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1 This paper is an extension to a paper that appeared in the International Symposium on Low Power Electronics and Design, 2005 [13]. 

 
Abstract—Tuning a configurable cache subsystem to an 

application can greatly reduce memory hierarchy energy 
consumption. Previous tuning methods use a level one 
configurable cache only, or a second level with separate 
instruction and data configurable caches. We instead use a 
commercially-common unified second level cache, a seemingly 
minor difference that actually expands the configuration space 
from 500 to about 20,000. We develop additive way tuning for 
tuning a cache subsystem with this large space, yielding 61% 
energy savings and 9% performance improvements over a non-
configurable cache, greatly outperforming an extension of a 
previous method.   
 

Index Terms—Configurable cache hierarchy, cache 
exploration, cache optimization, low power, low energy, 
architecture tuning, and embedded systems. 

 

I. INTRODUCTION 
he memory hierarchy of a microprocessor can consume 
as much as 50% of the system power in a microprocessor 

[15][20]. Such a large contributor to total system power is a 
good candidate for optimizations to reduce total system 
power and energy. Low power or energy is needed not only 
in embedded systems that run on batteries or have limited 
cooling ability, but also in desktops and mainframes where 
chips are requiring costly cooling methods. 

Applications require highly diverse cache configurations 
for optimal energy consumption in the memory hierarchy 
[26]. Even different phases of the same application may 

benefit from different cache configurations in each phase 
[16][21]. For example, the size of the cache should reflect the 
working set of the application. Too large of a cache would 
result in cache fetches consuming excessively high energy. 
Too small of a cache would result in wasted energy due to 
thrashing in the cache, with frequently used items repeatedly 
swapped in and out of the cache. Additionally, the cache line 
size and associativity should reflect the needs of a particular 
application or application phase to achieve the most energy 
efficient cache configuration.  

Recent technologies have enabled the tuning of cache 
parameters to the needs of an application. Core-based 
processor technologies allow a designer to designate a 
specific cache configuration [2][3][4][17][22]. Additionally, 
processors with configurable caches are available that can 
have their caches configured during system reset or even 
during runtime [1][15][26]. Such configurable caches have 
been shown to have very little size or performance overhead 
compared to non-configurable caches [15][24]. 

With the option of cache configuration readily available, a 
problem is to determine the best cache configuration for a 
particular application. Previous methods use cache 
hierarchies with limited configurability, yielding cache 
configuration spaces of at most a few hundred possible cache 
configurations, making fast exploration relatively 
straightforward. Most such methods configure total size, line 
size, and associativity for only a single level of cache, having 
less than 50 possible configurations, achieving memory 
hierarchy energy savings of 40% [24]. A few methods also 
include a second level of separate instruction and data 
configurable caches, having a few hundred possible 
configurations, achieving increased memory hierarchy 
energy savings of 53% [12]. The increased savings suggest 
that increasing the configuration space reveals a greater 
opportunity for energy savings, by allowing the cache to be 
tuned more closely to an application’s needs. However, a 
larger configuration space makes exploration heuristic 
development more difficult. 

Two-level caches are common in desktop systems and are 
becoming common in increasingly capable embedded 
systems. However, the second level cache is commonly 
unified, rather than separate (having one cache for 
instructions and another for data). A multi-way unified cache 
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enables tradeoffs between the number of instruction ways 
and the number of data ways, with those tradeoffs known as 
way management [15]. Each way may be used for 
instructions only, data only, or both instructions and data (or 
may even be shut down). An example configuration of a 
four-way unified cache is 3 instruction ways and 1 data way; 
another example is 2 instruction ways, 1 data way, and 1 
instruction/data way. The interdependence has a (perhaps 
surprisingly) large impact on the cache configuration space 
that we must explore. With separated level-two caches, we 
can effectively explore the instruction cache hierarchy 
independently from the data cache hierarchy, because the 
configuration of one cache hierarchy doesn’t (significantly) 
affect the other cache hierarchy. In contrast, with a unified 
second level, the two hierarchies become tightly 
interdependent, requiring us to consider (roughly) the cross 
product of the two configuration spaces. For example, two 
spaces of 200 configurations each, when independent yield 
400 configurations to be searched, but when interdependent 
yield 40,000. Our results will show that this larger space, 
rather than consisting of uninteresting or impractical 
configurations, indeed contains useful configurations that 
allow for intense specialization of the cache hierarchy to an 
application’s needs.  

How to adapt existing cache tuning methods to a way-
managed unified second level cache is not obvious, due in 
part to the increased tuning interdependency between the 
caches. Previous methods limited tuning dependency to limit 
the configuration space, thus making heuristic development 
easier. Previous tuning methods that address the tuning 
dependency between the level one and separate level two 
caches cannot be directly applied to a unified second level of 
cache. 

In this paper, we present a heuristic cache-tuning method 
for a highly configurable two-level cache hierarchy. We 
improve upon previous methods by significantly increasing 
the search space via a unified second level configurable 
cache, resulting in greater energy savings than previous 
methods and increased applicability to current and future 
systems. Our cache hierarchy allows for approximately 
18,000 possible cache configurations. Our heuristic achieves 
an average energy savings of 61%, while requiring explicit 
examination of a mere 0.2% of the search space on average – 
approximately 34 configurations. We also examine the 
effects of increasing static energy on the fidelity of cache 
configuration heuristics. We design our heuristic to be 
lightweight enough to be implemented in an on-chip dynamic 
tuning approach without imposing excess overhead and 
flexible enough to be used in a variety of different tuning 
environments.  

 

II. RELATED WORK 
Commercial systems with tunable caches (e.g., [4][15]) do 

not address how to tune those caches, leaving the task to the 
designer. Several research efforts therefore focus on 
providing automated assistance for such tuning. Most such 

efforts focus on single level cache tuning. Platune [10] is a 
framework for tuning configurable system-on-a-chip (SOC) 
platforms. Platune offers many configurable parameters and 
prunes the search space by isolating interdependent 
parameters from independent parameters, however, 
interdependent parameters are explored exhaustively. 
Whereas exhaustive exploration was feasible for a level one 
cache due to the small number of possible configurations, the 
exhaustive method is not feasible with a highly configurable 
cache. An exhaustive search of tens of thousands of 
configurations could take months or more to fully explore. 

To speed up exploration time, heuristic methods have been 
developed. Palesi et al. [18] designed an extension to the 
Platune tuning environment that used a genetic algorithm to 
speed up exploration time and produce comparable results. 
Zhang et al. [24] presents a heuristic method for tuning a 
configurable cache that searches the cache parameters in their 
order of impact on energy consumption. The heuristic 
produces a set of Pareto-optimal points trading off energy 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Configurable Cache Architecture: (a) system architecture and cache 
hierarchy used, (b) base cache bank layout for the level one caches, (c) way 
concatenation offered in level one caches, (d) way shutdown offered in 
level one caches, (e) configurable line size offered in all caches, and (f) 
configurability available for the level two cache utilizing way management. 
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consumption and performance. Ghosh et al. [11] presents a 
heuristic that, through an analytical model, directly 
determines the cache configuration based on the designers 
performance constraints. Ge et al. [9] present an algorithm 
for partitioning a fixed about of reconfigurable on-chip 
storage resources between the instruction cache and a scratch 
pad memory for energy savings averaging 30%. 

A few methods exist for tuning two levels of cache, using 
reduced configurability to maintain a manageable search 
space. Balasubramonian et al. [5] proposes a method for level 
one and level two cache reconfiguration as well as 
redistributing the cache size between the level two and level 
three caches while maintaining a conventional level one 
cache. In previous work [12], we designed an exploration 
heuristic for a configurable cache hierarchy that explores 
separate level one instruction and data caches and separate 
level two instruction and data caches. Dhodapkar et al. [7] 
present a method to dynamically monitor working set 
characteristics and infer program resource requirements for a 
multi-level cache hierarchy. On-chip profiling hardware 
calculates a certain miss penalty threshold for each 
configurable unit and a greedy tuning heuristic explores the 
design space for each unit until a configuration that meets the 
miss penalty threshold is determined. 

 

III. CONFIGURABLE CACHE ARCHITECTURE 
Fig. 1 (a) depicts our target system architecture. On-chip 

components consist of a microprocessor connected to 
separate level one instruction and data caches, each of which 
connects to a unified level two cache. The level two cache 
connects to an off-chip main memory. 

A. Level One Caches 
Fig. 1 (b) illustrates the level one configurable cache 

architecture based on the tunable cache described by Zhang 
et al. [25][26]. The base cache structure is an 8 KB cache 
consisting of four 2 KB banks where each bank acts as a 
separate way – thus the base cache is an 8 KB, 4-way set 
associative cache. Zhang provides hardware layout 
verification for the configurable cache and shows that the 
configuration circuitry does not increase the access time of 
the cache. The tunable parameters consist of cache size, line 
size, and associativity.  

Fig. 1 (c) depicts way concatenation. Special way 
configuration registers allow for banks to be logically 
concatenated thus enabling associativity configurability.  Fig. 
1 (c) shows a 2-way set associative and a direct-mapped (1-
way set associative) cache using way concatenation.  

Additionally, banks/ways may be shut down to enable 
configurable size, as depicted in Fig. 1 (d). Way shut down 
and way concatenation may be combined to offer other 
combinations of size and associativity. However, due to the 
bank layout of the cache, 2 KB 2-way or 4-way set 
associative caches and a 4 KB 4-way set associative cache 
are not possible configurations. This limitation is only 
applicable to a hardware based configurable cache. In 

simulation-based exploration, any cache configuration is 
possible.  

Fig. 1 (e) depicts the configurable line size available in 
both the level one and level two caches. The configurable 
cache consists of a base physical line size of 16 bytes and is 
configurable to 32 and 64 bytes by fetching subsequent 
blocks in memory. 

Fig. 2 shows the impact-ordered heuristic developed by 
Zhang to efficiently explore the highly configurable level one 
cache. Through experimental results, Zhang determined that 
the cache parameters should be explored in order of their 
impact on total energy, with the highest impact parameter 
explored first followed by the second highest, and so on. This 
impact ordering of parameters explores total size, followed 
by line size, and then followed by associativity. For each 
parameter, the heuristic explores the parameters values from 
smallest to largest to minimize the number of cache flushes 
in a runtime tuning environment. For each cache parameter, 
values are successively explored until there is no reduction in 
energy revealed, and thus the previous value explored 
resulted in the lowest energy consumption for that cache 
parameter. That cache parameter value becomes fixed at the 
value that revealed the lowest energy consumption. 

In later work, we extended Zhang’s heuristic to explore 
two levels of cache where the second level of cache consisted 
of separate instruction and data caches [12]. We observed 
that whereas exploring each successive parameter value as 
long as a decrease in energy is observed was sufficient for a 
single level of cache, this limited potential savings in a two 
level cache due to dependencies between the level one and 
level two caches. We improved upon the heuristic in [12] by 
fully exploring all parameter values. This simply required 
removing the else portion of the if statements in each for 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Impact-ordered heuristic for exploring level one cache parameters. 
The same heuristic is applied to both the instruction and data caches 

best_size = SMALLEST_SIZE 
best_assoc = SMALLEST_ASSOC 
best_linesize = SMALLEST_LINESIZE 
current_smallest_energy = ∞ 

foreach available_size // searching from smallest to largest 
 energy = simulate_cache ( available_size, best_assoc, best_linesize) 
 if ( energy < current_smallest_energy ) 
  current_smallest_energy = energy 
  best_size  = available_size 
 else 
  break 

foreach available_linesize // searching from smallest to largest 
 energy = simulate_cache ( best_size, best_assoc, available_linesize) 
 if ( energy < current_smallest_energy ) 
  current_smallest_energy = energy 
  best_linesize  = available_linesize 
 else 
  break 

foreach possible_assoc // searching from smallest to largest 
 energy = simulate_cache ( best_size, possible_assoc, best_linesize) 
 if ( energy < current_smallest_energy ) 
  current_smallest_energy = energy 
  best_assoc  = possible_assoc 
 else 
  break 
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loop. 

B. Level Two Cache 
The second level cache is a configurable unified cache 

quite different than the first level cache, illustrated in Fig. 1 
(f). For the second level, we utilize way management 
implemented in Motorola’s M*CORE processor [15]. In a 
way management cache, each way is a configurable way and 
may be designated as a unified way, an instruction-only way, 
a data-only way, or the way can be shut down entirely. 

C. Cache Parameter Values and Configuration Space 
For the cache parameters values, we chose values to reflect 

typical off-the-shelf embedded systems. For the level one 
cache, we explore 2, 4, and 8 KB cache sizes, 16, 32, and 64 
byte line sizes, and direct-mapped, 2-, and 4-way set 
associativities. For the level two cache, we use a 64 KB 
cache with four configurable ways and configurable line 
sizes of 16, 32, and 64 bytes. Additionally, our chosen values 
result in a wide variety of resulting best cache configurations 
across the benchmarks studied, showing that the parameter 
values utilized covers the needs of many different 
applications. However, our heuristic is not dependent on 
these values, nor on embedded applications – for desktop 
applications, larger total-size values would be appropriate. 

Our configurable cache architecture offers approximately 
18,000 different cache configurations. For each level one 
cache, there are 18 different cache configurations 
(configurable parameters are size, line size, and associativity, 
each with three possible values, minus invalid combinations). 
The second cache level has 36 unique combinations of way 
configuration for each of the three line sizes, resulting in 108 
different level two configurations. Thus, the maximum 
number of cache configurations is 40,000. However, 
restrictions reduce the number of configurations to 
approximately 18,000. For example, the second level line 
size must be greater than or equal to the largest level one line 
size.  

Due to the huge exploration space, exhaustive exploration 
to determine the optimal cache configuration for every 
benchmark for comparison with our heuristic is not feasible, 
as it would take more than a year. Even so, we generated 
optimal results for 13 selected benchmarks. For comparison 
purposes we also use a common cache configuration to act as 
a base cache configuration to show the effectiveness of our 
cache tuning heuristic in reducing energy. The base cache 
configuration consists of an 8 Kbyte 4-way set associative 
cache with a 32 byte line size for the level one caches and a 
64 Kbyte fully unified cache with a 64 byte line size for the 
level two cache – a reasonably common configuration. 

 

IV. TUNING HEURISTICS 
For our configurable cache hierarchy, the full 

configuration space consists of nearly 18,000 different 
configurations. Even if the time to explore one configuration 
only took only half a second, exploring all configurations for 

a benchmark would still take half an hour – clearly not 
feasible for a dynamic tuning method. If exploring each 
configuration took five minutes (a typical runtime for a 
simulation-based tuning approach on contemporary 
workstations), it would take 63 days to exhaustively explore 
the search space for a single benchmark. We sought to 
develop a tuning heuristic to efficiently explore a small 
portion of the search space and produce good energy savings 
over the base cache configuration. We considered two 
possible heuristics, which we now describe.  

A. Sequential Exploration with Ratio Projection - SERP 
A simple tuning heuristic for two-level caches ignores all 

tuning dependency between the level one instruction and data 
caches and the level one and level two caches, and 
sequentially explores the two levels, first tuning level one, 
then level two. As previous tuning methods don’t consider a 
unified cache, we first developed a sequential heuristic for 
two level caches, providing a close comparison to current 
methods, and illustrating the need to fully explore the tuning 
dependencies. Fig. 3 summarizes are our first heuristic 
sequential exploration with ratio projection (SERP). 

For level one exploration, SERP utilizes the impact 
ordering of parameters and exploration ordering of parameter 
values including full parameter exploration as described in 
section III.A.  

For the level two cache, SERP must also consider that the 
cache offers way management. Thus, not only must the 
heuristic determine the total size, line size, and associativity, 
but the heuristic must also determine how many ways will be 
for data, how many for instructions, how many for both 
instructions and data, and how many will be shut down. For 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  Sequential exploration with ratio projection (SERP) heuristic. (…) 
in function calls passes all other necessary cache parameter values 

best_L1_I_size = SMALLEST_L1_SIZE 
best_L1_D_size = SMALLEST_L1_SIZE 
best_L1_I_assoc = SMALLEST_L1_ASSOC 
best_L1_D_assoc = SMALLEST_L1_ASSOC 
best_L1_I_linesize = SMALLEST_L1_LINESIZE 
best_L1_D_linesize = SMALLEST_L1_LINESIZE 
best_L2_linesize = SMALLEST_L2_LINESIZE 
L2_way_configuration = UEEE   // one unified way and 3 ways shutdown 
current_smallest_energy = ∞ 
 
// explore_L1_cache function calls the impact-ordered heuristic outlined  
// in Fig. 2 
explore_L1_cache ( ICACHE, &best_L1_I_size, &best_L1_I_assoc, 
  &best_L1_I_linesize, &best_L2_linesize, 

&current_smallest_energy, … ) 
explore_L1_cache ( DCACHE, &best_L1_D_size, &best_L1_D_assoc, 
  &best_L1_D_linesize, &best_L2_linesize, 

&current_smallest_energy, … ) 
 
// searching from smallest to largest – ensure L2 line size is greater than  
// L1 line sizes 
foreach available_L2_linesize  
 energy = simulate_cache ( available_L2_linesize, …  ) 
 if ( energy < current_smallest_energy ) 
  current_smallest_energy = energy 
  best_L2_linesize  = available_L2_linesize 
  
// explore L2 cache using ratio projection outlined in Fig. 4 
ratio_projection ( &L2_way_configuration, &current_smallest_energy ) 
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unified level two cache exploration, we initially developed 
the ratio projection portion of SERP. 

The ratio projection method, illustrated in Fig. 4, projects 
the number of necessary instruction and data ways needed for 
the best cache configuration. During level two cache 
exploration, SERP executes 6 different configurations to 
gather information on the instruction and data caching 
requirements of the level two cache. To explore an 
application’s instruction caching needs, SERP sets the level 
two cache to have one data way and adds instructions ways 
one at a time (Fig. 4 (a)). The lowest energy configuration 
suggests the ideal number of instruction ways needed in the 
level two cache. Similarly, SERP determines the ideal 
number of data ways. Ratio projection then combines the 
ideal number of instruction and data ways to determine the 
ideal level two way designations. Simply adding the number 
of ways could exceed the available number of ways in the 
level two cache. In the situation where the ideal number of 
ways exceeds the number of ways in the level two cache, 
ratio projection must carefully combine the instruction and 
data ways to keep the ratio of instruction to data ways as 
close to the ideal as possible while meeting the constraints of 
the level two cache. Keeping the ratio in mind will allow for 
the more important way type (the way designation 
(instruction or data) with the larger number of ideal ways) to 
be allocated more ways in the final level two configuration.  

There are two situations that may occur during ratio 
projection. The first situation occurs when both the 
instructions and data are equally important in the level two 
cache – the number of ideal ways is equal.  In this case, we 
use way reduction and simply remove 1 data and 1 
instruction way at a time until the combined number of ways 
is less than the total number of ways available in the level 
two cache. For example, ratio projection might determine the 
ideal number of instruction and data ways to be 3 and 3, 
respectively. Given only four available ways, ratio projection 
would allocate 2 instruction and 2 data ways, thus 
maintaining the same ratio of instruction to data ways.  

The second situation occurs when one way designation 
(instruction or data) is more important than the other – the 
ideal number of ways is different. In this case, we cannot 
simply use way reduction to remove 1 data and 1 instruction 
way until the combined number of ways is less than the total 

number of available level two ways. This reduction may lead 
to undesignated ways. For example, if the ideal number of 
instruction ways is 2 and the ideal number of data ways is 3, 
removing 1 way of each type would result in the level two 
cache having 1 instruction way, 1 data way, and 1 way shut 
down. Additionally, in level two cache configurations 
offering more than 4 total ways, this method may cause 
either instructions or data not to have any level two 
designations. This situation may occur if there were 8 
available level two ways and the ideal number of instruction 
and data ways are 1 and 8 respectively. We could 
alternatively only remove 1 data way or 1 instruction way, 
but this would not maintain the ideal ratio of instruction to 
data ways and choosing which way to remove becomes 
arbitrary. To resolve this situation, we use way unification 
(illustrated in Fig. 4 (c)) to determine our final level two way 
designations. Instead of completely removing 1 instruction 
and 1 data way, we unify an instruction way with a data way, 
reducing the total number of required ways by 1. We 
continue to make this reduction with unification until the 
combined number of ways is less than the total number of 
ways available in the level two cache. 

Through extensive experimentation, we observed that the 
SERP produced substandard results for many benchmarks. 
Although the heuristic resulted in a 37% decrease in energy 
consumption over the base cache configuration, for a few 
examples the energy consumption increased. Given the 
vastly increased configuration space over previous methods, 
we had expected to see significant additional energy savings, 
when in fact, SERP revealed less energy savings than 
previous methods. Previous methods with separate level one 
and level two caches showed 53% energy savings on average 
[12]. Clearly, a simple adaptation of current methods does 
not sufficiently explore tuning dependencies.  

B. Alternating Cache Exploration with Additive Way 
Tuning – ACE-AWT 

The poor results of the first heuristic substantiate the 
hypothesis that precise exploration with regards to tuning 
dependencies is necessary. Exploring the level one cache 
separately from the level two cache naively ignores the 
dependency that exists between the two levels via the level 
two unified cache. For example, altering a parameter in the 
level one instruction cache changes the effectiveness of the 

 
 
 
 
 
 
 
 
 
 
Fig. 4.  Ratio projection for level two cache way exploration showing a sample reduction with way unification. 
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level two cache by changing the quantity of level two fetches 
and the addresses fetched. Also, the change in level two 
utilization by instructions affects the level one data cache by 
changing the contention among instructions and data in the 
shared level two cache.  

In [12], we similarly concluded the importance of tuning 
both cache levels together (though instruction and data were 
separate in that work), and we thus designed the interlaced 
exploration method. Instead of fully exploring the level one 
cache and then proceeding to the level two cache, the 
interlaced method explores one parameter for the level one 
cache and then that parameter for the level two cache, before 
proceeding to explore the next parameter. However, that 
interlaced method only addressed the dependency between 
separate level one and level two caches, and not the 
dependency between the level one instruction and data 
caches. We further explore the level one dependencies in 
section V.C. Additionally, the interlaced method cannot be 
easily adapted to a unified cache featuring way management. 

For level two exploration, way management makes 
interlaced exploration of the cache levels difficult because of 
the dependency between size and associativity exploration. 
To change the size, either a way is added or removed from 
the cache. However, the added or removed way is either a 
unified, data, or instruction way, additionally affecting the 
associativity. Similarly, when changing the cache’s 
associativity, a way is either added or removed which also 
changes the size of the cache as well. This dependency 
complicates the exploration of the level two cache, since we 
can’t just explore either associativity or size alone.  

To overcome the difficulty arising in interlaced 
exploration and to extend the interlaced heuristic to address 
level one instruction and data cache dependencies, we 
introduce the alternating cache exploration with additive way 
tuning heuristic for level two cache exploration (ACE-AWT) 
and is illustrated in Fig. 5. For each cache parameter, the 
ACE-AWT heuristic first tunes the level one instruction 
cache, then the level one data cache, followed by additive 
way tuning for the level two cache. The first phase of 
additive way tuning, illustrated in Fig. 6 (a), adds ways one at 
a time and chooses the next way to add based on what type of 
added way resulted in the lowest energy cache configuration. 
Additive way tuning starts by adding one way to the level 
two cache, and then explores three candidate configurations – 
a single instruction, data, or unified way. The heuristic 
chooses the lowest-energy configuration, and then adds 
another way to the level two cache, again trying an 
instruction, data, or unified way. This additive method of 
increasing the cache size and associativity continues until the 
level two cache is full or until there is no longer a decrease in 
energy consumption. This phase of additive way tuning is 
done when the level two cache size is explored. 

Alternating level exploration with a unified second level of 
cache increases the difficulty of exploring the line size. The 
line size of the level two cache must always be equal or 
greater than the line sizes of both of the level one instruction 
and data caches. To allow for level one line size exploration, 

our heuristic increases the level two line size while 
increasing the level one line size. After determining level one 
line sizes, the ACE-AWT heuristic explores remaining larger 
level two line sizes. 

During associativity exploration, Fig. 6 (b) illustrates the 
final tuning step applied to fine tune the cache configuration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  Alternating cache exploration with additive way tuning (ACE-
AWT) heuristic. (…) in function calls passes all other necessary cache 
parameter values 

best_L1_I_size = SMALLEST_L1_SIZE 
best_L1_D_size = SMALLEST_L1_SIZE 
best_L1_I_assoc = SMALLEST_L1_ASSOC 
best_L1_D_assoc = SMALLEST_L1_ASSOC 
best_L1_I_linesize = SMALLEST_L1_LINESIZE 
best_L1_D_linesize = SMALLEST_L1_LINESIZE 
best_L2_linesize = SMALLEST_L2_LINESIZE 
L2_way_configuration = UEEE   // one unified way and 3 ways shutdown 
current_smallest_energy = ∞ 

// explore L1 I size 
foreach available_size // searching from smallest to largest 
 energy = simulate_cache ( available_size, … ) 
 if ( energy < current_smallest_energy ) 
  current_smallest_energy = energy 
  best_L1_I_size  = available_size 

// explore L1 D size 
foreach available_size // searching from smallest to largest 
 energy = simulate_cache ( available_size, … ) 
 if ( energy < current_smallest_energy ) 
  current_smallest_energy = energy 
  best_L1_D_size  = available_size 

// ACE-AWT first phase - explore L2 size outlined in Fig. 6(a) 
ACE-AWT_first_phase ( &L2_way_configuration,  
         &current_smallest_energy, … ) 

// explore L1 I line size 
foreach available_linesize // searching from smallest to largest 
 energy = simulate_cache ( available_linesize, … ) 
 if ( energy < current_smallest_energy ) 
  current_smallest_energy = energy 
  best_L1_I_linesize  = available_linesize 

// explore L1 D line size 
foreach available_linesize // searching from smallest to largest 
 energy = simulate_cache ( available_linesize, … ) 
 if ( energy < current_smallest_energy ) 
  current_smallest_energy = energy 
  best_L1_D_linesize  = available_linesize 

// explore L2 line size – ensure L2 line size is greater than L1 line sizes 
foreach available_linesize // searching from smallest to largest 
 energy = simulate_cache ( available_linesize, … ) 
 if ( energy < current_smallest_energy ) 
  current_smallest_energy = energy 
  best_L2_linesize  = available_linesize 

// explore L1 I assoc 
foreach available_assoc // searching from smallest to largest 
 energy = simulate_cache ( available_assoc, … ) 
 if ( energy < current_smallest_energy ) 
  current_smallest_energy = energy 
  best_L1_I_assoc  = available_assoc 

// explore L1 D assoc 
foreach available_assoc // searching from smallest to largest 
 energy = simulate_cache ( available_assoc, … ) 
 if ( energy < current_smallest_energy ) 
  current_smallest_energy = energy 
  best_L1_D_assoc  = available_assoc 

//ACE-AWT fine tuning phase – explore L2 size outlined in Fig. 6(b)  
ACE-AWT_fine_tuning_phase ( &L2_way_configuration,  
   &current_smallest_energy, … ) 
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The ACE-AWT heuristic adjusts ways to hone in on the best 
cache configuration by attempting to add and/or remove 
ways. First, the heuristic tries to increase the number of ways 
by adding either an instruction, data, or unified way one at a 
time. If the cache size is full, the heuristic skips the 
enlargement step. The heuristic then explores decreasing the 
size of the cache by removing an instruction, data, or unified 
way one at a time. If removing a way causes the cache to be 
empty, the heuristic ignores the reduction step. The lowest 
energy cache configuration is chosen if it consumes less 
energy than the current cache configuration. This tuning step 
is continued until there is no improvement in energy 
consumption or there is no previously unexplored 
configuration to explore.  

Since the fine-tuning phase iteratively adds and removes 
ways, this results in identical cache configurations being 
explored during different iterations of the fine-tuning phase. 
To eliminate redundant exploration of previously explored 
cache configurations, we record each cache configuration 
explored. However, in the worst case, the ACE-AWT 
heuristic may explore 88 cache configurations.  

 

V. RESULTS 

A. Experimental Setup 
We applied each heuristic to 16 benchmarks from the 

EEMBC benchmark suite [8], 12 benchmarks from the 
Powerstone benchmark suite [15], and 6 benchmarks from 
the MediaBench benchmark suite [14]. These benchmarks 
are all embedded system benchmarks and thus suitable for 
the configurable cache parameter values we examined. We 
stress that we could also run desktop benchmarks using 
suitable cache parameter values, and we are doing so for 
related and future work. 

We determine energy consumption for a cache 
configuration for both static and dynamic energy using the 
following model: 

 
total_energy = static_energy + dynamic_energy 

dynamic_energy = cache_hits * hit_energy + 
cache_misses * miss_energy 

miss_energy = offchip_access_energy +miss_cycles * 

CPU_stall_energy + cache_fill_energy 
miss_cycles = cache_misses * miss_latency + 

(cache_misses * (linesize/16)  * memory_bandwidth) 
static_energy = total_cycles * static_energy_per_cycle 

static_energy_per_cycle = energy_per_Kbyte * 
cache_size_in_Kbytes 

energy_per_Kbyte = ((dynamic_energy_of_base_cache * 
10%) / base_cache_size_in_Kbytes) 

 
We used Cacti [19] to determine the dynamic energy 

consumed by each cache fetch for each cache configuration 
using 0.18-micron technology. We used SimpleScalar [6] to 
measure cache hits and cache misses for each cache 
configuration. Miss energy determination is quite difficult 
because it depends on the off-chip access energy and the 
CPU stall energy which are highly dependent on the actual 
system configuration used. We could have chosen a 
particular system configuration and obtained hard values for 
the CPU_stall_energy however, our results would only apply 
to one particular system configuration. Instead, we examined 
the stall energy for several microprocessors and estimate the 
CPU_stall_energy to be 20% of the active energy of the 
microprocessor for this study. We obtain the 
offchip_access_energy from a standard low-power Samsung 
memory. To obtain miss cycles, the miss latency and 
bandwidth of the system is required. For miss penalties and 
throughput for both cache levels, we estimate ratios typical 
for an embedded system. We assume a level two fetch is four 
times slower than a level one fetch, and a main memory fetch 
is twenty times slower than a level two fetch. We assume 
memory throughput is 10% of the latency, meaning blocks 
fetched after the first block take 10% of the latency of the 
first block fetched. In previous work [12], we showed that 
cache tuning heuristics remain valid across different 
configurations of miss latency and bandwidth. We determine 
the static energy per Kbyte as 10% of the dynamic energy of 
the base cache divided by the base cache size in Kbytes. In 
section 0, we explore the impact of increasing static energy 
consumption on cache configuration heuristics. 

We modified SimpleScalar to simulate way management 
in the level two cache and to determine cache hit and miss 
values for each cache configuration. We ran exploration 
scripts that applied each heuristic to every benchmark. 

 

 

 

 

 

 

 

 

 
Fig. 6.  Additive way tuning for level two cache way exploration for the (a) first phase and (b) the fine tuning phase. 
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B. Energy Consumption and Performance 
Fig. 7 shows the energy consumption for all benchmarks 

for both tuning heuristics and the optimal cache configuration 
for 13 benchmarks. Energy consumption for each 
configuration is normalized to the energy consumption of the 
base cache for that benchmark. Fig. 7 shows that while SERP 
achieved average energy savings of 37%, the energy 
consumption actually increased for two benchmarks. The 
ACE-AWT heuristic improves greatly over SERP showing 
energy savings of 61% averaged over all benchmarks. For the 
13 benchmarks where the optimal cache configuration is 
known, ACE-AWT either finds the optimal cache 
configuration or determines a cache configuration that is very 
near the optimal. ACE-AWT achieves these energy savings 
by exploring only 34 unique configurations on average over 
all benchmarks – a mere 0.2% of the total search space. 

As well as showing good energy savings across all 
benchmarks, we examine the performance impact of the 
ACE-AWT heuristic. Fig. 8 shows the execution time of each 
benchmark for the ACE-AWT heuristic normalized to the 
execution time for the base cache configuration. On average, 
the ACE-AWT heuristic, while tuning solely for energy, 
achieves a 9% performance improvement. Each benchmark 
either shows an improvement in performance or a very 
minute decrease in performance. We found that this 
improvement is due to tuning the line size to the locality 
needs of the application [12].  

To ensure that the energy savings obtained with ACE-
AWT are not inflated due to choosing a base cache 
configuration that consumes a large amount of energy, we 
examined the energy savings obtained by ACE-AWT 

compared to the highest energy consuming cache. Fig. 9 
shows the energy consumption of the ACE-AWT 
configuration normalized to the worst energy consuming 
cache for each benchmark that we exhaustively explored. 
ACE-AWT achieves average energy savings of 94% when 
compared to the worst energy configuration. Thus, an 
average energy savings of 61% compared to a base cache 
configuration does not unnecessarily inflate our results.  

Additionally, Fig. 10 shows the execution time of the 
ACE-AWT configuration normalized to the execution time 
of the best performing cache for each benchmark. Excluding 
the CACHEB01 benchmark, the ACE-AWT configuration 
increases execution time by at most only 5% compared to the 
best performing cache. 

C. Level One Instruction and Data Cache Dependencies 
During interlacing, the ACE-AWT heuristic explores the 

level one instruction parameter followed by the level one 
data parameter. Due to the dependencies between the level 

  

 

 

 

 

 

 
 
 
Fig. 7.  Energy consumption normalized to the base cache configuration for both cache exploration heuristics and the optimal cache configuration.  

 
 
 
 
 
 
 
 
 
Fig. 8.  Execution time normalized to the base cache configuration for both exploration heuristics and the optimal cache configuration 

 
 
 
 
 
 
 
 

 

Fig. 9.  Energy consumption of the ACE-AWT configuration normalized to 
the worst energy consuming cache for each benchmark. 
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one caches via the level two cache, this ordering of 
instruction exploration before data exploration can impact the 
results.  

Fig. 11 shows the impact that this ordering has on the 
potential energy savings and performance benefits revealed 
by the ACE-AWT heuristic. Fig. 11 (a) shows the energy 
consumption normalized to the base cache configuration for 
the ACE-AWT heuristic both exploring the instruction 
parameter before the data parameter and the data parameter 
before the instruction parameter. On average, both methods 
achieve 61% energy savings. In 14 benchmarks, exploring 
the instruction parameter before the data parameter either 
produced identical or better savings that exploring the data 
parameter before the instruction parameter. In 20 
benchmarks, exploring the data parameter before the 
instruction parameter produced better savings. In a few 
benchmarks, the difference in savings is quite large, 
however, no one method consistently outperformed the other 
by a large amount. 

Fig. 11 (b) shows the execution time normalized to the 
base cache configuration for the ACE-AWT heuristic for 
both orderings of exploration showing large differences 
between the two methods. On average, exploring the 
instruction parameter first yields a 9% reduction in execution 
time, while exploring the data parameter first increases the 
average execution time by 3%. Studying the benchmarks 
more closely reveals that only 9 benchmarks perform better 
when the data parameter is explored first and in the cases 
where one method significantly outperforms the other, 
exploring the instruction parameter first consistently 
performed better. 

Taking into consideration both energy savings and 
performance benefits, we conclude that on average, the 
instruction parameter should be explored before the data 
parameter. However, since the ACE-AWT heuristic explores 
a very small number of configurations and if energy savings 
is paramount to performance, it would be feasible to apply 
the heuristic twice, once exploring the instruction parameter 
first and once exploring the data parameter first, and then 
choosing the lowest energy of the two configurations.  

D. Cache Configurations 
TABLE I shows the cache configurations chosen by both 

exploration heuristics and the optimal energy cache. In the 
cases where the optimal energy cache is known. We point out 
that the ACE-AWT does not necessarily find the optimal 
energy cache even though the energy savings may be appear 
identical in Fig. 7. In a design space consisting of 18,000 
configurations, there is one configuration with the lowest 
energy consumption and there are a number of configurations 

 
 
 
 
 
 
 
 
 
Fig. 10.  Execution time of the ACE-AWT configuration normalized to the 
execution time of the best performance configuration for each benchmark. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11.  Energy consumption (a) and execution time (b) normalized to the base cache configuration for the ACE-AWT heuristic comparing interlacing 
methods that explore the data parameter before the instruction parameter and the instruction parameter before the data parameter 
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that nearly achieve the optimal energy savings.   
As expected, the heuristic configurations and the optimal 

cache configurations vary greatly across all benchmarks. 
However, we observe a common trend in level two 
configurations. Due to the statistically higher miss rates in 
level one data caches compared to level one instruction 
caches, the level two cache tends to devote more ways to 
caching data than caching instructions. In future work, this 
observation could be exploited to further refine the ACE-
AWT fine tuning phase. 

E. Comparing to Previous Heuristics 
We compare both SERP and AWE-ACT to previous state-

of-the-art heuristics for configuration a single level of cache 
[25] and two levels of cache with separate instruction and 
data caches for the second level [12]. Fig. 12 shows energy 
consumption normalized to the base cache configuration for 
each heuristic. On average, heuristics for a single level of 
cache, a two level cache with separate second level caches, 
and SERP perform nearly the same with average energy 
savings of nearly 40%. Looking at individual benchmarks, 
we see varying behavior for these three heuristics with SERP 

TABLE I 
CACHE CONFIGURATIONS CHOSEN BY BOTH EXPLORATION HEURISTICS AND THE OPTIMAL ENERGY CACHE. THE LEVEL ONE INSTRUCTION (IL1), LEVEL ONE DATA 

(DL1), AND LEVEL TWO UNIFIED (UL2) CACHE CONFIGURATIONS ARE LISTED AS THE TOTAL SIZE IN KBYTES (2, 4, OR 8 K) FOLLOWED BY THE ASSOCIATIVITY (1, 2, 
OR 4 WAY (W)) FOLLOWED BY THE LINE SIZE IN BYTES. THE LEVEL TWO CACHE WAY DESIGNATIONS ARE SPECIFIED AS INSTRUCTION (I), DATA (D), UNIFIED (U), 

OR SHUT-DOWN (E – EMPTY). 

 
 
 
 
 
 
 
 
 
Fig. 12.  Energy consumption of various heuristic configurations normalized to the base cache configuration for each heuristics base cache hierarchy. 

Benchmark SERP ACE-AWT Optimal Energy 
A2TIME01 il1_8k1w64_dl1_4k1w16_ul2_32k4w64_DIUU il1_8k1w32_dl1_2k1w16_ul2_32k4w32_DDEI il1_8k1w64_dl1_4k1w16_ul2_24k3w64_DDEU 
CACHEB01 il1_8k1w64_dl1_8k1w16_ul2_32k4w64_DIUU il1_8k1w16_dl1_8k1w16_ul2_32k4w16_DDEU il1_8k1w16_dl1_8k1w16_ul2_24k3w16_DDEU 
CANRDR01 il1_4k1w64_dl1_8k1w16_ul2_32k4w64_DIUU il1_4k1w32_dl1_8k1w16_ul2_32k4w32_DDEU il1_4k1w32_dl1_8k1w16_ul2_24k3w32_DDEU 
IIRFLT01 il1_2k1w64_dl1_4k1w32_ul2_32k4w64_DDDI il1_8k1w16_dl1_4k1w16_ul2_32k4w16_EEEU  
MATRIX01 il1_2k1w32_dl1_8k1w16_ul2_32k4w32_DIUU il1_2k1w16_dl1_8k1w16_ul2_32k4w16_DEUU il1_2k1w16_dl1_8k1w16_ul2_24k3w16_DEUU 
PUWMOD01 il1_4k1w64_dl1_2k1w16_ul2_32k4w64_DIUU il1_4k1w32_dl1_8k1w16_ul2_32k4w32_DDEU il1_4k1w64_dl1_8k1w64_ul2_24k3w64_DDEU 
RSPEED01 il1_4k1w64_dl1_4k1w16_ul2_32k4w64_DIUU il1_4k1w32_dl1_4k1w16_ul2_32k4w32_DDEU il1_4k1w32_dl1_4k1w16_ul2_24k3w32_DDEU 
TBLOOK01 il1_4k1w64_dl1_8k1w16_ul2_32k4w64_DIUU il1_4k1w32_dl1_8k1w16_ul2_32k4w32_DDEU il1_4k1w32_dl1_8k1w16_ul2_24k3w32_DDEU 
AIFFTR01 il1_2k1w32_dl1_8k1w16_ul2_32k4w32_DIUU il1_2k1w16_dl1_8k1w16_ul2_32k4w16_DEUU il1_2k1w16_dl1_8k1w16_ul2_24k3w16_DEUU 
AIIFFT01 il1_2k1w32_dl1_8k1w16_ul2_32k4w32_DIUU il1_2k1w16_dl1_8k1w16_ul2_32k4w16_DEIU  
AIFIRF01 il1_4k1w64_dl1_4k1w32_ul2_32k4w64_DIUU il1_4k1w64_dl1_2k1w16_ul2_32k4w64_DDEI  
BITMNP01 il1_8k1w64_dl1_4k1w16_ul2_32k4w64_DIUU il1_8k1w16_dl1_4k1w16_ul2_32k4w16_DEII  
IDCTRN01 il1_2k1w32_dl1_4k1w16_ul2_32k4w32_DIIU il1_2k1w32_dl1_4k1w16_ul2_32k4w32_DEIU  
PNTRCH01 il1_2k1w32_dl1_8k1w16_ul2_32k4w32_DIUU il1_2k1w32_dl1_4k1w16_ul2_32k4w32_DDEU  
TTSPRK01 il1_8k1w32_dl1_8k1w16_ul2_32k4w32_DIUU il1_8k1w16_dl1_8k1w16_ul2_32k4w16_DDEU  
BaseFP01 il1_4k1w64_dl1_2k1w16_ul2_32k4w64_DIUU il1_4k1w32_dl1_2k1w16_ul2_32k4w32_DDEU  
bcnt il1_2k1w64_dl1_2k1w64_ul2_32k4w64_DIUU il1_2k1w32_dl1_2k1w64_ul2_32k4w64_DDEU il1_2k1w32_dl1_2k1w64_ul2_24k3w64_DDEU 
bilv il1_4k1w64_dl1_2k1w64_ul2_32k4w64_DIUU il1_4k1w64_dl1_2k1w64_ul2_32k4w64_DDEU il1_4k1w64_dl1_2k1w64_ul2_24k3w64_DDEU 
binary il1_2k1w32_dl1_2k1w64_ul2_32k4w64_DIUU il1_2k1w32_dl1_8k1w32_ul2_32k4w32_DEIU il1_2k1w16_dl1_2k1w16_ul2_24k3w16_DDEI 
blit il1_2k1w64_dl1_2k1w16_ul2_32k4w64_DIUU il1_2k1w32_dl1_8k1w16_ul2_32k4w64_DDEU il1_2k1w32_dl1_8k1w16_ul2_24k3w32_DDEU 
brev il1_4k1w64_dl1_2k1w64_ul2_32k4w64_DIUU il1_4k1w64_dl1_2k1w32_ul2_32k4w64_DDEI il1_4k1w64_dl1_2k1w64_ul2_24k3w64_DDEU 
epic il1_2k1w16_dl1_8k1w16_ul2_32k4w16_DIUU il1_2k1w16_dl1_8k1w16_ul2_32k4w16_DDEU  
fir il1_4k1w32_dl1_2k1w64_ul2_32k4w64_DDDI il1_8k1w16_dl1_8k1w16_ul2_32k4w16_DDEU  
g3fax il1_4k1w64_dl1_2k1w16_ul2_32k4w64_DIUU il1_4k1w64_dl1_2k1w16_ul2_32k4w64_DDEI  
jpeg il1_8k1w32_dl1_8k1w16_ul2_32k4w32_DDDI il1_8k1w16_dl1_8k1w16_ul2_32k4w16_DDEU  
matmul il1_2k1w16_dl1_2k1w64_ul2_32k4w64_DEEI il1_2k1w16_dl1_8k2w16_ul2_32k4w16_DDEU  
mpeg2 il1_4k1w32_dl1_4k1w16_ul2_32k4w32_DIUU il1_4k1w16_dl1_4k2w16_ul2_32k4w16_DDEU  
pocsag il1_8k1w64_dl1_4k1w64_ul2_32k4w64_DIUU il1_8k1w16_dl1_8k1w16_ul2_32k4w16_DEIU  
ps-jpeg il1_4k1w64_dl1_2k1w16_ul2_32k4w64_DIIU il1_4k1w16_dl1_2k1w16_ul2_32k4w16_DEIU  
ucbqsort il1_4k1w64_dl1_4k1w64_ul2_32k4w64_DIUU il1_2k1w16_dl1_2k1w16_ul2_32k4w16_DEIU  
v42 il1_8k1w64_dl1_8k1w16_ul2_32k4w64_DIUU il1_8k1w32_dl1_4k1w16_ul2_32k4w32_DDEU  
pegwit il1_8k1w64_dl1_8k1w16_ul2_32k4w64_DDDI il1_8k1w16_dl1_4k2w16_ul2_32k4w16_EEEU  
g721 il1_8k1w16_dl1_2k1w16_ul2_32k4w16_DDDI il1_8k1w16_dl1_2k1w16_ul2_32k4w16_EEEU  
rawcaudio il1_2k1w64_dl1_2k1w16_ul2_32k4w64_DIUU il1_2k1w16_dl1_2k1w16_ul2_32k4w16_DDEI  
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outperforming both previous cache tuning heuristics in half 
of the benchmarks. However, ACE-AWT consistently 
outperforms both previous heuristics in all benchmarks. 

TABLE II compares the number of cache configurations 
explored by SERP and ACE-AWT to previous methods. The 
heuristic for a single level of cache only explores 9.8 
configurations on average and results in the same average 
energy savings as both the two level/separate and SERP 
heuristics. When comparing SERP with two-level/separate, 
SERP achieves the same average energy savings and 
explores four fewer cache configurations. ACE-AWT 
explores 33.7 configurations on average, 3.4 times that of the 
single level cache, but achieves 61% energy savings as 
compared to only 40% energy savings. 

F. Static Energy for Future Trends 
For the results presented in section B, we assumed static 

energy accounted for 10% of the total energy consumption of 
the cache. However, static energy becomes a greater factor in 
total energy consumption as technology pushes further in to 
deep sub-micron feature sizes, and it is interesting to 
investigate the fidelity of cache configuration. We explored 
systems where static energy accounted for 15%, 20%, 25%, 
and, for possible farther distant technologies, 50% of the total 
energy consumption of the cache.  

TABLE III shows the average energy consumption 
normalized to the base cache configuration averaged across 
all benchmarks for the heuristics studied. Energy 
consumptions that show energy savings are highlighted in 
bold. The ACE-AWT heuristic shows very good fidelity with 
increasing static energy consumption.  

Both heuristics show the same trend – as the percentage of 
static energy consumption increases, the cache tuning 
heuristics are revealing greater energy savings. This trend is 
expected since cache tuning improves performance and thus 
eliminates costly idle cycles while waiting for fetches from a 
higher level of the cache hierarchy. Going from 10% to 50% 
static energy contribution, SERP revealed an additional 34% 
energy savings and the ACE-AWT heuristic showed an 
additional 40% energy savings.  

The additional energy savings due to increased static 
power consumption can also soften the poor performance of 
inadequate tuning heuristics. TABLE III shows that for 50% 
static energy consumption, sequential exploration with ratio 
projection actually shows an average energy savings of 18% 
as opposed to the 24% increase in energy observed with the 
10% static energy consumption. Whereas a tuning heuristic 
with an average energy savings of 24% is hardly a good 
heuristic compared to the ACE-AWT heuristic, this trend 
does suggest that tuning methodologies deemed as 
unsuccessful with today’s technology may seem more 

attractive as new technologies are revealed. 
 

VI. TUNING ENVIRONMENTS 
The ACE-AWT heuristic is primarily intended for use as a 

runtime optimization method for either desktop environments 
or embedded systems. However, the ACE-AWT heuristic is 
quite flexible and is easily applicable to all tuning 
environments such as a simulation-based configuration 
exploration or a hardware prototyping platform, as described 
in this section 

The ACE-AWT heuristic is highly suitable for a dynamic 
runtime tuning environment for desktop environments or 
embedded systems. Zhang et al. [26] shows that level one 
cache tuning is feasible during runtime and the level one 
tuning in our work is based on Zhang’s tuning heuristic. 
Zhang shows that the actual tuning hardware adds very little 
area overhead. Zhang also explores the cache parameters 
such that cache flushing is minimized. However, for the 
cache flushing that does happen, we observe that flushing is 
very infrequent compared to the long run time needed to 
determine stabilized hit and miss rates for each cache 
configuration. Our level two configurable cache is based on 
the Motorola M*CORE processor which did not have any 
overhead.  

Because the ACE-AWT heuristic is a feasible dynamic 
runtime tuning heuristic, the tuning heuristic becomes more 
flexible to operating environments. The ACE-AWT heuristic 
can be used to determine one low energy cache configuration 
to use throughout the entire run of an application by tuning 
once during startup. However, phase changes in applications 
suggest that different cache configurations are more 
appropriate for different execution phases of an application 
[16][21]. To better accommodate a single application 
environment with multiple phase changes, the tuning 
hardware could monitor the miss rates. When the miss rate 
exceeds a given threshold, the tuning hardware would 
reconfigure the cache for the new execution phase. To reduce 
tuning time, the heuristic cache configuration is saved and 
restored when the application reaches that execution phase 
again instead of rerunning the entire heuristic. Additionally, 
the ACE-AWT heuristic is suitable for a multi-application 
environment with an operating system. The tuning hardware 
would run each time an application swap occurs and, as with 
the application phase tuning, cache configurations are saved 
and restored to eliminate retuning when returning to a 
previously executed application. The minimization of the 
overhead incurred by runtime phase-based cache tuning and 

TABLE II 
NUMBER OF CONFIGURATIONS EXPLORED FOR VARIOUS CACHE TUNING 

HEURISTICS. 

TABLE III 
ENERGY CONSUMPTION NORMALIZED TO THE BASE CACHE CONFIGURATION 

AVERAGED ACROSS ALL BENCHMARKS FOR DIFFERENT STATIC ENERGY 
CONSUMPTION. ENERGY SAVINGS ARE SHOWN IN BOLD. 

 

 

 

 

 SERP ACE-AWT 
10% Static Energy 1.24 0.38 
15% Static Energy 1.18 0.37 
20% Static Energy 1.10 0.33 
25% Static Energy 1.05 0.32 
50% Static Energy 0.82 0.23 

 

 Single 
level/Separate 

Two 
level/Separate 

SERP ACE-AWT 

range 7-13 28-28 22-24 23-41 
average 9.8 28 23.8 33.7 
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the implementation details are the focus of our future work. 
In a hardware prototyping environment, two prototyping 

options exist - a full hardware prototyping environment and a 
platform assisted hardware prototyping environment. The full 
hardware prototyping environment consists of all tuning 
components implemented in hardware on the prototyping 
board. The tuning hardware would apply the ACE-AWT 
heuristic by running each cache configuration and measuring 
the hit and miss rates. Designer-provided energy annotations 
would guide the cache tuner to determine the next cache 
configuration to try. After completion of the heuristic, the 
best cache configuration can be reported to the designer. A 
platform-assisted hardware prototyping environment couples 
a tunable platform with a PC to drive the tuning heuristic. 
The PC configures the platform for the configuration to try 
and then reads the hit and miss rates after a sufficiently long 
run of the application. The PC uses the cache hit and miss 
rates to drive the ACE-AWT heuristic and configure the 
platform for the next configuration to try.  

In a simulation-based approach, application of the ACE-
AWT heuristic is similar to the experimental environment set 
up for the results presented in this paper. Energy 
consumption estimates of cache and memory accesses are 
used to annotate the exploration heuristic. An exploration 
script is used in conjunction with a cache simulator to drive 
the heuristic. In addition to using a simulation approach for 
embedded systems, the simulation approach could also be 
used for profiling desktop computing environments. 

Furthermore, the ACE-AWT heuristic is applicable in 
environments with other tunable parameters such as bus 
configuration and hardware/software partitioning by 
specifying a scheduling order for the configuration of the 
tunable parameters.  

 

VII. CONCLUSIONS AND FUTURE WORK 
We have presented an efficient method for cache hierarchy 

tuning for a highly configurable cache with a very large 
design space. The heuristic is designed to efficiently and 
accurately tune the level one and level two caches in a 
system during runtime but is also applicable to a hardware 
prototyping environment and a desktop simulation cache 
exploration environment. Our heuristic determines a cache 
configuration that consumes on average 61% less energy than 
a base cache configuration while exploring only 0.2% of the 
design space. Additionally, our cache tuning results in an 
average speedup of 9% due to line size configuration.  

Future work includes recompilation of the application to 
the best cache configuration for further energy and 
performance benefits. We also plan to examine desktop and 
mainframe applications on appropriate cache configurations 
for different application execution phases and verify that the 
heuristic developed in this work is applicable to desktop 
applications exhibiting different access pattern characteristics 
than embedded applications. Additionally, we plan to explore 
the many details involved with runtime implementation of 
application phase-based cache tuning. Furthermore, we plan 

to generalize our tuning heuristic so that it is amenable to 
future platforms with an unknown number of levels within 
the cache hierarchy.  
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