the
application requirements such as desired range and
allowable power. The maximum transmit power of
IEEE 802.11b cards is higher as compared to IEEE
802.15.4 cards, which results in a higher communication
range but consumes more power. For example, the Intel
PRO/Wireless 2011 card has a data rate of 11 Mbps and
a typical transmit power of 18 dBm, but draws 300 mA

and 170 mA for sending and receiving, respectively. The
CC2420 802.15.4 radio has a maximum data rate of 250
kbps and a transmit power of 0 dBm, but draws 17.4 mA
and 19.7 mA for sending and receiving, respectively.

2.5 Power Unit
The power unit supplies power to various
components/units on the embedded sensor node
and dictates the sensor node’s lifetime. The power
unit consists of a battery and a DC-DC converter. The
DC-DC converter provides a constant supply voltage to
the sensor node. The power unit may be augmented by
an optional energy-harvesting unit that derives energy
from external sources, such as solar cells. Although
multi-core embedded sensor nodes are more power
efficient as compared to single-core embedded sensor
nodes, energy-harvesting units in multi-core cluster
heads and the sink node would prolong the MCEWSN’s
lifetime. Energy-harvesting units are more suitable
for cluster heads and the sink node as these nodes
perform more computations as compared to the single-
core leaf sensor nodes. Furthermore, incorporating
energy-harvesting units in only a few embedded sensor



4

nodes (i.e., cluster heads and sink nodes) would not
substantially increase the cost of EWSN deployment.
Without an energy-harvesting unit, MCEWSNs would
only be suitable for applications with relatively small
lifetime requirements.

2.6 Actuator Unit
The optional actuator unit consists of actuators (e.g.,
motors, servos, linear actuators, air muscles, muscle
wire, camera pan tilt, etc.) and an optional mobilizer unit
for sensor node mobility. Actuators enhance the sensing
task by opening/closing a switch/relay to control
functions, such as a camera or antenna orientation and
repositioning sensors. Actuators, in contrast to sensors
that only sense a phenomenon, typically affect the
operating environment by opening a valve, emitting
sound, or physically moving the sensor node.

2.7 Location Finding Unit
The optional location finding unit determines a
sensor node’s location. Depending on the application
requirements and available resources, the location
finding unit can either be global positioning system
(GPS)-based or ad hoc positioning system (APS)-
based. Even though GPS is highly accurate, the GPS
components are expensive and require direct line of
sight between the sensor node and satellites. APS
determines a sensor node’s position with respect to
defined landmarks, which may be other GPS-based sensor
nodes [7]. A sensor node estimates the distance from
itself to the landmark based on direct communication
and the received communication signal strength. A
sensor node that is two hops away from a landmark
estimates its distance based on the distance estimate
of a sensor node one hop away from a landmark via
the message propagation. A sensor node with distance
estimates to three or more landmarks can compute its
own position via triangulation.

3 MULTI-CORE ARCHITECTURES AND
PARALLEL COMPUTING METRICS
In this section, we describe the multi-core architectures
that we evaluate in our study as well as parallel
computing metrics that we leverage for this evaluation.

3.1 Multi-core Architectures
In this subsection, we give an overview of the two multi-
core architectures that can be used as processing units
in multi-core embedded sensor nodes (Fig. 1). We note
that the operating frequency of the studied multi-core
architectures is much higher than the ones that can be
used for multi-core embedded sensor nodes. However,
our purpose in this paper is to evaluate the architectural
paradigms’ feasibility for multi-core embedded sensor
nodes and a lower operating frequency of the studied

architectures in real multi-core embedded sensor nodes
would only scale down the presented results without
any significant changes to the performance trends.
Hence, leveraging high computing power SMPs and
TMAs will not affect the feasibility insights obtained
from benchmark-driven cross-architectural evaluation,
which is the intent of this work.

3.1.1 Symmetric Multiprocessors (SMPs)
In the parallel architecture domain, SMPs are the most
pervasive and prevalent type, and are therefore an ideal
processor candidate for MCEWSNs. SMPs offer a global
physical address space, provide symmetric access to
main memory, and have private caches. The processors
and memory modules communicate over a shared
interconnect, the most common being a shared bus [8].
We evaluate an eight-core Intel-based SMP consisting of
two Intel Xeon E5430 quad-core processors fabricated
at 45nm CMOS lithography [9] with a maximum clock
frequency of 2.66 GHz. Each core contains 32 KB of
level one instruction (L1-I) cache, 32 KB of level one
data (L1-D) cache, and 12 MB of level two (L2) unified
cache. Intel’s enhanced front-side bus (FSB) running at
1333 MHz provides enhanced inter-core communication
throughput [10]. For conciseness, we will refer to this
SMP as SMP2xQuadXeon in the remainder of this paper.

3.1.2 Tiled Many-Core Architectures (TMAs)
TMAs are constructed using modular elements—tiles—
which provides easy scalability to any arbitrary number
of tiles. For intra-tile communication, each tile connects
to a switch (communication router) within a high-
performance interconnection network and each switch
connects to a neighboring switch, which constrains the
interconnection wire length to be no longer than the
tile width. Examples of TMAs include the Intel’s Tera-
Scale research processor, the Raw processor, and Tilera’s
TILEPro64 and TILE-Gx processor family [11][12]. Fig. 2
depicts our evaluated TMA, which is Tilera’s TILEPro64
processor, fabricated at 90nm CMOS lithography and
consists of 64 tiles (cores) in an 8 x 8 grid. Each tile has a
three-way very long instruction word (VLIW) pipelined
processor, which can execute up to three instructions
per cycle (IPC). The switches are non-blocking, which
provides a power-efficient on-chip interconnection mesh
network operating at 31 Tbps. Each tile has 8 KB of
L1-I cache, 8 KB of L1-D cache, and 64 KB of L2
cache, collectively providing 5 MB of on-chip cache with
Tilera’s dynamic distributed cache (DDC) technology. An
operating system (OS) can be run independently on each
tile or the tiles can be grouped to run a multi-processing
OS (e.g., SMP Linux [13]). The TILEPro processor family
is suitable for a variety of application domains, such as
advanced networking, wireless infrastructure, telecom,
digital multimedia, and cloud computing. Our prior
work [14] provides further details on TMAs.



5

PCIe: Peripheral Component Interconnect Express

DDR2: Double Data Rate 2 Synchronous Dynamic 
             Random-Access Memory (SDRAM)

JTAG: Joint Test Action Group
XAUI: X (Ten) Attachment Unit Interface

CDN: Coherence Dynamic Network
TDN: Tile Dynamic Network
IDN: I/O Dynamic Network

STN: Static Network
MDN: Memory Dynamic Network

UDN: User Dynamic Network

Fig. 2: Tilera’s TILEPro64 processor (adapted from [15]).

3.2 Parallel Computing Device Metrics
In this section, we define the metrics used to
quantitatively compare our investigated multi-core
architectures.

Run Time: The serial run time Ts of a program is the
time required to execute the program on a sequential
computer. The parallel run time Tp is the time elapsed
from the start of a program to the moment the last
processor finishes execution.

Speedup: The speedup S measures the performance gain
achieved via application parallelization as compared to
the execution time of the best sequential implementation
of the application. S is defined as the ratio of the serial
run time Ts to the parallel run time Tp to solve the same
problem (i.e., S = Ts/Tp).

Efficiency: The fraction of time a processor is actively
executing an application is the system’s efficiency E. E
is computed as the ratio of the speedup S to the number
of processors p (i.e., E = S/p).

Cost: The collective processor time required to execute
an application in a parallel system is the system’s cost C.
C on a parallel system is computed as the product of the
parallel run time Tp and the number of processors p (i.e.,
C = Tp ·p). A parallel system is cost optimal if the parallel
system’s cost is proportional to the execution time of the

best known sequential algorithm on a single processor
[16].

Scalability: A parallel system’s scalability evaluates
the efficiency of application parallelization as the
number of processors increases, wherein an optimally-
scalable parallel system maintains a speedup increase
proportional to the increase in the number of processors
and the problem size [16].

Power: A processor’s total (system-level) power
consumption comprises both the dynamic and static
power consumptions. The dynamic power consumption
depends on the supply voltage, clock frequency,
capacitance, and the signal activity whereas the static
power consumption mainly depends on the supply
voltage, temperature, and capacitance [17]. Our system-
level power model estimates a multi-core system’s
power consumption, and considers both the active
and the idle mode power consumptions. Our power
estimation model can be used to estimate the system’s
performance per watt. The power consumption of a
system with N processor cores and p active processor
cores is:

P p = p ·
P active
max

N
+ (N − p) ·

P idle
max

N
(1)

where P active
max and P idle

max denote the system’s maximum



6

active and idle mode power consumptions, respectively.
P active
max /N and P idle

max/N give the active and idle mode
power consumptions per core (and the associated
switching and interconnection network circuitry),
respectively. We consider state-of-the-art power saving
mechanisms, such as instructions to switch idle cores
and associated circuitry (switches, clock, interconnection
network) into a low-power idle state (e.g., Tilera’s NAP
instruction puts a tile into a low-power IDLE mode
[18]).

Performance per Watt: Performance per watt evaluates a
device’s delivered/attainable performance while taking
the device’s power consumption into consideration. We
report performance with respect to MOPS or Mega
floating point operations per second (MFLOPS), and
performance per watt with respect to MOPS per watt
(MOPS/W) or MFLOPS per watt (MFLOPS/W).

4 COMPUTE-INTENSIVE TASKS MOTIVATING
THE EMERGENCE OF MCEWSNS
Many applications require embedded sensor nodes to
perform various compute-intensive tasks that often
exceeds the computing capability of traditional single-
core sensor nodes. These tasks include information
fusion, encryption, network coding, software defined
radio, etc., and motivate the emergence of MCEWSNs.
In this section, we discuss these compute-intensive tasks
requiring multi-core support in an embedded sensor
node.

4.1 Information Fusion
A critical processing task in EWSNs is information
fusion, which can benefit from a multi-core processor
in an embedded sensor node. EWSNs produce a large
amount of data that must be processed, delivered,
and assessed according to application objectives. Since
the transmission bandwidth is limited, information
fusion condenses the sensed data and transmits only
the selected fused information to the sink node.
Additionally, the data received from neighboring sensor
nodes is often redundant and highly correlated, which
warrants fusing the sensed data. Formally, information
fusion encompasses theory, techniques, and tools created
and applied to exploit the synergy in the information
acquired from multiple sources (sensors, databases,
etc.) such that the resulting fused data/information
is considered qualitatively or quantitatively better in
terms of accuracy or robustness than the acquired data
from any single data source [19]. Data aggregation is
an instance of information fusion in which the data
from various sources is aggregated using summarization
functions (e.g., minimum, maximum, and average)
that reduce the volume of data being manipulated.
Information fusion can reduce the amount of data traffic,
filter noisy measurements, and make predictions and
inferences about a monitored entity.

Information fusion can be computationally expensive,
especially for video sensing applications. Unlike
scalar data, which can be combined using relatively
simple mathematical manipulations such as average
and summation, video data is vectorial and requires
complex computations to fuse (e.g., edge detection,
histogram formation, compression, filtering, etc.).
Reducing transmission overhead via information fusion
in video sensor networks requires a substantial increase
in intermediate processing, which warrants the use
of multi-core cluster heads in MCEWSNs. Multi-core
cluster heads fuse data received from multiple sensor
nodes to eliminate redundant transmission and provide
fused information to the sink node with minimum data
latency. Data latency is the sum of the delay involved in
data transmission, routing, and information fusion/data
aggregation [20]. Data latency is important in many
applications, especially real-time applications, where
freshness of data is an important factor. Multi-core
cluster heads can fuse data much faster than single-core
sensor nodes, which justifies the use of multi-core
cluster heads in MCEWSNs with complex real-time
computing requirements.

Omnibus Model for Information Fusion: The Omnibus
model [21] guides information fusion for sensor-based
devices. Fig. 3 illustrates the Omnibus model with
respect to our MCEWSN architecture and we exemplify
the model’s usage by considering a surveillance
application performing target tracking based on acoustic
sensors [19]. The Observe stage, which can be carried
out at single-core sensor nodes and/or multi-core cluster
heads, uses a filter (e.g., moving average filter) to
reduce noise (Signal Processing) from acoustic sensor
data provided by the embedded sensor nodes (Sensing).
The Orientate stage, which is carried out at multi-core
cluster heads, uses the filtered acoustic data for range
estimation (Feature Extraction) and estimates the target’s
location and trajectory (Pattern Processing). The Decide
stage, which is carried out at multi-core cluster heads
and/or multi-core sink nodes, classifies the sensed target
(Context Processing) and determines whether the target
represents a threat (Decision Making). If the target is a
threat, the Act stage, which is carried out at the control
and analysis center (CAC), intercepts the target (Control)
(e.g., with a missile) and activates available armaments
(Resource Tasking).

4.2 Encryption
Security is an important issue in many sensor
networking applications since sensors are deployed in
open environments and are susceptible to malicious
attacks. The sensed and/or aggregated data must be
encrypted for secure transmission to the sink node. The
two main practical issues involved in encryption are
the size of the encrypted message and the encryption
execution time. Privacy homomorphisms (PHs) are
encryption functions suitable for MCEWSNs that allow
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Fig. 3: Omnibus sensor information fusion model for an MCEWSN architecture.

a set of operations to be performed on encrypted data
without knowing the decryption functions [20]. PHs use
a positive integer d ≥ 2 for computing the secret key
for encryption such that the size of the encrypted data
increases by a factor of d as compared to the original
data. The security of the encrypted data increases with
d as well as the execution time for encryption. For
example, the execution time for encryption of one byte
of data is 3,481 clock cycles on a MICA2 mote when
d = 2 and increases to 4,277 clock cycles when d =
4. MICA2 motes cannot handle the computations for
d ≥ 4 [20], hence, applications requiring greater security
require multi-core sensor nodes and/or cluster heads to
perform these computations.

4.3 Network Coding
Network coding is a coding technique to enhance
network throughput in multi-nodal environments, such
as EWSNs. Despite the effectiveness of network coding
for EWSNs, excessive decoding cost associated with
network coding hinders the technique’s adoption
in traditional EWSNs with constrained computing
power [22]. Future MCEWSNs will enable adoption of
sophisticated coding techniques, such as network coding
to increase network throughput.

4.4 Software Defined Radio (SDR)
SDR is a radio in which some or all of the physical
layer functions execute as software. The radio in existing
EWSNs is hardware-based, which results in higher
production costs and minimal flexibility in supporting
multiple waveform standards [23]. MCEWSNs can
realize SDR-based radio by enabling fast, parallel
computation of signal processing operations needed
in SDR (e.g., fast Fourier transform (FFT)). SDR-based
MCEWSNs would enable multi-mode, multi-band, and
multi-functional radios that can be enhanced using
software upgrades.

5 MULTI-CORE EMBEDDED SENSOR NODES
Several initiatives towards multi-core embedded sensor
nodes have been undertaken by academia and industry
for various real-time applications. In this section, we
describe several state-of-the-art multi-core embedded
sensor node prototypes.

5.1 InstraNode
InstraNode is a dual-core sensor node for real-time
health monitoring of civil structures, such as highway
bridges and skyscrapers. InstraNode is equipped with
a 4000 mAh lithium-ion battery, three accelerometers,
a gyroscope, and an IEEE 802.11b (Wi-Fi) card for
communication with other nodes. One low-power
processor core in InstraNode runs at 3 V and 4
MHz and is dedicated to sampling data from sensors
whereas the other faster, high-power processor core
runs at 4.3 V and 40 MHz and is responsible for
networking tasks, such as transmission/reception of
data and execution of a routing algorithm. Furthermore,
InstraNode possesses multi-modal operation capabilities
such as wired/wireless and battery-powered/AC-
adaptor powered options. Experiments indicate that
the InstraNode outperforms single-core sensor nodes in
terms of power-efficiency and network performance [24].

5.2 Mars Rover Prototype Mote
Etchison et al. [25] have proposed a high-performance
EWSN for the Mars Rover, which consists of dual-core
mobile sensor nodes and a wireless cluster consisting
of multiple processors to process image data gathered
from the sensor nodes and to make decisions based on
gathered information. The prototype mote consists of
a Micro ATX motherboard with Intel’s dual-core Atom
processor, 2 GB of RAM, and is powered by a 12 V/5
A DC power supply for lab testing. Each mote performs
data acquisition, processing, and transmission.
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5.3 Satellite-Based Sensor Node (SBSN)
Vladimirova et al. [26] have developed a system-on-
chip (SoC) satellite-based sensor node (SBSN). The
SBSN prototype contains a SPARC V8 LEON3 soft
processor core, which allows configuration in an SMP
architecture [27]. The LEON3 processor core runs
software applications and interfaces with the upper
layers of the communication stack using the IEEE
802.11 protocol. The SBSN prototype uses a number
of intellectual property (IP) cores, such as a hardware
accelerated Wi-Fi MAC, a transceiver core, and a Java
co-processor. The Java co-processor enables distributed
computing and Internet protocol (IP)-based networking
functions in SBWSNs. The inter-satellite communication
module (ISCM) in the SBSN prototype adheres to IEEE
802.11 and CubeSat design specifications. The ISCM
supports ground communication links and inter-satellite
links (ISLs) at variable data rates and configurable
waveforms to adapt to channel conditions. The ISCM
incorporates S-band (2.4 GHz) and a 434/144 MHz radio
frontend interfaced to a single reconfigurable modem.
The ISCM uses a high-end AD9861 ADC/digital-to-
analog converter (DAC) for the 2.4 GHz radio frontend
for a Maxim 2830 radio and a low-end AD7731
for the 434/144 MHz frontend for an Alinco DJC-
7E radio. Additionally, ISCM incorporates current and
temperature sensors and a 16-bit microcontroller for
housekeeping purposes.

5.4 Multi-CPU-based Sensor Node Prototype
Ohara et al. [28] have developed a prototype for
an embedded sensor node using three PIC18 central
processing units (CPUs). The prototype is supplied
by a configurable voltage stabilized power supply,
but the same voltage is supplied to all CPUs. The
prototype allowed each CPU’s frequency to be statically
changed by changing a corresponding ceramic resonator.
Experiments revealed that the multi-CPU sensor node
prototype consumed 76% less power as compared
to a single-core sensor node for benchmarks that
involved sampling, root mean square calculation, and
pre-processing samples for transmission.

5.5 Smart Camera Mote
Kleihorst et al. [29] developed a smart camera mote,
which consists of four basic components: color image
sensors, an IC3D SIMD processor (a member of the
Philips’ Xetal family of SIMD processors) for low-
level image processing, a general purpose processor
for intermediate and high-level processing and control,
and a communication module. Both of the processors
are coupled with a dual-port random-access memory
(RAM) that enables these processors to work in a shared
workspace. The IC3D SIMD processor consists of a
linear array of 320 RISC processors. The peak pixel
performance of the IC3D processor is approximately

50 Giga operations per second (GOPS). Despite high
pixel performance, the IC3D processor is an inherently
low-power processor, which makes the processor
suitable for multi-core embedded sensor nodes. The
power consumption of the IC3D processor for typical
applications, such as feature finding or face detection, is
below 100 mW in active processing modes.

6 RESULTS
In this section, we describe the information fusion
application experimental setup details.1

We consider a hierarchical MCEWSN for information
fusion such that each cluster head receives sensing
measurements from ten single-core sensor nodes
equipped with temperature, pressure, humidity,
acoustic, magnetometer, accelerometer, gyroscope,
proximity, and orientation sensors [30]. To reduce the
random white noise from sensor measurements, a
moving average filter, which computes the arithmetic
mean of a number of input measurements to produce
each output measurement, is executed on the cluster
head. Given an input sensor measurement vector
x = (x(1), x(2), . . .), the moving average filter estimates
the true sensor measurement vector after noise removal
y = (ŷ(1), ŷ(2), . . .) as:

ŷ(k) =
1

M

M−1∑

i=0

x(k − i), ∀k ≥ M (2)

where the filter window size M indicates the number
of fused input sensor measurements. Given sensor
measurements with random white noise, the moving
average filter reduces the noise variance by a factor
of

√

M . M should be chosen such that M is the
smallest value that reduces the noise in accordance
with the application’s requirements. After calculating
the cluster’s nodes’ filtered sensor measurements (i.e.,
after applying moving average filter) for each of the
sensor node in the cluster, the cluster head determines
the sensed measurements minimum, maximum, and
average values. This information fusion requires 100 ·
N(3 + M) operations with a runtime complexity of
O(NM) where N is the number of sensor measurements.
Our results evaluate a parallelized information fusion
application using our parallel performance metrics
(Section 3.2) to illustrate the advantages for leveraging
multi-core as compared to single core architectures for
cluster heads.
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