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Field-programmable gate arrays (FPGA) are an increasingly attractive alternative to traditional
microprocessor-based computing architectures in extreme-computing domains, such as aerospace and super-
computing. FPGAs offer several resource types that offer different tradeoffs between speed, power, and area,
which make FPGAs highly flexible for varying application computational requirements. However, since an
application’s computational operations can map to different resource types, a major challenge in leverag-
ing resource-diverse FPGAs is determining the optimal distribution of these operations across the device’s
available resources for varying FPGA devices, resulting in an extremely large design space. In order to
facilitate fast design-space exploration, this article presents a method based on linear programming (LP)
that determines the optimal operation distribution for a particular device and application with respect to
performance, power, or dependability metrics. Our LP method is an effective tool for exploring early designs
by quickly analyzing thousands of FPGAs to determine the best FPGA devices and operation distributions,
which significantly reduces design time. We demonstrate our LP method’s effectiveness with two case studies
involving dot-product and distance-calculation kernels on a range of Virtex-5 FPGAs. Results show that our
LP method selects optimal distributions of operations to within an average of 4% of actual values.
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1. INTRODUCTION

Increasing demand for higher-performing, more power-efficient computing systems
further compounds current high-performance computing challenges, such as memory
bottlenecks [Mahapatra and Venkatrao 1999], the frequency wall [Flynn and Hung
2005], the power wall [Horowitz et al. 2005], and now impending feature-size limits
[Iwai 2015]. Even though traditional microprocessor-based computing architectures
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continue to improve incrementally, reconfigurable computing devices such as field
-programmable gate arrays (FPGA) can offer one to two orders of magnitude improve-
ment over traditional architectures in computational performance and power efficiency
[Guo et al. 2004; Underwood 2004]. Therefore, FPGAs are an increasingly attractive
alternative to traditional computing, especially in extreme-computing domains, such as
aerospace and supercomputing, where designers often attempt to push computing sys-
tems to their furthest limits to meet design goals such as computational performance
and power efficiency. Many commercial, government, and academic entities have incor-
porated FPGAs in their designs, including NASA’s SpaceCube family of reconfigurable
on-board processing systems [Petrick et al. 2014], the university-developed CHREC
Space Processor [Rudolph et al. 2014], the Ryft ONE commercial data analytics plat-
form, the FPGA-based supercomputer Novo-G [George et al. 2011], and Microsoft’s
FPGA-accelerated Bing web search engine prototype [Putnam et al. 2014].

FPGAs afford significant speedups and power efficiency as compared to traditional
computing using different hardware resource types, such as flip-flops (FF), look-up
tables (LUT), and digital signal processing (DSP) units, which make FPGAs highly
flexible for the varying computational operations among different applications. This
flexibility enables designers to create different variants of the same operations us-
ing different FPGA resources (e.g., multiply operations with and without using DSP
units). These different variants offer different tradeoffs between speed, power, and re-
source usage, resulting in a very large design space. Designers must determine the
best operation distribution (e.g., which variants of operations to use and how many)
that will optimally use the FPGA’s resources to meet design goals and maximize FPGA
performance and/or minimize power consumption. In addition to performance and
power-consumption goals, designers must also work to meet a dependability goal for
certain extreme-computing domains, such as aerospace or supercomputing, which in-
volve harsh radiation environments and large numbers of processors, respectively.
Finding the best operation distribution that most closely adheres to these three design
goals simultaneously can be a daunting task for a designer.

The wide variety of available FPGA devices further complicates FPGA-based sys-
tem design. Even if a designer narrows their choice down to a single FPGA vendor,
there may still be hundreds of different FPGAs available for selection. FPGA vendors
are constantly releasing newer generations of their technology to take advantage of
shrinking feature sizes, and within each generation there may be multiple families
that each specialize in a different area, such as low power and high dependability.
Within each family, there are multiple resource specializations that make different
tradeoffs between available FPGA resources, such as FPGAs with more DSPs, block
memory units, or standard logic (FFs and LUTs). The number of available resources
can also vary up to an order of magnitude between the largest and smallest FPGAs
in a family. Finally, for each size and specialization, in addition to different packaging
options for varying amounts of input/output bandwidth, there can be up to three dif-
ferent speed grades that can significantly increase the performance and price of the
FPGA. With so many options available, it can be difficult for designers to select the
best device to meet their design goals.

To help assist system designers in choosing the best device to meet their design goals,
device vendors may report quantitative metrics for various device properties, including
performance, power consumption, and dependability. For FPGAs, however, these prop-
erties are highly application-dependent, thus FPGA vendors either do not report these
metrics or report metrics that represent the theoretical device limits. To accurately
measure the properties of a particular FPGA while executing a specific application,
a designer must write the application in a hardware design language (HDL) and use
vendor tools to synthesize, place, and route the design for each considered device. Even
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once the HDL is written, the process of placing and routing may require on the order
of tens of hours to complete and would increase linearly for every additional operation
distribution considered by the designer. Given these long testing times coupled with
the plethora of available devices and potential operation distributions, designers must
have a method to determine the best devices and operation distributions early in the
design process to dramatically speed up design times.

To address this need, we present a method based on linear programming (LP) that,
depending on an application’s specific computational operations and a device’s avail-
able resources, quickly determines the optimal operation distribution with respect
to performance, power, or dependability and calculates quantitative metrics for de-
sign comparison purposes. Our LP method is more accurate than application-agnostic,
vendor-supplied, first-order estimations and is capable of making relative comparisons
between different FPGAs and operation distributions. Furthermore, designers can per-
form our LP method with a minimal description of the application, prior to HDL
implementation, and without lengthy synthesis times. The speed of our LP method
makes this method an effective tool for exploring early designs by quickly analyzing
thousands of FPGAs to determine the best FPGA devices and operation distributions,
which significantly reduces design time. We demonstrate our LP method’s effectiveness
by comparing the calculated metrics from our LP method to the experimental results of
an optimized and synthesized FPGA design. Since lengthy synthesis times prohibit the
rapid testing of many designs and devices, we focus our analysis on two case studies
involving dot-product and distance-calculation kernels on a range of Virtex-5 FPGAs.
Results show our LP method selects the optimal distribution of operations and predicts
when increasing performance can decrease power efficiency and dependability.

The remainder of this article is organized as follows. Section 2 discusses the back-
ground that provides the foundation of our LP method and related work. In Section 3,
we show the methodology behind the performance optimization of our LP method.
Section 4 discusses how this performance optimization methodology can be modified
to optimize for power or dependability instead. In Section 5, we show the results of
two case studies involving dot-product and distance-calculation kernels on a range of
Virtex-5 FPGAs. Finally, in Section 6, we discuss our conclusions and suggest a course
for future research.

2. BACKGROUND AND RELATED WORK

LP is a powerful method for determining optimal solutions to problems that can be
stated in terms of linear relationships. Since such a wide range of problems can fit
into this format (e.g., maximizing profits while dealing with limited resources), LP is
frequently used in a diverse set of domains, such as business, economics, industry, mili-
tary, and engineering. Designers also use LP in many areas of circuit design to produce
layouts that minimize latency, power, or error rates, while satisfying many simulta-
neous constraints. Landis et al. [1990] used LP techniques to improve fault detection
and recovery while meeting multiple constraints, such as number of gates, latency,
and power. Agrawal et al. [1999] used LP to minimize the imbalance in the gate input
delays that cause transient energy consumption during a gate transition. By represent-
ing gate and buffer delays in combinatorial logic circuits with linear equations, they
were able to reduce power by up to 47% in some instances compared to original circuits
and find the optimal tradeoff between latency and power. Srinivasan et al. [2006] used
LP to create power-optimized, network-on-chip architectures for application-specific,
system-on-chip designs. Srinivasan et al. minimized total system power by creating a
floor plan such that networking routes between processing cores were minimized while
also ensuring that all cores and routing fit within the area of a bounding rectangle and
that certain performance constraints were met.
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In this article, we use LP to generalize a portion of our methodology using prior work
by Williams et al. [2010], which established the computational density (CD) metric.
CD measures a device’s computational performance and is measured in operations per
second (typically in giga operations per second (GOPS)). A device’s CD depends on the
precision and functions of the operations being analyzed (e.g., 8-bit integer add or dou-
ble floating-point multiply). CD is useful for comparing performance between a wide
range of processing devices, including CPUs, DSPs, FPGAs, and GPUs. To compute an
FPGA’s CD, Williams et al. considered four operations (combinations of an add or mul-
tiply function type with DSP and logic-only variants) and instantiated each operation
one at a time on the FPGA to determine the resources consumed per operation. A sim-
ple analytical method then used this data to project how to optimally use the FPGA’s
resources to fit the most simultaneous operations on the FPGA. Williams et al. then
calculated the FPGA’s CD as the maximum number of simultaneous operations that
could fit on the FPGA multiplied by the limiting frequency of the slowest operation. In
this article, we introduce an LP method that generalizes Williams et al.’s methodology
by considering any number of function types and operation variants when optimiz-
ing an FPGA for performance. We also discuss an improved method for handling the
limiting frequency imposed by the slowest operation, which in some cases yields fur-
ther performance improvements. Finally, we demonstrate how the flexibility of our LP
method allows us to make small modifications to optimize an FPGA design for power
or dependability instead of performance.

Other works have demonstrated non-LP methodologies for predicting the optimal
performance of an application design on an FPGA. The RC Amenability Test (RAT)
[Holland et al. 2009] is an analytical methodology that uses three tests for throughput
performance, numerical precision, and resource utilization to determine the viabil-
ity of an algorithm design on an FPGA prior to the use of any HDL. RAT measures
throughput performance with both communication time for transferring data on and
off the FPGA and computation time for processing the data according to an application
design, which relies on a user-supplied frequency estimation for the FPGA. Enzler
et al. [2000] described a similar high-level estimation methodology for characterizing
the area and performance of an application on an FPGA. Using a priori information
about the FPGA’s architecture, the methodology created a set of equations to describe
area, frequency, throughput, latency, and I/O pin count, enabling the user to quickly
test the tradeoffs involved in decomposing parts of the design, replicating those parts,
or adding registers for pipelining. Finally, Meswani et al. [2012] showed how to model
and predict the performance of high-performance computing applications on systems
that use GPU or FPGA hardware accelerators. Their model evaluated the application’s
code to find sections that could be easily accelerated and used simple benchmarks to
predict accelerator speedup. In contrast to these methodologies, our LP method uses
the results of single instantiated operations to predict the frequency and performance
of an application on an FPGA without requiring detailed a priori information about the
FPGA supplied by the user. Additionally, our LP method can consider multiple opera-
tion variants for any function type and can also optimize for power and dependability.

3. OPTIMIZING PERFORMANCE

Our LP method’s primary purpose is to generalize the original CD methodology
proposed by Williams et al. [2010] for FPGAs to determine the maximum performance
for any number of function types and operation variants. The original CD methodology
constrains analysis to only two function types (add and multiply) and two operation
variants for each function type (a total of four operation variants), so the methodology
only relies on a few simple calculations. Adding support for additional function
types rather than just add and multiply enables analysis on a much broader range
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of applications, and adding support for more operation variants gives designers
more options to test when determining an FPGA’s maximum performance. However,
generalizing the methodology to consider additional function types and operation
variants quickly increases the problem size beyond the capabilities of a few simple
calculations, requiring the power and robustness of LP. The remainder of this section
is organized as follows. Section 3.1 provides a brief discussion of how our LP method
uses LP, Section 3.2 shows the necessary equations to describe the optimization
problem and create the initial tableau for LP, and Section 3.3 describes how to extract
results from the LP’s final tableau.

3.1. Linear Programming (LP)

LP is a methodology for determining the values of a set of decision variables in a
linear system that lead to an optimal result for an objective function. LP operates on
a set of input linear constraint equations written in terms of the decision variables.
For our LP method, the decision variables represent the quantity of each operation
variant used in the FPGA’s operation distribution. Every operation variant requires a
unique combination of FPGA resource types, and each resource type is limited based
on the FPGA device under consideration. Our LP method describes these resource
limits with constraint equations that use the operation variant quantities as inputs.
Additionally, the application running on the FPGA requires a specific ratio of various
function types, which our LP method again represents with constraint equations using
the operation variant quantities. When optimizing for performance, our LP method
creates an equation for the objective function that defines the FPGA’s performance in
terms of the operation variants. Finally, our LP method combines the contents of these
equations to create an initial tableau. Our LP method then uses the simplex algorithm
[Vanderbei 2001] and Bland’s rule [Bland 1977] to iteratively perform pivot operations
on the initial tableau and create the final tableau. From the final tableau, our LP
method can extract any necessary information to determine the optimal operation
distribution and predict the optimal performance.

Our LP method does not capture information about or analyze routing distances
between operations for several reasons. Our LP method is concerned with estimating
the theoretical maximum performance for some combination of device and application,
whereas routing inefficiencies are difficult to assess absolutely, often depending on
routing methodology, routing effort, and/or programmer skill. Additionally, it might
not only be difficult for a user to capture routing information about the operations, but
it would be infeasible to integrate this information into the existing LP-based analysis,
since routing constraints are not naturally linear and routing algorithms are very
different from LP.

The simplex algorithm requires the optimization problem to be represented in stan-
dard form, which means that all decision variables must be nonnegative and all con-
straints must be represented with equations and not inequalities. It is impossible to
use a negative number of operation variants, so the decision variables are necessarily
nonnegative. Not only is the nonnegative variable requirement of the simplex algo-
rithm automatically satisfied, but this requirement also prevents our LP method from
needing additional equations to define the lower bounds of the decision variables. Un-
fortunately, many of the constraints are naturally represented with inequalities, which
violate the equation requirement of the simplex algorithm, so these constraints must
first be transformed into equations before the initial tableau is formed. An example of
a simple constraint inequality is shown in Equation (1), where x is a decision variable
with an upper limit of 100:

x < 100. (D
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Table I. Virtex-5 LX20T Resources

FFs LUTs
Actual Usable Actual Usable DSPs
12,480 10,608 12,480 10,608 24

Table II. Properties of Virtex-5 LX20T Operation Variants
Function Variant FFs LUTs DSPs Freq. (MHz)

Add Small 64 64 0 362
Add Large 170 210 0 401
Multiply Logic 1,093 1,133 0 354
Multiply Mixed 734 711 1 328
Multiply DSP 81 32 4 500

By adding a new nonnegative slack variable s to the lesser side of the inequality
and switching the inequality sign with an equal sign, the constraint inequality in
Equation (1) is transformed into the equivalent constraint equation:

s +x = 100. (2)

Slack variables are similar to decision variables in that slack variables are nonneg-
ative and are used to define constraint equations, but slack variables do not represent
the quantity of any operation variant. Since s is assumed to be nonnegative, Equa-
tion (2) requires that x can be no larger than 100, and so the constraint inequality of
Equation (1) is preserved.

3.2. Creating the Initial Tableau

In order to demonstrate how our LP method forms the initial tableau required for
LP, we discuss a base example using a specific FPGA device, the Virtex-5 LX20T-
FF323-2, a dot-product kernel, and a set of operation variants. We chose to focus
our example on the Virtex-5 LX20T, because it is the smallest device in the Virtex-5
family, which is suitable for a base example, and because Virtex-5 devices have a lower
DSP-to-logic ratio than the more modern Virtex families, thereby enabling our LP
method to make more interesting decisions. Dot product is an important kernel that
is widely used within other basic kernels and applications (e.g., matrix multiplication,
convolution). Before our LP method can begin creating the constraint equations, the
user must define various properties for the device, application, and operation variants.
Table I shows the necessary device properties for defining the Virtex-5 LX20T device.
Our LP method defines the usable resource amounts for FFs and LUTs as 85% of
the corresponding actual resource amounts, an adjustment identical to that of the CD
methodology to account for a 15% logic resource overhead for steering logic and memory
or I/O interfacing [Williams et al. 2010].

Our particular dot-product kernel receives two vectors consisting of multiple 32-
bit integer values and outputs a single 64-bit integer, requiring 32-bit integer multiply
operations and 64-bit integer add operations. Table IT shows the data that is required for
defining the set of operation variants used in our example. Each operation variant has a
function, a variant name, the number of resources (i.e., FF's, LUTs, and DSPs) required
to instantiate each instance of the operation variant, and the maximum achievable
frequency at which the operation variant can operate correctly. For our example, we
consider two add variants: a larger, fully pipelined add variant that can operate at a
high frequency; and a smaller add variant that uses less resources but cannot operate
as quickly. We also consider three multiply variants: a logic variant that uses no DSPs;
a mixed variant that uses a mixture of DSPs and basic logic resources; and a DSP
variant that uses almost no basic logic resources. To determine the properties of each
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operation variant, a single instance of each operation variant was generated with the
Xilinx CORE Generator System and instantiated on a Virtex-5 LX20T with Xilinx
Integrated Synthesis Environment (ISE), the results of which provided the data in
Table II.

With the data from Tables I and II, our LP method can create the resource-limiting
equations (RLE), which are constraint equations that ensure the operation distribution
does not lead to a design that uses more resources than are available on the considered
device. One RLE is needed for each resource type, and each RLE describes how many
of the corresponding resource are available on the device and how many each instance
of an operation variant consumes. In our example, our LP method uses the inequalities
shown in Equations (3), (5), and (7) to form the RLEs in Equations (4), (6), and (8). The
decision variables xag, Xa1, XM, XMm, and xyq represent the quantity of the small-add,
large-add, logic-multiply, mixed-multiply, and DSP-multiply variants, respectively. The
slack variables spr, spur, and spgp represent the amount of unused FFs, LUTSs, and
DSPs, respectively,

64xas + 170xa1 + 1093x0n + 734xym + 81xma < 10,608, (3)
SpF + 64xa5 + 170xa1 + 1093xyn + 7342Mm + 81xnmg = 10,608, (4)
64xas + 210xa1 + 11332y + 71 1xym + 32xma < 10,608, (5)
sputr + 64xas + 210xa1 + 1133xyvn + 711xyvim + 32x0mg = 10,608, (6)
XMm + 4ama < 24, (7)

SPSP + XMm + 4xmq = 24. (8)

Next, our LP method creates the function ratio equations (FRE) that enable us to
target the specific application running on the device. Our LP method characterizes an
application by the function types that an application comprises (e.g., add, multiply,
divide, square root) and the ratio between those function types. For a dot-product
kernel, the function ratio is approximately one add to one multiply, but for a fast Fourier
transform kernel, the function ratio is approximately three adds to two multiplies. For
an application with n different function types, our LP method requires an FRE for
all but one of the n function types, resulting in a total of n — 1 FREs. To create an
FRE for a particular function type, our LP method uses the generalized FRE shown in
Equation (9), where x; is the ith decision variable that represents an operation variant
with the corresponding function, y; is the ith decision variable that represents an
operation variant with a different function, and « equals the fraction of the application’s
operations that correspond to the function type:

(1—05)(29@-) —a(Zyi) =0. 9

For our example, there are only two function types, so our LP method only creates
one FRE using the add function type, which is shown in Equation (10):

(1 — 0.5)(xas + xa1) — 0.5(xp1 + XMm + 2Ma) = O. (10)

Finally, our LP method creates the objective function that relates the decision vari-
ables to a new objective variable, for which the intention is to maximize. Since our
LP method is currently trying to maximize performance, the objective variable rep-
resents the performance of the device in terms of millions of operations per second
(MOPS). Our computational model assumes that all operations operate in the same
clock region, so the performance of the device can be calculated as the sum of all the
operations used in the operation distribution scaled by the limiting frequency, which is
the minimum achievable frequency amongst the operation variants being considered.
For our example, the mixed-multiply variant sets the limiting frequency with the lowest
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Table Ill. Summary of Equations

Type Equation Ref. Number
Objective Function z = 328(xAs + XAl + XM + XMm + XMd) 12
FRE (1 = 0.5)(xps 4+ xA1) — 0.5(xpn + XM + Xma) = 0 10
FF RLE SFF + 64xps + 170x41 + 1093xy1 + 734xym + 81xpg = 10, 608 4
LUT RLE sLUT + 64xas + 210x41 + 1133xp1 + 711y + 32xpq = 10, 608 6
DSP RLE SPSP + XMm + 4xng = 24 8

Table IV. Initial Tableau for Performance Optimization

obj. slack decision
z SFF SLUT  SDSP TAs LAl ML TMm TMd
Obj. Func. 1 0 0 0 -328 -328 -328 -328 -328 0
FRE 0 0 0 0 0.5 0.5 0.5 -0.5 -0.5 0
FF RLE 0 1 0 0 64 170 1093 734 81 10608
LUT RLE 0 0 1 0 64 210 1133 711 32 10608
DSP RLE 0 0 0 1 0 0 0 1 4 24

achievable frequency of 328MHz. Equation (11) shows the general objective function
for performance optimization, where the objective variable z is the device’s performance
in MOPS, x; is the ith decision variable, and f is the limiting frequency. Equation (12)
shows the objective function for our example. Note that although Equation (11) as-
sumes that every operation variant produces an output every cycle, Equation (11) can
be easily modified to allow for operation variants that do not satisfy this assumption
by scaling the associated decision variables:

z = foi, (11)

z = 328(xas + xa1 + M1 + XMm + XMa)- (12)

After creating the necessary RLEs, FREs, and objective function, our LP method
creates the initial tableau. Table III summarizes and reformats these equations to
clarify how these equations correspond to the rows of the initial tableau.

Table IV shows the initial tableau for our example. Our LP method constructs the
tableau such that each row represents one of the equations from Table III (the only
restriction is that the objective function must go into the topmost row to be easily
handled by the simplex algorithm). Every column (except for the rightmost column)
corresponds to either an objective variable, slack variable, or decision variable. Each
element in the tableau shows the coefficient of the variable corresponding to the ele-
ment’s column in the equation corresponding to the element’s row. The elements of the
rightmost column represent the constant terms within the corresponding equations on
the side opposite of the variables.

After creating the initial tableau, our LP method can apply the simplex algorithm
to perform pivot operations on the tableau until the final tableau is produced. Due to
the inclusion of the FRE, the tableau is not in canonical form (i.e., there is no subset
of the tableau’s columns that can be rearranged to create an identity matrix equal in
height to the tableau), so our example requires a two-phase simplex algorithm, where
Phase I transforms the tableau into canonical form, and Phase II produces the final
tableau. Phase I requires the addition of a new artificial variable for each FRE, a single
new artificial objective function, and a single new artificial objective variable. These
additions transform the initial tableau into canonical form, and the rest of Phase I can
begin to zero out the artificial variables using the artificial objective function. Assuming
that at least one operation distribution exists that satisfies the FREs and RLEs (which
is always true when optimizing for performance), Phase I successfully completes by
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Table V. Final Tableau for Performance Optimization

obj. slack decision
z SFF SLUT SDSP TAs TAl Ml ZMm TMmd
1 0.6 0 140.5 0 68.4 91.2 0 0 10217.8 =z
0 0.0 0 0.2 1 1.1 0.1 0 0 15.6 = Taq
0 0.0 0 -0.0 0 0.1 1.5 1 0 12.8 = TMm
0 -1.0 1 11.7 0 415 56.3 0 0 431.4 = spuT
0 -0.0 0 0.3 0 0.0 -04 0 1 2.8 = Zma
Initial RN Initial canonical N Simplex alg. no.| Simplex alg.
tableau tableau (Phase 1) (Phase 1)
_ Remove yes Keep solution
Finished . .
slowest variant if it is best

Fig. 1. Iterative process for testing multiple limiting frequencies.

producing a canonical tableau from which the added artificial terms can be dropped.
Phase II then begins and completes by producing the final tableau, which is recognized
by the absence of negative values in the top row.

3.3. Final Tableau and Results

Table V shows the final tableau for our example. Since the tableau must be canonical,
there must exist a subset of five columns that can be rearranged to form an identity
matrix. The variables associated with these columns are called basic variables, while
the remaining variables are called nonbasic variables. Our LP method can quickly
find the value for each basic variable in the rightmost column by assuming a value of
zero for the nonbasic variables. Reading out the values in this manner shows that a
maximum performance of about 10.2 GOPS is achieved when the operation distribution
uses about 16 small-add operations, 13 mixed-multiply operations, and 3 DSP-multiply
operations. The operation distribution does not use the large-add and logic-multiply
variants to achieve maximum performance. The slack variables also show that the
operation distribution uses all of the FFs and DSPs and almost all of the LUTs.

Although our example determines the maximum performance when considering all
five operation variants, it may be possible to find a higher performance by considering
only a subset of the operation variants. Although limiting the use of any operation
variants can only reduce or have no effect on the total number of operations used by
the operation distribution, the performance could still improve if the set of remaining
operation variants has an improved limiting frequency. Unfortunately, the method for
determining the limiting frequency of a set of operation variants is not linear, so our
LP method must instead iteratively perform the LP steps described above multiple
times to test alternative subsets of the operation variants and find the optimal limiting
frequency. Figure 1 shows a flow diagram for this iterative process.

After the first iteration shown in our example, successive iterations remove the oper-
ation variant with the lowest achievable frequency, thereby enabling our LP method to
test higher limiting frequencies with the remaining operation variants. This iterative
process continues until any function type has lost all associated variants (a situation
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Table VI. Iteration Results for Performance Optimization

Operation is Available? (# if used)

Small Large Logic Mixed DSP Limiting Simultaneous Performance
Add Add Mult. Mult. Mult. Freq. (MHz) Operations (GOPS)
v'15.6 v v v'12.8 V2.8 328 31.2 10.22
V144 v v'8.4 v'6 354 28.8 10.17

M v Ve 362 12.0 4.35
V6 V6 401 12.0 4.81

in which the FREs would be impossible to satisfy), after which our LP method outputs
the operation distribution with the highest performance. Table VI shows the results
of each iteration. After the first iteration, the iteration process removes the mixed-
multiply, logic-multiply, and finally small-add variants, leaving only the large-add and
DSP-multiply variants for the final iteration. Although removing the large-add vari-
ant would further increase the limiting frequency to 500MHz, this removal makes it
impossible to achieve the correct function ratio with only the DSP-multiply variant
remaining. In our example, the first iteration produced the highest performance, yet
our LP method cannot guarantee that this result is optimal without testing other alter-
native subsets of the operation variants as well. Note that in the case of an application
that requires only one function type, there are no FREs, so the initial tableau is already
canonical and Phase I of the simplex algorithm can be skipped. Although Phase I is
always successful when optimizing for performance, Phase I may not complete suc-
cessfully when optimizing for other goals, since these other goals require an additional
constraint equation for the target performance.

Furthermore, this iterative process is the only divergence of our LP method’s perfor-
mance optimization (not including the power and dependability optimization discussed
later) from the CD methodology (aside from the greater flexibility of our LP method to
consider any number of function types and operation variants). The CD methodology
actually optimizes for the maximum number of simultaneous operations on the device.
Then the CD methodology finds the limiting frequency of the operation variants that
were actually used and multiplies the number of operations by the limiting frequency
to obtain the performance. The difference between the methodologies is subtle and
does not always produce different results; however, in some situations, our LP method
can find a more optimal operation distribution when considering the same operation
variants as the CD methodology.

4. MODIFICATIONS TO OPTIMIZE FOR POWER OR DEPENDABILITY

Generally, there is only one operation distribution that can produce the optimal perfor-
mance, thus our LP method cannot optimize for another design goal after optimizing for
performance, because there would not be any other design options from which to choose.
However, a designer may not need to achieve the maximum performance on a device
if they already know how much performance their application needs. In cases where
a designer is already targeting a specific level of performance for their application,
there may be many operation distributions that can satisfy the performance demands,
making it possible to optimize for alternative design goals. This section shows how to
modify the performance optimization of our LP method to instead optimize an operation
distribution for power or dependability for a given target performance.

4.1. Optimizing Power

Power-consumption design goals can be tantamount to performance goals, especially
for certain extreme-computing domains. In the aerospace computing domain, power is
often a limited resource, and certain situations may place more importance on meeting
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Table VII. Estimated Power Consumption for Virtex-5 LX20T Operation Variants

Dynamic Power Consumption (mW/MHz)
Function Variant FFs LUTs DSPs Clock Total
Add Small 0.007 0.010 0.000 0.006 0.023
Add Large 0.019 0.057  0.000 0.025 0.101
Multiply Logic 0.146  0.206  0.000 0.113 0.465
Multiply Mixed 0.094 0.151  0.018 0.084 0.347
Multiply DSP 0.009 0.014 0.072 0.011 0.106

a minimal power budget than meeting less extreme performance goals. Additionally,
although supercomputers may have access to incredible amounts of computational re-
sources, the actual costs required to pay for these resources places a large emphasis
on increasing computational power efficiency. Due to the importance of power con-
sumption as a design goal, we show how our LP method can optimize power for a
target performance with only two modifications to the initial tableau: replacing the
performance-based objective function with one for power and adding a target perfor-
mance constraint.

In order to create a power-based objective function to replace the performance ob-
jective function, our LP method must know how much power is consumed by each
operation variant. We use the Xilinx Power Estimator tool to estimate a frequency-
normalized power value with units of mW/MHz, which enables our LP method to reuse
this supplied data to determine power consumption for any operating frequency. There
are two methods for estimating the power consumption of each operation variant. The
first method is easiest and only requires information on the power consumption of
the three main FPGA resources that compose all operation variants. With these three
values, our LP method can estimate the power consumption of any operation variant
by summing up the total power consumptions of the operation variant’s constituent
resources. A more accurate method involves importing data for each operation variant
from Xilinx ISE into the power-estimator tool to directly determine a more accurate
power estimate for each operation variant. For our work, we use the latter, more accu-
rate method. Table VII shows the power-estimate results for all five operation variants
in our example after importing data from Xilinx ISE into the power-estimator tool.
Table VII also shows the contributions of the FPGA resources and clock tree to the
total power consumption of each operation variant, though this data is not required by
our LP method.

With the data from Table VII, our LP method can create the power-based objective
function. Equation (13) defines the total dynamic power consumption (static power
consumption is added on at the very end of the dynamic power analysis to calculate
total power) as the sum of the power contributions of every operation in the operation
distribution scaled by the limiting frequency. Since our goal is to maximize the objective
variable, if we naively use power as the objective variable, then power is maximized
instead of minimized. To circumvent this issue without significant alterations, we
define the objective variable as the negative of the power consumption. In this way,
as our LP method attempts to maximize the objective variable (negative power), it
actually minimizes the device’s power consumption (positive power). Equation (14)
shows the new objective function for our example, where the objective variable z is now
the negative of the total dynamic power consumption in mW:

Power (mW) = £(0.023xa5 + 0.101xa; + 0.465xp + 0.347xpm + 0.106x0q),  (13)
z + 7.6xps + 33.2xa1 + 152.40pn + 113. 720w + 34.7x0q = O. (14)

Next, our LP method creates the target performance equation (TPE), a new con-
straint equation that enables the targeting of a specific performance for the operation
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Table VIII. Initial Tableau for Power Optimization

obj. slack decision
z SFF SLUT  SDSP  TAs TAl IMI  TMm  TMd
Obj. Func. 1 0 0 0 7.6 33.2 1524 113.7 34.7 0
TPE 0 0 0 0 328 328 328 328 328 7500
FRE 0 0 0 0 0.5 0.5 -0.5 -0.5 -0.5 0
FF RLE 0 1 0 0 64 170 1093 734 81 10608
LUT RLE 0 0 1 0 64 210 1133 711 32 10608
DSP RLE 0 0 0 1 0 0 0 1 4 24
Table IX. Final Tableau for Power Optimization
obj. slack decision
z SFF  SLUT SDSP  TAs TAl Ml TMm  TMd
1 0 0 26.3 0 25.7 12.4 0 0 -1056.8 =z
0 0 226.3 0 146.0 195.7 0 0 4583.1 = SLUT
0 0 0 -0.0 1 1.0 -0.0 0 0 114 = TAs
0 0 0 -0.3 0 0.0 1.3 1 0 7.3 = TMm
0 1 0 217.7 0 106.0 141.3 0 0 4211.1 = SFF
0 0 0 0.3 0 00 -03 0 1 4.2 = omq

distribution. Without the TPE, our LP method would always achieve a minimum power
consumption of 0 Watts by removing all operations from the operation distribution.
Equation (15) shows the general TPE, which is nearly identical to Equation (11),
the general performance-based objective function. For our example, we target a
performance of 7.5 GOPS, and Equation (16) shows the resulting TPE:

Target Performance (MOPS) = f in, (15)
328xs 4 328xa1 + 328xz1 + 328xym + 328xpq = 7,500. (16)

Our LP method creates the initial tableau for our example (Table VIII) in the same
manner as before, except that now the TPE is inserted below the objective function.
As seen in Table VIII, the TPE is similar to the DFEs and requires the addition of an
extra artificial variable, meaning that our LP method can never skip Phase I of the
simplex algorithm when targeting a specific performance. Furthermore, the TPE can
cause Phase I to fail if the designer sets the target performance above the maximum
performance. A failure in Phase I means that no viable solutions exist for the given con-
straints, which would obviously be true with an unachievable performance constraint.
Aside from the fact that Phase I is now necessary and can potentially fail, our method
operates on the initial tableau in the same manner as before to create the final tableau.

Table IX shows the final tableau for the first iteration of our example. Taking the
negative of the objective variable shows a minimum dynamic power consumption of
1.057W for a dot-product kernel running on the Virtex-5 LX20T-FF323-2 at 7.5 GOPS.
Table IX also shows that a significant number of FFs and LUTs are unused on the
device, indicating that this design is indeed not optimized for performance.

Our LP method performs the iterative process (Figure 1) just as before to test the
benefits of higher limiting frequencies. Table X shows the results of each iteration.
Once again, the first iteration produced the best operation distribution. Note that
Table VI shows that the final two iterations of the performance optimization that
restrict usage of the logic-multiply and mixed-multiply variants have maximum
performances below 5 GOPS, so these same subsets of operation variants fail (in
Phase I of the simplex algorithm) in the final two iterations of power optimization,
because the target performance of 7.5 GOPS is too high.
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Table X. lteration Results for Power Optimization

Operation is Available? (# if used)
Small Large Logic Mixed DSP Limiting Simultaneous Dynamic
Add Add Mult. Mult. Mult. Freq. (MHz) Operations Power (W)

V114 v v V173 Va2 328 22.9 1.057
v'10.6 v V4.6 Ve 354 21.2 1.069
v v v 362 N/A N/A

v v 401 N/A N/A

Table XI. Estimated Error Rates for Virtex-5 LX20T Operation Variants

Error Rate (errors/year)
Function Variant FFs LUTs DSPs Total
Add Small 0.20 0.20 0.00 0.40
Add Large 0.53 0.66 0.00 1.19
Multiply Logic 3.43 3.56 0.00 6.99
Multiply Mixed 2.30 2.23 0.10 4.63
Multiply DSP 0.25 0.10 0.39 0.75

4.2. Optimizing Dependability

Dependability, represented here as mean time between failures (MTBF), is also an
important design goal for extreme-computing domains. In aerospace, radiation-induced
failures can cause systems with low dependability to suffer from data errors, downtime,
and even catastrophic failure. Although devices on Earth do not typically suffer from
as many failures, a supercomputer that comprises thousands of processing devices can
suffer from a low total dependability if the failure of individual devices leads to system-
wide failures. Since dependability is an important design goal in some situations, we
show how our LP method can use the initial tableau for performance optimization
and make two modifications (similar to the modifications for power optimization) to
optimize for dependability instead.

In order to create a dependability-based objective function to replace the perfor-
mance objective function, our LP method must define a linear relationship between the
quantity of the operation variants and the total dependability. Unfortunately, the total
MTBF of a system is not linear with respect to the MTBF of the constituent parts, thus
our method uses the error rate (the reciprocal of MTBF) to define a linear relation-
ship between the quantity of the operation variants and the total error rate and then
converts the error rate to the total dependability. Estimating error rates requires first
estimating the rate of upsets induced in the device by the operating environment and
then determining the rate of errors caused by the upset rate (upsets occurring in unused
areas of an FPGA do not cause errors). For our example, we consider an FPGA device op-
erating on the International Space Station and predict an upset rate using CREME96
[Tylka et al. 1997] and Virtex-5 fault-injection data [Quinn et al. 2007; Hiemstra et al.
2010]. As with power estimations, we can estimate error rates either as per resource or
per operation variant. The most accurate method measures the error rate for each op-
eration variant by performing fault injection (radiation- or software-based) on a single
instance of the operation variant. However, fault injection is beyond the scope of this ar-
ticle, so instead we measure the error rate for each FPGA resource using a worst-case
estimation technique that assumes all configuration bits associated with a resource
cause an error when upset. Table XI shows the error-rate estimation results for all five
operation variants in our example. Table XI also shows the contributions of the FPGA
resources to the total error rate of each operation variant to provide greater clarity on
the sources of error in an FPGA, though this data is not required by our method.
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Table XIl. Initial Tableau for Optimizing Dependability

obj. slack decision
z SFF  SLUT SDSP  TAs TAl Ml TMm  TMmd

Obj. Func. 1 0 0 0 0.40 1.19 6.99 4.63 0.75 0
TPE 0 0 0 0 328 328 328 328 328 7500

FRE 0 0 0 0 0.5 0.5 -0.5 -0.5 -0.5 0
FF RLE 0 1 0 0 64 170 1093 734 81 10608
LUT RLE 0 0 1 0 64 210 1133 711 32 10608

DSP RLE 0 0 0 1 0 0 0 1 4 24

Because our LP method only requires basic information about the operation vari-
ants as a whole (e.g., total resource usage, total power consumption, total error rate),
without regard for their internal structure, our LP method can easily analyze any
fault-tolerant operations with internal redundancies as well. Although dependability-
focused designers would normally include fault-tolerant variants in their design anal-
ysis, we do not include them in our case studies for two reasons. First, to effectively
demonstrate the effectiveness of our LP method, we must use case studies where the
optimal solution is not trivial to find. Because fault-tolerant variants typically use
extra resources and/or power for significant dependability improvements, it is almost
certain that the dependability-optimized designs would use the fault-tolerant variants
exclusively whenever they could, and the power-optimized designs would use the non-
fault-tolerant variants. Second, because fault-tolerant variants are not available in the
Xilinx CORE Generator System, any fault-tolerant variants that we create might not
be optimized similarly to the other variants and would not provide a fair comparison.

With the data from Table XI, our LP method can create the dependability-based
objective function. Equation (17) defines the total error rate as the sum of error rates of
every operation in the operation distribution. Note that the limiting frequency plays no
direct role in the calculation of the total error rate, because we model the error rates of
the FPGA resources to be independent of the frequency (though models incorporating
single-event transients could be used instead if desired). In order to maximize depend-
ability, our LP method minimizes the error rate by defining the objective variable as the
negative of the total error rate, similarly to the power-minimizing objective function
from before. Equation (18) shows the new objective function for our example, where
the objective variable z is now the negative of the total error rate measured in errors
per year:

E
;:Zis — 0.40xa¢ + 1194 + 6.99x31 + 4682310 + 0.75214. amn
2+ 0.40xas + 1.19x1 + 6.99x1 + 4.63%31m + 0.75%04q = 0. (18)

Since our example is still targeting a performance of 7.5 GOPS, we can reuse Equa-
tion (16) as the TPE for optimizing dependability. With the new objective function and
TPE, our LP method creates the initial tableau (Table XII) similarly to that for power
optimization, with the TPE once again inserted underneath the new objective function.
As with the power optimization, the inclusion of the TPE means that Phase I of the
simplex algorithm is now necessary and may potentially fail. Our LP method operates
on the initial tableau similarly as before to create the final tableau.

Table XIII shows the final tableau for the first iteration of our example. Taking the
negative of the objective variable shows a minimum error rate of 41.3 errors/year (or a
maximum MTBF of 8.83 days) for a dot-product kernel running on the Virtex-5 LX20T-
FF232-3 at 7.5 GOPS. Except for the top row, the final tableaus in our example for
the first iteration of the power and dependability optimizations are identical, meaning
that this operation distribution is simultaneously ideal for power and dependability.
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Table Xlll. Final Tableau for Dependability Optimization

obj. slack decision
SFF  SLUT SDSP  ZAs TAl Ml ZMm  TMd

1 0 0 1.3 0 0.8 1.1 0 0 -41.3 =z

0 0 1 226.3 0 146.0 195.7 0 0 4583.1 = SLUT
0 0 0 -0.0 1 1.0 -0.0 0 0 114 = Tpg
0 0 0 -0.3 0 00 1.3 1 0 7.3 = TMm
0 1 0 217.7 0 106.0 141.3 0 0 4211.1 = SpR
0 0 0 0.3 0 0.0 -0.3 0 1 4.2 = TMq

Table XIV. lteration Results for Dependability Optimization

Operation is Available? (# if used)
Small Large Logic Mixed DSP Limiting Simultaneous Dependability
Add Add Mult. Mult. Mult. Freq. (MHz) Operations (MTBF:days)

V114 v v V1.3 V4.2 328 22.9 8.833
v 362 N/A N/A
v v 401 N/A N/A

Our LP method performs the iterative process (Figure 1) similarly as before to test the
benefits of higher limiting frequencies. Table XIV shows the results of each iteration.
Surprisingly, even though each iteration produces the same operation distributions as
were produced for the power optimization, the second iteration is actually the optimal
choice for dependability optimization with an MTBF of 8.93 days. For a fixed target
performance, increasing the limiting frequency requires a proportional decrease in the
number of simultaneous operations. Since power is proportional to both frequency and
quantity of simultaneous operations, increasing the limiting frequency with a fixed
target performance has no direct effect on power consumption. However, since the total
error rate is only proportional to the quantity of simultaneous operations and not to the
frequency, increasing the limiting frequency directly improves dependability (although
limiting the availability of certain operation variants may still produce overall worse
results for higher frequencies).

5. RESULTS AND ANALYSIS

This section discusses the setup and results of two case studies, each using a dif-
ferent kernel to test a variety of capabilities for a wide-range evaluation of our LP
method’s effectiveness. Section 5.1 concludes this article’s example of using a base case
study with the Virtex-5 LX20T running a dot-product kernel to experimentally deter-
mine the minimum achievable power for various performance values using this setup.
Section 5.2 introduces a more complex case study involving a wide range of Virtex-5
devices running distance-calculation kernels, which significantly increases the number
of operation variants analyzed in our method.

5.1. Base Case Study: Dot Product

Our base case study tests our LP method’s predictions of this article’s base example
involving a Virtex-5 LX20T device running a dot-product kernel. To test these predic-
tions, we create multiple designs of a dot-product kernel on the Virtex-5 LX20T using
various combinations of the five operation variants defined in Tables II, VII, and XI.
After placing and routing the designs in Xilinx ISE with a high effort level, we obtain
the frequency of the design, which we multiply by the design’s number of operations to
calculate the design’s performance in GOPS. We then import the designs into the Xilinx
Power Estimator tool to estimate each design’s power. Because this power estimator
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Fig. 2. Power predictions and results for designs using minimum power on Virtex-5 LX20T running dot-
product kernel.

only ingests the map report files from our designs, the contribution of FPGA routing to
the total power consumption is estimated based on the average fanout of the various
FPGA resources. Because fault injection is a complicated process that is beyond the
scope of this article, we do not measure the dependability of the designs. By compar-
ing the power and performance of various design sizes and operation distributions, we
measure the minimum required dynamic power for a given performance and determine
which designs are actually most power-efficient for various ranges of performance:

a-b:Zaibi. (19)

Equation (19) defines a dot-product operation for vectors a and b, where ¢; and b; are
the ith entries in vectors a and b, respectively. A single dual-port block RAM supplies
each set of corresponding 32-bit integer input entries (i.e., @; and b;), and a simple
address generator drives each of these block RAMs, striding across the block RAM
memory. Because small modifications to these address generators to alter the striding
patterns would provide the necessary control logic to target other specific applications
(e.g., specific matrix sizes in matrix multiply), the results from this case study are
broadly applicable to a wide range of applications that rely heavily on the dot-product
kernel. For each block RAM, a single 32-bit integer multiply operation calculates the
product of the block RAM’s two 32-bit integer values and outputs the 64-bit integer
product. Finally, an add-tree consisting of 64-bit integer add operations sums all of
these products in parallel and outputs the final answer. The design is fully pipelined,
meaning the device performs a full dot-product calculation every cycle. We vary the
performance per cycle of the dot-product kernel by varying the length of the input
vectors.

Figure 2 shows our LP method’s predictions, as well as the most power-efficient
designs for various performance values in GOPS. Predictions show that designs should
only use the DSP-multiply variant for multiply operations when targeting a perfor-
mance below 4.35 GOPS. At 4.35 GOPS, all of the DSP units are needed to keep up with
input vectors of length six. Above 4.35 GOPS, increasing the length of the input vectors
requires additional multiply operations, which requires using the remaining unused
logic resources. As we add more power-hungry, logic-multiply operations, dynamic
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Fig. 3. Frequency predictions and results for designs using minimum power on Virtex-5 LX20T running
dot-product kernel.

power consumption rises sharply. For targeted performances of 6.88 GOPS and above,
the most power-efficient designs completely avoid the logic-multiply variant. Instead,
mixed-multiply operations gradually replace some of the DSP-multiply operations,
starting with around 57% of the multiply operations being mixed-multiply variants
and progressing to around 82%. Our method predicts that the maximum performance
operation distribution consists of 15.6 small-add, 2.8 DSP-multiply, and 12.8 mixed-
multiply operations, for a total performance of 10.22 GOPS and dynamic power
consumption of 1.669 W. Finally, predictions show that using the large-add variant
does not increase maximum performance or power efficiency. The higher frequency of
the large-add variant does not improve designs using mixed or logic-multiply variants,
which operate at a lower frequency. Even when the mixed and logic-multiply variants
are absent in lower-performance designs, the extra logic resource overhead of the
large-add variant offsets the power-efficiency of the DSP-multiply variant.

Figure 2 shows the experimental results, which largely confirm our LP method’s
predictions. For greatest power efficiency, the large-add variant is never beneficial,
low-performance designs require only the DSP-multiply variant, mid-performance de-
signs require both logic and DSP-multiply variants, and high-performance designs
require mixed and DSP-multiply variants. We achieve the highest performance of
7.60 GOPS using two DSP-multiply and 12 mixed-multiply operations. Furthermore,
for the highest possible power efficiency (calculated as performance divided by power
consumption), our method suggests to only use small-add and DSP-multiply operations
and to avoid filling up the device any further with the other variants. This insight may
be important if the cost of power (or lack of power) is the designer’s primary concern
rather than maximum performance or the cost of hardware. In such a situation, using
multiple devices at less-than-maximum capacity may be preferable to using more total
power on fewer fully utilized devices.

Several effects are responsible for the differences between our LP method’s pre-
dictions and the experimental results. The primary effect comes from the difference
between the predicted and achievable frequencies, shown in Figure 3. The increased
complexity of a full design over just a single instance of an operation variant increases
the difficulty of placing and routing the design, which can lead to lower achievable
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frequencies. A reduction in frequency results in a proportional reduction in perfor-
mance and dynamic power consumption, causing the points in Figure 2 to shift toward
the origin. For this reason, graphs of experimental results should look like shrunken
versions of our predicted results.

Smaller secondary effects result in additional small experimental differences from
predictions. The logic overhead required to support the block RAMs and block RAM
address generation results in a slight increase in dynamic power consumption for all
designs. For designs using logic and mixed-multiply variants, extra registers are needed
to efficiently pipeline the designs and meet timing. These extra registers significantly
increase the dynamic power consumption of the mid/high-performance designs and
limit designs from being able to handle vector lengths of 15 as predicted, resulting in
decreases to the maximum achievable performance as well. Finally, the larger than
expected drop in frequency when adding the logic-multiply variant results in a larger
than expected increase in dynamic power consumption at around 4 GOPS.

5.2. Complex Case Study: Distance Calculation

Our complex case study is similar to the base case study but increases the complexity
of our LP method’s analysis by focusing on a 32-bit floating-point distance-calculation
kernel, which involves a greater number of function types and operation variants.
Furthermore, this case study tests our method’s performance optimization across the
full range of sizes in the Virtex-5 LXT subfamily and tests power optimization on the
mid-size Virtex-5 LX85T device.

Distance calculations are common in numerous applications in super computing (e.g.,
physical simulations and complex-value mathematics) and aerospace (e.g., star track-
ing using planar triangles [Cole and Crassidis 2006]). The distance-calculation kernel
used in this case study involves repeatedly performing the 2D-distance calculation
shown in Equation (20) on a series of a and b vectors, where a and b are 2D-Cartesian
coordinate vectors with 32-bit floating point values for the x and y entries. Similar
to the dot-product kernel, dual-port block RAMs driven by address generators supply
each of the corresponding entries of the input vectors, requiring one block RAM for the
x coordinates and one for the y coordinates. For each block RAM, a subtract operation
computes the difference of the block RAM’s two 32-bit floating-point values, and the
result goes to both inputs of a multiply operation to compute the squared difference
between the corresponding coordinates. An addition operation then sums these two
results and passes the sum to a square-root operation, which outputs the final 32-bit
floating-point answer. The described design represents a single distance-calculation
core, which is fully pipelined and therefore performs a distance calculation every cycle,
and which consists of two add, two multiply, one subtract, and one square-root opera-
tions. We can vary the performance per cycle of the kernel by increasing the number of
distance-calculation cores included in the design:

d = \/(a; —bo)? +(a, - b2 (20)

To demonstrate the capabilities of our LP method, we consider all operation variants
available in the floating-point library of the Xilinx CORE Generator System for each
function type in our design. For both the add and subtract function types, there is a logic-
only variant and a DSP variant that uses two DSP units. Since the subtract variants
are so similar to the corresponding add variants, we group the subtract variants with
the corresponding add variants for our LP method’s analysis to simplify the results
without sacrificing any accuracy. For the multiply function type, there is a logic-only
multiply variant, a medium-multiply variant that uses one DSP unit, a full-multiply
variant that uses two DSP units, and a max-multiply variant that uses three DSP
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Table XV. Virtex-5 LX85T Operation Variant Properties

Max Freq. Dyn. Power

Function Variant FFs LUTs DSPs (MHz) (mW/MHz)
Add/Sub Logic 546 416 0 508 0.213
Add/Sub DSP 327 230 2 504 0.153
Multiply Logic 681 619 0 454 0.283
Multiply Medium 368 258 1 493 0.147
Multiply Full 171 103 2 515 0.0969
Multiply Max 106 90 3 497 0.0966

Square Root Logic 765 531 0 503 0.266

units. Only the logic-only variant is available for the square-root function type. For each
device in this case study, we measure the resource consumptions, maximum achievable
frequency, and dynamic power consumption of each operation variant using Xilinx ISE
with a high-effort place and route level and the Xilinx Power Estimator tool. Table XV
shows the results of these measurements for only the Virtex-5 LX85T-FF1136-3, but
these results are similar across the entire set of studied devices, with the exception of
proportional reductions in achievable frequencies for devices of a slower speed grade.

This case study investigates performance optimization on all eight unique sizes of
the Virtex-5 LXT subfamily to show how our LP method performs on a wide range of
FPGA sizes. We focus the case study on the Virtex-5, because this family of FPGAs has
a lower DSP-to-logic ratio than the more modern Virtex-6 and Virtex-7 FPGAs. Using
devices with lower DSP-to-logic ratios helps to demonstrate our LP method’s decision-
making process, since the most power efficient computational resources on the device
(i.e., DSP units) are limited and must be used intelligently. We focus the case study
on the LXT subfamily of the Virtex-5 family, because this subfamily has the largest
range of resource amounts, with the largest member, the Virtex-5 LX330T, containing
over sixteen times the number of logic resources as the smallest member, the Virtex-5
LX20T. Since package size and speed grade have negligible and predictable effects,
respectively, we only investigate the fastest speed grade on the smallest package for
each unique size of the Virtex-5 LXT subfamily.

Table XVI shows our LP method’s predictions for the highest-performance designs
on each device, as well as the highest-performance designs that we can experimentally
achieve. As with the base case study, we test these predictions by creating many designs
of the distance-calculation kernel on each device using various combinations of the nine
available operation variants. After placing and routing the designs in Xilinx ISE with
a high-effort level, we obtain the frequency of the design, which we multiply by the
number of operations in the design to calculate the performance of the design in GOPS.
We select the highest-performing design for each device and report the features of
these designs in Table XVI, including the operation distributions of the design, the
percent of the device’s total resources that the design uses, and the percent of predicted
performance that we can achieve.

Table XVI shows that our LP method accurately predicts the correct operation dis-
tribution that produces the optimal-performance design. For the smaller devices that
have higher DSP-to-logic ratios, it correctly predicts that some of the add operations
should be of the DSP variant and all of the multiply operations should be of the full
variant, which uses two DSPs and a small amount of logic. For the larger devices with
lower DSP-to-logic ratios, it correctly recommends using more logic-centric variants by
using only the logic variant for the add operations and a combination of medium and
full variants for the multiply operations.

Average resource utilizations of 85.5% for FFs and 95.8% for DSPs confirm our LP
method’s assumptions of a 15% overhead for logic resources and 0% overhead for DSPs.
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Table XVI. Predictions and Results of Performance Optimization for Distance-Calculation Kernel

Variants Achieved
Virtex-5 Predicted Used Resource Utilization % | Performance (GOPS)
Device | Add/Sub Mult. Add/Sub Mult. FFs LUTs DSPs Pred. Result RU
70% Logic 75% Logic
LX20T | 30% DSP Full 25% DSP Full 88.3% 58.7%  91.7% 10.96 9.40 85.7%
81% Logic 78% Logic
LX30T | 19% DSP Full 22% DSP Full 86.6% 57.7% 100.0% 18.26 1590 87.1%
81% Logic 78% Logic
LX50T | 19% DSP Full 22% DSP Full 86.6% 57.7% 100.0% | 27.47 18.97 69.0%
42% Med. 40% Med.
LX85T Logic 58% Full Logic 60% Full | 89.0% 60.6% 100.0% | 44.80 28.90 64.5%
42% Med. 40% Med.
LX110T Logic 58% Full Logic 60% Full | 89.0% 60.6% 100.0% 58.36 3859 66.1%
89% Full 93% Med.
LX155T Logic 11% Max Logic 7% Max | 83.8% 56.7%  90.6% 89.99 59.26 65.9%
41% Med. 39% Med.
LX220T Logic 59% Full Logic 61% Full | 81.6% 54.4%  90.6% 102.55 56.95 55.5%
41% Med. 33% Med.
LX330T Logic 59% Full Logic 67% Full | 79.4% 54.0% 93.8% 156.69 82.40 52.6%

We could not test the overhead for LUTSs in this case study, because every operation
variant uses more FF's than LUTSs, and every tested device contains an equal number of
FFs and LUTs, so LUTs can never be a limiting resource. We also note that it is possible
to use more than 85% of logic resources in a design, but doing so increases design
complexity and reduces achievable frequencies, which ultimately offsets any advantage
from an increased number of operations and reduces performance. Therefore, the 15%
logic overhead value does not represent a hard limit but is useful when optimizing for
maximum performance.

Since our LP method is based on the CD methodology, which predicts the theoretical
maximum performance for a device, we expect the experimentally achieved maximum
performance for each device to be some proportion of our maximum performance predic-
tion. Richardson et al. [2012] describe a realizable utilization (RU) metric to quantify
the difference between theoretical device performance shown by CD and the perfor-
mance designers can achieve. For smaller devices, the RU score reaches around 86%,
but as device size increases, the RU score steadily falls to as low as 52%. The discrep-
ancy between predicted design performance and achievable performance is primarily
caused by a discrepancy in design frequencies, which proportionately affects perfor-
mance and dynamic power consumption. The Xilinx ISE place and route process is
able to obtain slightly higher frequencies for the operation variants when measured
in isolation than when the operation variants are included in an entire design, and
this effect increases for the larger devices as routing complexity increases. Overall, the
theoretical maximum performance predicted by our method is a good first-order esti-
mate of achievable performance on a particular device, and any known RU scores for
similar devices running similar applications can enhance our predictions even further.
Furthermore, even without a priori RU scores, our LP method serves as a useful tool
in predicting the relative performance between similarly sized devices.

To test our LP method’s power optimization on this more complex case study, we
investigate the mid-sized Virtex-5 LX85T across a range of performances. With knowl-
edge of the Virtex-5 LX85T RU score, we scale the operating frequency of the device’s
operation variants by 64.5% to improve the accuracy of our predictions. Figure 4 shows
our minimum dynamic-power predictions, as well as the most power-efficient designs
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Fig. 4. Power predictions and results for designs using minimum power on Virtex-5 LX85T running distance-
calculation kernel.

achievable for various performance values. Predictions show that designs should only
use the DSP-add and max-multiply variants when targeting a performance below
7.68 GOPS. At 7.68 GOPS, all of the DSP units are needed to keep up with four simul-
taneous distance-calculation cores. Just after 7.68 GOPS, our method suggests trading
the max-multiply operations for full-multiply operations until 9.22 GOPS, where all
multiply operations are of the full variant. After 9.22 GOPS, logic-add operations start
replacing DSP-add operations until 23.3 GOPS, where all add operations are of the
logic variant. Beyond 23.3 GOPS, predictions recommend replacing full-multiply oper-
ations with medium-multiply operations until 28.90 GOPS, where a design consisting
of 15.15 distance-calculation cores is using all available FF and DSP resources.

Figure 4 shows experimental results that confirm our LP method’s predictions for
minimum power after accounting for the device’s RU score. In comparison to the base
case study, the logic overhead required to support the block RAMs and block RAM ad-
dress generators is relatively small as compared to the increased number of operations
required to operate on the data from the block RAMs, so the extra power increase is
smaller than in the previous case study as well. Additionally, unlike with the base
case study, the distance-calculation kernel does not require extra power-consuming
registers to help with efficient pipelining.

Finally, our LP method suggests that max-multiply operations should progressively
replace full-multiply operations between 7.67 and 9.22 GOPS, but this is untrue ex-
perimentally. This discrepancy occurs because our method assumes that the quantities
of resources, operations, and distance-calculation cores are continuous values rather
than integer values. At 7.67 GOPS, the minimum-power design uses only DSP-add and
max-multiply operations to create four distance-calculation cores. However, at 9.22
GOPS, our method recommends using only the full variant for multiply operations,
which allows for a maximum of 4.8 distance-calculation cores before the design re-
quires all of the DSP units. Since the max-multiply variant is best when using only
four distance-calculation cores, and we cannot actually design a fraction of a distance
core, designs using full-multiply operations without using logic-add operations are
never power-optimal. Fortunately, this issue with using continuous values is minimal
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when the size of the device is significantly larger than the size of an application’s
computational cores, so most of our other predictions are accurate.

6. CONCLUSIONS

In this article, we have introduced our LP method, an effective tool for exploring
early designs by quickly determining the optimal operation distribution for a partic-
ular device and application with respect to performance, power, or dependability and
calculating quantitative metrics for design comparison purposes. Our LP method is a
more powerful generalization of the established CD methodology and still requires that
designers characterize the resource usage and operating frequency of any operations
considered for a design.

To demonstrate our LP method’s capabilities, we conducted a base and a complex
case study. The base case study analyzed power optimization for a dot-product kernel
on the smallest Virtex-5 device. The complex case study analyzed performance opti-
mization on a wide range of Virtex-5 devices and again analyzed power optimization,
but on a mid-size Virtex-5 device as opposed to the smallest device in the base case
study. The complex case study also increased the complexity of the analysis by inves-
tigating a distance-calculation kernel involving a more diverse set of function types
and operation variants. Results of the case studies show that our method accurately
predicts the operation distribution (within an average of 4% of actual values) that can
achieve maximum performance and provides reasonable estimates for the amount of
performance a designer can reach. Results also show that our method can accurately
recommend operation distributions for creating designs that achieve a given perfor-
mance with minimum power consumption, although these predictions may need to
be supplemented with the device’s RU score to give absolute rather than relational
information. Overall, the results demonstrate that our method can help designers to
compare devices, predict design metrics, and select the optimal operation distribution
to best meet their design goals.

Future work includes expanding our LP method to analyze hybrid devices that con-
tain both reconfigurable and fixed logic resources (e.g., the Xilinx Zynq, which contains
two embedded ARM processors). This expansion would involve gathering data on the
fixed logic resources using the fixed-logic CD methodology and then representing this
data as linear equations that could be included with the existing equations describing
the reconfigurable logic. Future work in studying the RU scores of other FPGA devices
and common kernels would help refine the accuracy of our method for those devices
and kernels and may result in a general methodology for predicting decreasing design
frequencies without the need for a priori RU score measurements.
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