
TVLSI-00200-2006.R1

1 This paper is an extension to a paper that appeared in the International Symposium on Low Power Electronics and Design, 2005 [13].

Abstract—Tuning a configurable cache subsystem to an

application can greatly reduce memory hierarchy energy
consumption. Previous tuning methods use a level one
configurable cache only, or a second level with separate
instruction and data configurable caches. We instead use a
commercially-common unified second level cache, a seemingly
minor difference that actually expands the configuration space
from 500 to about 20,000. We develop additive way tuning for
tuning a cache subsystem with this large space, yielding 61%
energy savings and 9% performance improvements over a non-
configurable cache, greatly outperforming an extension of a
previous method.

Index Terms—Configurable cache hierarchy, cache
exploration, cache optimization, low power, low energy,
architecture tuning, and embedded systems.

I. INTRODUCTION
he memory hierarchy of a microprocessor can consume
as much as 50% of the system power in a microprocessor

[15][20]. Such a large contributor to total system power is a
good candidate for optimizations to reduce total system
power and energy. Low power or energy is needed not only
in embedded systems that run on batteries or have limited
cooling ability, but also in desktops and mainframes where
chips are requiring costly cooling methods.

Applications require highly diverse cache configurations
for optimal energy consumption in the memory hierarchy
[26]. Even different phases of the same application may

benefit from different cache configurations in each phase
[16][21]. For example, the size of the cache should reflect the
working set of the application. Too large of a cache would
result in cache fetches consuming excessively high energy.
Too small of a cache would result in wasted energy due to
thrashing in the cache, with frequently used items repeatedly
swapped in and out of the cache. Additionally, the cache line
size and associativity should reflect the needs of a particular
application or application phase to achieve the most energy
efficient cache configuration.

Recent technologies have enabled the tuning of cache
parameters to the needs of an application. Core-based
processor technologies allow a designer to designate a
specific cache configuration [2][3][4][17][22]. Additionally,
processors with configurable caches are available that can
have their caches configured during system reset or even
during runtime [1][15][26]. Such configurable caches have
been shown to have very little size or performance overhead
compared to non-configurable caches [15][24].

With the option of cache configuration readily available, a
problem is to determine the best cache configuration for a
particular application. Previous methods use cache
hierarchies with limited configurability, yielding cache
configuration spaces of at most a few hundred possible cache
configurations, making fast exploration relatively
straightforward. Most such methods configure total size, line
size, and associativity for only a single level of cache, having
less than 50 possible configurations, achieving memory
hierarchy energy savings of 40% [24]. A few methods also
include a second level of separate instruction and data
configurable caches, having a few hundred possible
configurations, achieving increased memory hierarchy
energy savings of 53% [12]. The increased savings suggest
that increasing the configuration space reveals a greater
opportunity for energy savings, by allowing the cache to be
tuned more closely to an application’s needs. However, a
larger configuration space makes exploration heuristic
development more difficult.

Two-level caches are common in desktop systems and are
becoming common in increasingly capable embedded
systems. However, the second level cache is commonly
unified, rather than separate (having one cache for
instructions and another for data). A multi-way unified cache

Fast Configurable-Cache Tuning with a Unified
Second-Level Cache1

Ann Gordon-Ross, Member IEEE, Frank Vahid, Senior Member IEEE, and Nikil Dutt, Fellow IEEE

T

Manuscript received May 10, 2006. This work was supported in part by
the National Science Foundation (CCR-0203829, CCR-9876006) and by the
Semiconductor Research Corporation (2005-HJ-1331).

Ann Gordon-Ross is with the University of Florida, Gainesville, Fl.
32608 USA. She is a member of the NSF Center for High-Performance
Reconfigurable Computing (CHREC). (phone: 352-392-5356; e-mail:
ann@ece.ufl.edu; home page: http://www.ann.ece.ufl.edu/).

Frank Vahid is with the University of California, Riverside, Riverside,
Ca 92521 USA. He is also with the Center for Embedded Computer
Systems at UC Irvine. (e-mail: vahid@cs.ucr.edu; home page:
http://www.cs.ucr.edu/~vahid).

Nikil Dutt is with the University of California, Irvine, Irvine, Ca 92697.
(e-mail: dutt@cecs.uci.edu; home page: http://www.ics.uci.edu/~dutt).

TVLSI-00200-2006.R1

enables tradeoffs between the number of instruction ways
and the number of data ways, with those tradeoffs known as
way management [15]. Each way may be used for
instructions only, data only, or both instructions and data (or
may even be shut down). An example configuration of a
four-way unified cache is 3 instruction ways and 1 data way;
another example is 2 instruction ways, 1 data way, and 1
instruction/data way. The interdependence has a (perhaps
surprisingly) large impact on the cache configuration space
that we must explore. With separated level-two caches, we
can effectively explore the instruction cache hierarchy
independently from the data cache hierarchy, because the
configuration of one cache hierarchy doesn’t (significantly)
affect the other cache hierarchy. In contrast, with a unified
second level, the two hierarchies become tightly
interdependent, requiring us to consider (roughly) the cross
product of the two configuration spaces. For example, two
spaces of 200 configurations each, when independent yield
400 configurations to be searched, but when interdependent
yield 40,000. Our results will show that this larger space,
rather than consisting of uninteresting or impractical
configurations, indeed contains useful configurations that
allow for intense specialization of the cache hierarchy to an
application’s needs.

How to adapt existing cache tuning methods to a way-
managed unified second level cache is not obvious, due in
part to the increased tuning interdependency between the
caches. Previous methods limited tuning dependency to limit
the configuration space, thus making heuristic development
easier. Previous tuning methods that address the tuning
dependency between the level one and separate level two
caches cannot be directly applied to a unified second level of
cache.

In this paper, we present a heuristic cache-tuning method
for a highly configurable two-level cache hierarchy. We
improve upon previous methods by significantly increasing
the search space via a unified second level configurable
cache, resulting in greater energy savings than previous
methods and increased applicability to current and future
systems. Our cache hierarchy allows for approximately
18,000 possible cache configurations. Our heuristic achieves
an average energy savings of 61%, while requiring explicit
examination of a mere 0.2% of the search space on average –
approximately 34 configurations. We also examine the
effects of increasing static energy on the fidelity of cache
configuration heuristics. We design our heuristic to be
lightweight enough to be implemented in an on-chip dynamic
tuning approach without imposing excess overhead and
flexible enough to be used in a variety of different tuning
environments.

II. RELATED WORK
Commercial systems with tunable caches (e.g., [4][15]) do

not address how to tune those caches, leaving the task to the
designer. Several research efforts therefore focus on
providing automated assistance for such tuning. Most such

efforts focus on single level cache tuning. Platune [10] is a
framework for tuning configurable system-on-a-chip (SOC)
platforms. Platune offers many configurable parameters and
prunes the search space by isolating interdependent
parameters from independent parameters, however,
interdependent parameters are explored exhaustively.
Whereas exhaustive exploration was feasible for a level one
cache due to the small number of possible configurations, the
exhaustive method is not feasible with a highly configurable
cache. An exhaustive search of tens of thousands of
configurations could take months or more to fully explore.

To speed up exploration time, heuristic methods have been
developed. Palesi et al. [18] designed an extension to the
Platune tuning environment that used a genetic algorithm to
speed up exploration time and produce comparable results.
Zhang et al. [24] presents a heuristic method for tuning a
configurable cache that searches the cache parameters in their
order of impact on energy consumption. The heuristic
produces a set of Pareto-optimal points trading off energy

Fig. 1. Configurable Cache Architecture: (a) system architecture and cache
hierarchy used, (b) base cache bank layout for the level one caches, (c) way
concatenation offered in level one caches, (d) way shutdown offered in
level one caches, (e) configurable line size offered in all caches, and (f)
configurability available for the level two cache utilizing way management.

M
ic

ro
pr

oc
es

so
r

I-Cache

D-Cache

Level One
Caches

Level Two
Cache

M
ai

n
M

em
or

y

U-Cache

(a)

(c) (b)

ba
nk

/w
ay

Level One Caches

2kB 2kB 2kB 2kB

Way Concatenation

2k
B

8kB 4-way

4kB 4kB

8kB 2-way
8kB 1-way

(d)

Way Shutdown

2
kB

 2
kB

 2
kB

 2
kB

 2
kB

4kB 2-way 2kB 1-way

Configurable Line Size

Physical line
size

Fetch
subsequent

blocks to
increase

2kB

16B
16B

(e)

Level Two Cache – Way Management

C
on

fig

in
st

da

ta

un
ifi

ed

in
st

da
ta

un

ifi
ed

 Sample cache
configurations

(f)

ba
nk

/w
ay

ba
nk

/w
ay

ba
nk

/w
ay

2k
B

2k

B

2k
B

2k
B

2k

B

2k
B

2k

B

2k
B

2k

B

2k
B

C
on

fig

C
on

fig

C
on

fig

in
st

da

ta

un
ifi

ed

in
st

da
ta

un

ifi
ed

in
st

in
st

da
ta

da

ta

in
st

un
ifi

ed

da
ta

da

ta

da
ta

TVLSI-00200-2006.R1

consumption and performance. Ghosh et al. [11] presents a
heuristic that, through an analytical model, directly
determines the cache configuration based on the designers
performance constraints. Ge et al. [9] present an algorithm
for partitioning a fixed about of reconfigurable on-chip
storage resources between the instruction cache and a scratch
pad memory for energy savings averaging 30%.

A few methods exist for tuning two levels of cache, using
reduced configurability to maintain a manageable search
space. Balasubramonian et al. [5] proposes a method for level
one and level two cache reconfiguration as well as
redistributing the cache size between the level two and level
three caches while maintaining a conventional level one
cache. In previous work [12], we designed an exploration
heuristic for a configurable cache hierarchy that explores
separate level one instruction and data caches and separate
level two instruction and data caches. Dhodapkar et al. [7]
present a method to dynamically monitor working set
characteristics and infer program resource requirements for a
multi-level cache hierarchy. On-chip profiling hardware
calculates a certain miss penalty threshold for each
configurable unit and a greedy tuning heuristic explores the
design space for each unit until a configuration that meets the
miss penalty threshold is determined.

III. CONFIGURABLE CACHE ARCHITECTURE
Fig. 1 (a) depicts our target system architecture. On-chip

components consist of a microprocessor connected to
separate level one instruction and data caches, each of which
connects to a unified level two cache. The level two cache
connects to an off-chip main memory.

A. Level One Caches
Fig. 1 (b) illustrates the level one configurable cache

architecture based on the tunable cache described by Zhang
et al. [25][26]. The base cache structure is an 8 KB cache
consisting of four 2 KB banks where each bank acts as a
separate way – thus the base cache is an 8 KB, 4-way set
associative cache. Zhang provides hardware layout
verification for the configurable cache and shows that the
configuration circuitry does not increase the access time of
the cache. The tunable parameters consist of cache size, line
size, and associativity.

Fig. 1 (c) depicts way concatenation. Special way
configuration registers allow for banks to be logically
concatenated thus enabling associativity configurability. Fig.
1 (c) shows a 2-way set associative and a direct-mapped (1-
way set associative) cache using way concatenation.

Additionally, banks/ways may be shut down to enable
configurable size, as depicted in Fig. 1 (d). Way shut down
and way concatenation may be combined to offer other
combinations of size and associativity. However, due to the
bank layout of the cache, 2 KB 2-way or 4-way set
associative caches and a 4 KB 4-way set associative cache
are not possible configurations. This limitation is only
applicable to a hardware based configurable cache. In

simulation-based exploration, any cache configuration is
possible.

Fig. 1 (e) depicts the configurable line size available in
both the level one and level two caches. The configurable
cache consists of a base physical line size of 16 bytes and is
configurable to 32 and 64 bytes by fetching subsequent
blocks in memory.

Fig. 2 shows the impact-ordered heuristic developed by
Zhang to efficiently explore the highly configurable level one
cache. Through experimental results, Zhang determined that
the cache parameters should be explored in order of their
impact on total energy, with the highest impact parameter
explored first followed by the second highest, and so on. This
impact ordering of parameters explores total size, followed
by line size, and then followed by associativity. For each
parameter, the heuristic explores the parameters values from
smallest to largest to minimize the number of cache flushes
in a runtime tuning environment. For each cache parameter,
values are successively explored until there is no reduction in
energy revealed, and thus the previous value explored
resulted in the lowest energy consumption for that cache
parameter. That cache parameter value becomes fixed at the
value that revealed the lowest energy consumption.

In later work, we extended Zhang’s heuristic to explore
two levels of cache where the second level of cache consisted
of separate instruction and data caches [12]. We observed
that whereas exploring each successive parameter value as
long as a decrease in energy is observed was sufficient for a
single level of cache, this limited potential savings in a two
level cache due to dependencies between the level one and
level two caches. We improved upon the heuristic in [12] by
fully exploring all parameter values. This simply required
removing the else portion of the if statements in each for

Fig. 2. Impact-ordered heuristic for exploring level one cache parameters.
The same heuristic is applied to both the instruction and data caches

best_size = SMALLEST_SIZE
best_assoc = SMALLEST_ASSOC
best_linesize = SMALLEST_LINESIZE
current_smallest_energy = ∞

foreach available_size // searching from smallest to largest
 energy = simulate_cache (available_size, best_assoc, best_linesize)
 if (energy < current_smallest_energy)
 current_smallest_energy = energy
 best_size = available_size
 else
 break

foreach available_linesize // searching from smallest to largest
 energy = simulate_cache (best_size, best_assoc, available_linesize)
 if (energy < current_smallest_energy)
 current_smallest_energy = energy
 best_linesize = available_linesize
 else
 break

foreach possible_assoc // searching from smallest to largest
 energy = simulate_cache (best_size, possible_assoc, best_linesize)
 if (energy < current_smallest_energy)
 current_smallest_energy = energy
 best_assoc = possible_assoc
 else
 break

TVLSI-00200-2006.R1

loop.

B. Level Two Cache
The second level cache is a configurable unified cache

quite different than the first level cache, illustrated in Fig. 1
(f). For the second level, we utilize way management
implemented in Motorola’s M*CORE processor [15]. In a
way management cache, each way is a configurable way and
may be designated as a unified way, an instruction-only way,
a data-only way, or the way can be shut down entirely.

C. Cache Parameter Values and Configuration Space
For the cache parameters values, we chose values to reflect

typical off-the-shelf embedded systems. For the level one
cache, we explore 2, 4, and 8 KB cache sizes, 16, 32, and 64
byte line sizes, and direct-mapped, 2-, and 4-way set
associativities. For the level two cache, we use a 64 KB
cache with four configurable ways and configurable line
sizes of 16, 32, and 64 bytes. Additionally, our chosen values
result in a wide variety of resulting best cache configurations
across the benchmarks studied, showing that the parameter
values utilized covers the needs of many different
applications. However, our heuristic is not dependent on
these values, nor on embedded applications – for desktop
applications, larger total-size values would be appropriate.

Our configurable cache architecture offers approximately
18,000 different cache configurations. For each level one
cache, there are 18 different cache configurations
(configurable parameters are size, line size, and associativity,
each with three possible values, minus invalid combinations).
The second cache level has 36 unique combinations of way
configuration for each of the three line sizes, resulting in 108
different level two configurations. Thus, the maximum
number of cache configurations is 40,000. However,
restrictions reduce the number of configurations to
approximately 18,000. For example, the second level line
size must be greater than or equal to the largest level one line
size.

Due to the huge exploration space, exhaustive exploration
to determine the optimal cache configuration for every
benchmark for comparison with our heuristic is not feasible,
as it would take more than a year. Even so, we generated
optimal results for 13 selected benchmarks. For comparison
purposes we also use a common cache configuration to act as
a base cache configuration to show the effectiveness of our
cache tuning heuristic in reducing energy. The base cache
configuration consists of an 8 Kbyte 4-way set associative
cache with a 32 byte line size for the level one caches and a
64 Kbyte fully unified cache with a 64 byte line size for the
level two cache – a reasonably common configuration.

IV. TUNING HEURISTICS
For our configurable cache hierarchy, the full

configuration space consists of nearly 18,000 different
configurations. Even if the time to explore one configuration
only took only half a second, exploring all configurations for

a benchmark would still take half an hour – clearly not
feasible for a dynamic tuning method. If exploring each
configuration took five minutes (a typical runtime for a
simulation-based tuning approach on contemporary
workstations), it would take 63 days to exhaustively explore
the search space for a single benchmark. We sought to
develop a tuning heuristic to efficiently explore a small
portion of the search space and produce good energy savings
over the base cache configuration. We considered two
possible heuristics, which we now describe.

A. Sequential Exploration with Ratio Projection - SERP
A simple tuning heuristic for two-level caches ignores all

tuning dependency between the level one instruction and data
caches and the level one and level two caches, and
sequentially explores the two levels, first tuning level one,
then level two. As previous tuning methods don’t consider a
unified cache, we first developed a sequential heuristic for
two level caches, providing a close comparison to current
methods, and illustrating the need to fully explore the tuning
dependencies. Fig. 3 summarizes are our first heuristic
sequential exploration with ratio projection (SERP).

For level one exploration, SERP utilizes the impact
ordering of parameters and exploration ordering of parameter
values including full parameter exploration as described in
section III.A.

For the level two cache, SERP must also consider that the
cache offers way management. Thus, not only must the
heuristic determine the total size, line size, and associativity,
but the heuristic must also determine how many ways will be
for data, how many for instructions, how many for both
instructions and data, and how many will be shut down. For

Fig. 3. Sequential exploration with ratio projection (SERP) heuristic. (…)
in function calls passes all other necessary cache parameter values

best_L1_I_size = SMALLEST_L1_SIZE
best_L1_D_size = SMALLEST_L1_SIZE
best_L1_I_assoc = SMALLEST_L1_ASSOC
best_L1_D_assoc = SMALLEST_L1_ASSOC
best_L1_I_linesize = SMALLEST_L1_LINESIZE
best_L1_D_linesize = SMALLEST_L1_LINESIZE
best_L2_linesize = SMALLEST_L2_LINESIZE
L2_way_configuration = UEEE // one unified way and 3 ways shutdown
current_smallest_energy = ∞

// explore_L1_cache function calls the impact-ordered heuristic outlined
// in Fig. 2
explore_L1_cache (ICACHE, &best_L1_I_size, &best_L1_I_assoc,
 &best_L1_I_linesize, &best_L2_linesize,

¤t_smallest_energy, …)
explore_L1_cache (DCACHE, &best_L1_D_size, &best_L1_D_assoc,
 &best_L1_D_linesize, &best_L2_linesize,

¤t_smallest_energy, …)

// searching from smallest to largest – ensure L2 line size is greater than
// L1 line sizes
foreach available_L2_linesize
 energy = simulate_cache (available_L2_linesize, …)
 if (energy < current_smallest_energy)
 current_smallest_energy = energy
 best_L2_linesize = available_L2_linesize

// explore L2 cache using ratio projection outlined in Fig. 4
ratio_projection (&L2_way_configuration, ¤t_smallest_energy)

TVLSI-00200-2006.R1

unified level two cache exploration, we initially developed
the ratio projection portion of SERP.

The ratio projection method, illustrated in Fig. 4, projects
the number of necessary instruction and data ways needed for
the best cache configuration. During level two cache
exploration, SERP executes 6 different configurations to
gather information on the instruction and data caching
requirements of the level two cache. To explore an
application’s instruction caching needs, SERP sets the level
two cache to have one data way and adds instructions ways
one at a time (Fig. 4 (a)). The lowest energy configuration
suggests the ideal number of instruction ways needed in the
level two cache. Similarly, SERP determines the ideal
number of data ways. Ratio projection then combines the
ideal number of instruction and data ways to determine the
ideal level two way designations. Simply adding the number
of ways could exceed the available number of ways in the
level two cache. In the situation where the ideal number of
ways exceeds the number of ways in the level two cache,
ratio projection must carefully combine the instruction and
data ways to keep the ratio of instruction to data ways as
close to the ideal as possible while meeting the constraints of
the level two cache. Keeping the ratio in mind will allow for
the more important way type (the way designation
(instruction or data) with the larger number of ideal ways) to
be allocated more ways in the final level two configuration.

There are two situations that may occur during ratio
projection. The first situation occurs when both the
instructions and data are equally important in the level two
cache – the number of ideal ways is equal. In this case, we
use way reduction and simply remove 1 data and 1
instruction way at a time until the combined number of ways
is less than the total number of ways available in the level
two cache. For example, ratio projection might determine the
ideal number of instruction and data ways to be 3 and 3,
respectively. Given only four available ways, ratio projection
would allocate 2 instruction and 2 data ways, thus
maintaining the same ratio of instruction to data ways.

The second situation occurs when one way designation
(instruction or data) is more important than the other – the
ideal number of ways is different. In this case, we cannot
simply use way reduction to remove 1 data and 1 instruction
way until the combined number of ways is less than the total

number of available level two ways. This reduction may lead
to undesignated ways. For example, if the ideal number of
instruction ways is 2 and the ideal number of data ways is 3,
removing 1 way of each type would result in the level two
cache having 1 instruction way, 1 data way, and 1 way shut
down. Additionally, in level two cache configurations
offering more than 4 total ways, this method may cause
either instructions or data not to have any level two
designations. This situation may occur if there were 8
available level two ways and the ideal number of instruction
and data ways are 1 and 8 respectively. We could
alternatively only remove 1 data way or 1 instruction way,
but this would not maintain the ideal ratio of instruction to
data ways and choosing which way to remove becomes
arbitrary. To resolve this situation, we use way unification
(illustrated in Fig. 4 (c)) to determine our final level two way
designations. Instead of completely removing 1 instruction
and 1 data way, we unify an instruction way with a data way,
reducing the total number of required ways by 1. We
continue to make this reduction with unification until the
combined number of ways is less than the total number of
ways available in the level two cache.

Through extensive experimentation, we observed that the
SERP produced substandard results for many benchmarks.
Although the heuristic resulted in a 37% decrease in energy
consumption over the base cache configuration, for a few
examples the energy consumption increased. Given the
vastly increased configuration space over previous methods,
we had expected to see significant additional energy savings,
when in fact, SERP revealed less energy savings than
previous methods. Previous methods with separate level one
and level two caches showed 53% energy savings on average
[12]. Clearly, a simple adaptation of current methods does
not sufficiently explore tuning dependencies.

B. Alternating Cache Exploration with Additive Way
Tuning – ACE-AWT

The poor results of the first heuristic substantiate the
hypothesis that precise exploration with regards to tuning
dependencies is necessary. Exploring the level one cache
separately from the level two cache naively ignores the
dependency that exists between the two levels via the level
two unified cache. For example, altering a parameter in the
level one instruction cache changes the effectiveness of the

Fig. 4. Ratio projection for level two cache way exploration showing a sample reduction with way unification.

Instruction way exploration

 d
at

a

 in
st

 d
at

a

 in
st

 in
st

 in
st

 d
at

a

 in
st

 in
st

Data way exploration

 in
st

 d
at

a

 in
st

 d
at

a

 d
at

a

 d
at

a

 in
st

 d
at

a

 d
at

a

Combine the lowest energy
configurations and use unified ways to
keep ratio of instruction to data ways as

close as possible for the final
configuration

 in
st

 in
st

 d
at

a

un
ifi

ed

Final
Configuration Simulate 3 cache

configurations to determine
instruction caching

requirements. Choose the
lowest energy configuration

to determine the ideal
number of instruction ways

Lowest energy

Simulate 3 cache
configurations to determine
data caching requirements.
Choose the lowest energy
configuration to determine
the ideal number of data

ways

Lowest energy

 d
at

a

 in
st

 in
st

 in
st

 in
st

 d
at

a

 d
at

a + =

(a) (b) (c)

TVLSI-00200-2006.R1

level two cache by changing the quantity of level two fetches
and the addresses fetched. Also, the change in level two
utilization by instructions affects the level one data cache by
changing the contention among instructions and data in the
shared level two cache.

In [12], we similarly concluded the importance of tuning
both cache levels together (though instruction and data were
separate in that work), and we thus designed the interlaced
exploration method. Instead of fully exploring the level one
cache and then proceeding to the level two cache, the
interlaced method explores one parameter for the level one
cache and then that parameter for the level two cache, before
proceeding to explore the next parameter. However, that
interlaced method only addressed the dependency between
separate level one and level two caches, and not the
dependency between the level one instruction and data
caches. We further explore the level one dependencies in
section V.C. Additionally, the interlaced method cannot be
easily adapted to a unified cache featuring way management.

For level two exploration, way management makes
interlaced exploration of the cache levels difficult because of
the dependency between size and associativity exploration.
To change the size, either a way is added or removed from
the cache. However, the added or removed way is either a
unified, data, or instruction way, additionally affecting the
associativity. Similarly, when changing the cache’s
associativity, a way is either added or removed which also
changes the size of the cache as well. This dependency
complicates the exploration of the level two cache, since we
can’t just explore either associativity or size alone.

To overcome the difficulty arising in interlaced
exploration and to extend the interlaced heuristic to address
level one instruction and data cache dependencies, we
introduce the alternating cache exploration with additive way
tuning heuristic for level two cache exploration (ACE-AWT)
and is illustrated in Fig. 5. For each cache parameter, the
ACE-AWT heuristic first tunes the level one instruction
cache, then the level one data cache, followed by additive
way tuning for the level two cache. The first phase of
additive way tuning, illustrated in Fig. 6 (a), adds ways one at
a time and chooses the next way to add based on what type of
added way resulted in the lowest energy cache configuration.
Additive way tuning starts by adding one way to the level
two cache, and then explores three candidate configurations –
a single instruction, data, or unified way. The heuristic
chooses the lowest-energy configuration, and then adds
another way to the level two cache, again trying an
instruction, data, or unified way. This additive method of
increasing the cache size and associativity continues until the
level two cache is full or until there is no longer a decrease in
energy consumption. This phase of additive way tuning is
done when the level two cache size is explored.

Alternating level exploration with a unified second level of
cache increases the difficulty of exploring the line size. The
line size of the level two cache must always be equal or
greater than the line sizes of both of the level one instruction
and data caches. To allow for level one line size exploration,

our heuristic increases the level two line size while
increasing the level one line size. After determining level one
line sizes, the ACE-AWT heuristic explores remaining larger
level two line sizes.

During associativity exploration, Fig. 6 (b) illustrates the
final tuning step applied to fine tune the cache configuration.

Fig. 5. Alternating cache exploration with additive way tuning (ACE-
AWT) heuristic. (…) in function calls passes all other necessary cache
parameter values

best_L1_I_size = SMALLEST_L1_SIZE
best_L1_D_size = SMALLEST_L1_SIZE
best_L1_I_assoc = SMALLEST_L1_ASSOC
best_L1_D_assoc = SMALLEST_L1_ASSOC
best_L1_I_linesize = SMALLEST_L1_LINESIZE
best_L1_D_linesize = SMALLEST_L1_LINESIZE
best_L2_linesize = SMALLEST_L2_LINESIZE
L2_way_configuration = UEEE // one unified way and 3 ways shutdown
current_smallest_energy = ∞

// explore L1 I size
foreach available_size // searching from smallest to largest
 energy = simulate_cache (available_size, …)
 if (energy < current_smallest_energy)
 current_smallest_energy = energy
 best_L1_I_size = available_size

// explore L1 D size
foreach available_size // searching from smallest to largest
 energy = simulate_cache (available_size, …)
 if (energy < current_smallest_energy)
 current_smallest_energy = energy
 best_L1_D_size = available_size

// ACE-AWT first phase - explore L2 size outlined in Fig. 6(a)
ACE-AWT_first_phase (&L2_way_configuration,
 ¤t_smallest_energy, …)

// explore L1 I line size
foreach available_linesize // searching from smallest to largest
 energy = simulate_cache (available_linesize, …)
 if (energy < current_smallest_energy)
 current_smallest_energy = energy
 best_L1_I_linesize = available_linesize

// explore L1 D line size
foreach available_linesize // searching from smallest to largest
 energy = simulate_cache (available_linesize, …)
 if (energy < current_smallest_energy)
 current_smallest_energy = energy
 best_L1_D_linesize = available_linesize

// explore L2 line size – ensure L2 line size is greater than L1 line sizes
foreach available_linesize // searching from smallest to largest
 energy = simulate_cache (available_linesize, …)
 if (energy < current_smallest_energy)
 current_smallest_energy = energy
 best_L2_linesize = available_linesize

// explore L1 I assoc
foreach available_assoc // searching from smallest to largest
 energy = simulate_cache (available_assoc, …)
 if (energy < current_smallest_energy)
 current_smallest_energy = energy
 best_L1_I_assoc = available_assoc

// explore L1 D assoc
foreach available_assoc // searching from smallest to largest
 energy = simulate_cache (available_assoc, …)
 if (energy < current_smallest_energy)
 current_smallest_energy = energy
 best_L1_D_assoc = available_assoc

//ACE-AWT fine tuning phase – explore L2 size outlined in Fig. 6(b)
ACE-AWT_fine_tuning_phase (&L2_way_configuration,
 ¤t_smallest_energy, …)

TVLSI-00200-2006.R1

The ACE-AWT heuristic adjusts ways to hone in on the best
cache configuration by attempting to add and/or remove
ways. First, the heuristic tries to increase the number of ways
by adding either an instruction, data, or unified way one at a
time. If the cache size is full, the heuristic skips the
enlargement step. The heuristic then explores decreasing the
size of the cache by removing an instruction, data, or unified
way one at a time. If removing a way causes the cache to be
empty, the heuristic ignores the reduction step. The lowest
energy cache configuration is chosen if it consumes less
energy than the current cache configuration. This tuning step
is continued until there is no improvement in energy
consumption or there is no previously unexplored
configuration to explore.

Since the fine-tuning phase iteratively adds and removes
ways, this results in identical cache configurations being
explored during different iterations of the fine-tuning phase.
To eliminate redundant exploration of previously explored
cache configurations, we record each cache configuration
explored. However, in the worst case, the ACE-AWT
heuristic may explore 88 cache configurations.

V. RESULTS

A. Experimental Setup
We applied each heuristic to 16 benchmarks from the

EEMBC benchmark suite [8], 12 benchmarks from the
Powerstone benchmark suite [15], and 6 benchmarks from
the MediaBench benchmark suite [14]. These benchmarks
are all embedded system benchmarks and thus suitable for
the configurable cache parameter values we examined. We
stress that we could also run desktop benchmarks using
suitable cache parameter values, and we are doing so for
related and future work.

We determine energy consumption for a cache
configuration for both static and dynamic energy using the
following model:

total_energy = static_energy + dynamic_energy

dynamic_energy = cache_hits * hit_energy +
cache_misses * miss_energy

miss_energy = offchip_access_energy +miss_cycles *

CPU_stall_energy + cache_fill_energy
miss_cycles = cache_misses * miss_latency +

(cache_misses * (linesize/16) * memory_bandwidth)
static_energy = total_cycles * static_energy_per_cycle

static_energy_per_cycle = energy_per_Kbyte *
cache_size_in_Kbytes

energy_per_Kbyte = ((dynamic_energy_of_base_cache *
10%) / base_cache_size_in_Kbytes)

We used Cacti [19] to determine the dynamic energy

consumed by each cache fetch for each cache configuration
using 0.18-micron technology. We used SimpleScalar [6] to
measure cache hits and cache misses for each cache
configuration. Miss energy determination is quite difficult
because it depends on the off-chip access energy and the
CPU stall energy which are highly dependent on the actual
system configuration used. We could have chosen a
particular system configuration and obtained hard values for
the CPU_stall_energy however, our results would only apply
to one particular system configuration. Instead, we examined
the stall energy for several microprocessors and estimate the
CPU_stall_energy to be 20% of the active energy of the
microprocessor for this study. We obtain the
offchip_access_energy from a standard low-power Samsung
memory. To obtain miss cycles, the miss latency and
bandwidth of the system is required. For miss penalties and
throughput for both cache levels, we estimate ratios typical
for an embedded system. We assume a level two fetch is four
times slower than a level one fetch, and a main memory fetch
is twenty times slower than a level two fetch. We assume
memory throughput is 10% of the latency, meaning blocks
fetched after the first block take 10% of the latency of the
first block fetched. In previous work [12], we showed that
cache tuning heuristics remain valid across different
configurations of miss latency and bandwidth. We determine
the static energy per Kbyte as 10% of the dynamic energy of
the base cache divided by the base cache size in Kbytes. In
section 0, we explore the impact of increasing static energy
consumption on cache configuration heuristics.

We modified SimpleScalar to simulate way management
in the level two cache and to determine cache hit and miss
values for each cache configuration. We ran exploration
scripts that applied each heuristic to every benchmark.

Fig. 6. Additive way tuning for level two cache way exploration for the (a) first phase and (b) the fine tuning phase.

If no unexplored
configuration to

try

Start with empty cache

Current Cache Configuration

Try three possible way additions for
the current cache configuration

Add I-way Add D-way Add U-way

Choose the way addition that results
in the lowest energy cache

If the addition of a
way decreases the
energy from the
previous cache

configuration, add
that way to the
current cache
configuration

If cache
is full

If no decrease in energy over previous configuration

DONE

Start with resulting cache
from first phase

Current Cache Configuration

Try 3 possible way additions and 3 possible way removals for
the current cache configuration – size permitting

Add
U-way

Choose the way addition or way removal
that results in the lowest energy cache

If the addition or
removal of a way

decreases the energy
from the previous

cache configuration,
add/remove that way
to/from the current
cache configuration

If no decrease in energy over previous configuration

DONE

Add
D-way

Add I-
way

Remove
I-way

Remove
D-way

Remove
U-way

(a) (b)

TVLSI-00200-2006.R1

B. Energy Consumption and Performance
Fig. 7 shows the energy consumption for all benchmarks

for both tuning heuristics and the optimal cache configuration
for 13 benchmarks. Energy consumption for each
configuration is normalized to the energy consumption of the
base cache for that benchmark. Fig. 7 shows that while SERP
achieved average energy savings of 37%, the energy
consumption actually increased for two benchmarks. The
ACE-AWT heuristic improves greatly over SERP showing
energy savings of 61% averaged over all benchmarks. For the
13 benchmarks where the optimal cache configuration is
known, ACE-AWT either finds the optimal cache
configuration or determines a cache configuration that is very
near the optimal. ACE-AWT achieves these energy savings
by exploring only 34 unique configurations on average over
all benchmarks – a mere 0.2% of the total search space.

As well as showing good energy savings across all
benchmarks, we examine the performance impact of the
ACE-AWT heuristic. Fig. 8 shows the execution time of each
benchmark for the ACE-AWT heuristic normalized to the
execution time for the base cache configuration. On average,
the ACE-AWT heuristic, while tuning solely for energy,
achieves a 9% performance improvement. Each benchmark
either shows an improvement in performance or a very
minute decrease in performance. We found that this
improvement is due to tuning the line size to the locality
needs of the application [12].

To ensure that the energy savings obtained with ACE-
AWT are not inflated due to choosing a base cache
configuration that consumes a large amount of energy, we
examined the energy savings obtained by ACE-AWT

compared to the highest energy consuming cache. Fig. 9
shows the energy consumption of the ACE-AWT
configuration normalized to the worst energy consuming
cache for each benchmark that we exhaustively explored.
ACE-AWT achieves average energy savings of 94% when
compared to the worst energy configuration. Thus, an
average energy savings of 61% compared to a base cache
configuration does not unnecessarily inflate our results.

Additionally, Fig. 10 shows the execution time of the
ACE-AWT configuration normalized to the execution time
of the best performing cache for each benchmark. Excluding
the CACHEB01 benchmark, the ACE-AWT configuration
increases execution time by at most only 5% compared to the
best performing cache.

C. Level One Instruction and Data Cache Dependencies
During interlacing, the ACE-AWT heuristic explores the

level one instruction parameter followed by the level one
data parameter. Due to the dependencies between the level

Fig. 7. Energy consumption normalized to the base cache configuration for both cache exploration heuristics and the optimal cache configuration.

Fig. 8. Execution time normalized to the base cache configuration for both exploration heuristics and the optimal cache configuration

Fig. 9. Energy consumption of the ACE-AWT configuration normalized to
the worst energy consuming cache for each benchmark.

Base line

0.00

0.20

0.40

0.60

0.80

1.00

A
2T
IM
E0
1

C
A
C
H
EB
01

C
A
N
R
D
R
01

M
A
TR
IX
01

PU
W
M
O
D
01

R
S
PE
ED
01

TB
LO
O
K
01

A
IF
FT
R
01
bc
nt
bi
lv

bi
na
ry bl

it

br
ev av

g

E
n

e
r
g

y
 n

o
r
m

a
li

z
e
d

 t
o

 w
o

r
s
t

e
n

e
r
g

y
 c

o
n

fi
g

u
r
a
ti

o
n

Base line

TVLSI-00200-2006.R1

one caches via the level two cache, this ordering of
instruction exploration before data exploration can impact the
results.

Fig. 11 shows the impact that this ordering has on the
potential energy savings and performance benefits revealed
by the ACE-AWT heuristic. Fig. 11 (a) shows the energy
consumption normalized to the base cache configuration for
the ACE-AWT heuristic both exploring the instruction
parameter before the data parameter and the data parameter
before the instruction parameter. On average, both methods
achieve 61% energy savings. In 14 benchmarks, exploring
the instruction parameter before the data parameter either
produced identical or better savings that exploring the data
parameter before the instruction parameter. In 20
benchmarks, exploring the data parameter before the
instruction parameter produced better savings. In a few
benchmarks, the difference in savings is quite large,
however, no one method consistently outperformed the other
by a large amount.

Fig. 11 (b) shows the execution time normalized to the
base cache configuration for the ACE-AWT heuristic for
both orderings of exploration showing large differences
between the two methods. On average, exploring the
instruction parameter first yields a 9% reduction in execution
time, while exploring the data parameter first increases the
average execution time by 3%. Studying the benchmarks
more closely reveals that only 9 benchmarks perform better
when the data parameter is explored first and in the cases
where one method significantly outperforms the other,
exploring the instruction parameter first consistently
performed better.

Taking into consideration both energy savings and
performance benefits, we conclude that on average, the
instruction parameter should be explored before the data
parameter. However, since the ACE-AWT heuristic explores
a very small number of configurations and if energy savings
is paramount to performance, it would be feasible to apply
the heuristic twice, once exploring the instruction parameter
first and once exploring the data parameter first, and then
choosing the lowest energy of the two configurations.

D. Cache Configurations
TABLE I shows the cache configurations chosen by both

exploration heuristics and the optimal energy cache. In the
cases where the optimal energy cache is known. We point out
that the ACE-AWT does not necessarily find the optimal
energy cache even though the energy savings may be appear
identical in Fig. 7. In a design space consisting of 18,000
configurations, there is one configuration with the lowest
energy consumption and there are a number of configurations

Fig. 10. Execution time of the ACE-AWT configuration normalized to the
execution time of the best performance configuration for each benchmark.

Fig. 11. Energy consumption (a) and execution time (b) normalized to the base cache configuration for the ACE-AWT heuristic comparing interlacing
methods that explore the data parameter before the instruction parameter and the instruction parameter before the data parameter

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

A2
TI
M
E0
1

C
AC
H
EB
01

C
AN
R
D
R
01

II
R
FL
T0
1

M
AT
R
IX
01

PU
W
M
O
D
01

R
SP
EE
D
01

TB
LO
O
K
01

AI
FF
TR
01

AI
IF
FT
01

AI
FI
R
F0
1

BI
TM
N
P0
1

ID
C
TR
N
01

PN
TR
C
H
01

TT
SP
R
K
01

Ba
se
FP
01
bc
nt
bi
lv

bi
na
ry bl

it

br
ev
ep
ic fir

g3
fa
x
jp
eg

m
at
m
ul

m
pe
g2

po
cs
ag

ps
-j
pe
g

uc
bq
so
rt
v4
2

pe
gw
it

g7
21

ra
w
ca
ud
io
av
g

E
x
e
c
u

ti
o

n
 t

im
e
 n

o
r
m

a
li
z
e
d

 t
o

th

e
 b

a
s
e
 c

a
c
h

e
 c

o
n

fi
g

u
r
a
ti

o
n

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

A2
TI
M
E0
1

C
AC
H
EB
01

C
AN
R
D
R
01

II
R
FL
T0
1

M
AT
R
IX
01

PU
W
M
O
D
01

R
SP
EE
D
01

TB
LO
O
K
01

AI
FF
TR
01

AI
IF
FT
01

AI
FI
R
F0
1

BI
TM
N
P0
1

ID
C
TR
N
01

PN
TR
C
H
01

TT
SP
R
K
01

Ba
se
FP
01
bc
nt
bi
lv

bi
na
ry bl

it

br
ev
ep
ic fir

g3
fa
x
jp
eg

m
at
m
ul

m
pe
g2

po
cs
ag

ps
-j
pe
g

uc
bq
so
rt
v4
2

pe
gw
it

g7
21

ra
w
ca
ud
io
av
g

E
x
e
c
u

ti
o

n
 t

im
e
 n

o
r
m

a
li
z
e
d

 t
o

th

e
 b

a
s
e
 c

a
c
h

e
 c

o
n

fi
g

u
r
a
ti

o
n

(a)

(b)

0.00

0.20

0.40

0.60

0.80

1.00

A2
TI

M
E0

1

C
AC

H
EB

01

C
AN

R
D
R
01

II
R
FL

T0
1

M
AT

R
IX

01

PU
W
M
O
D
01

R
SP

EE
D
01

TB
LO

O
K
01

AI
FF

TR
01

AI
IF

FT
01

AI
FI

R
F0

1

BI
TM

N
P0

1

ID
C
TR

N
01

PN
TR

C
H
01

TT
SP

R
K
01

Ba
se

FP
01

bc
nt

bi
lv

bi
na

ry bl
it

br
ev

ep
ic fir

g3
fa
x
jp
eg

m
at

m
ul

m
pe

g2

po
cs

ag

ps
-j
pe

g

uc
bq

so
rt

v4
2

pe
gw

it

g7
21

ra
w
ca

ud
io

av
g

E
n

e
r
g

y
 c

o
n

s
u

m
p

ti
o

n
 n

o
r
m

a
li
z
e
d

to

 t
h

e
 b

a
s
e
 c

a
c
h

e
 c

o
n

fi
g

u
r
a
ti

o
n

Data then Instruction

Instruction then Data

Base line

Base line

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A
2T
IM
E0
1

C
A
C
H
EB
01

C
A
N
R
D
R
01

M
A
TR
IX
01

PU
W
M
O
D
01

R
S
PE
ED
01

TB
LO
O
K
01

A
IF
FT
R
01
bc
nt
bi
lv

bi
na
ry bl

it

br
ev av

g

E
x
e
c
u

ti
o

n
 t

im
e
 n

o
r
m

a
li

z
e
d

 t
o

b
e
s
t

p
e
r
fo

r
m

a
n

c
e
 c

a
c
h

e

TVLSI-00200-2006.R1

that nearly achieve the optimal energy savings.
As expected, the heuristic configurations and the optimal

cache configurations vary greatly across all benchmarks.
However, we observe a common trend in level two
configurations. Due to the statistically higher miss rates in
level one data caches compared to level one instruction
caches, the level two cache tends to devote more ways to
caching data than caching instructions. In future work, this
observation could be exploited to further refine the ACE-
AWT fine tuning phase.

E. Comparing to Previous Heuristics
We compare both SERP and AWE-ACT to previous state-

of-the-art heuristics for configuration a single level of cache
[25] and two levels of cache with separate instruction and
data caches for the second level [12]. Fig. 12 shows energy
consumption normalized to the base cache configuration for
each heuristic. On average, heuristics for a single level of
cache, a two level cache with separate second level caches,
and SERP perform nearly the same with average energy
savings of nearly 40%. Looking at individual benchmarks,
we see varying behavior for these three heuristics with SERP

TABLE I
CACHE CONFIGURATIONS CHOSEN BY BOTH EXPLORATION HEURISTICS AND THE OPTIMAL ENERGY CACHE. THE LEVEL ONE INSTRUCTION (IL1), LEVEL ONE DATA

(DL1), AND LEVEL TWO UNIFIED (UL2) CACHE CONFIGURATIONS ARE LISTED AS THE TOTAL SIZE IN KBYTES (2, 4, OR 8 K) FOLLOWED BY THE ASSOCIATIVITY (1, 2,
OR 4 WAY (W)) FOLLOWED BY THE LINE SIZE IN BYTES. THE LEVEL TWO CACHE WAY DESIGNATIONS ARE SPECIFIED AS INSTRUCTION (I), DATA (D), UNIFIED (U),

OR SHUT-DOWN (E – EMPTY).

Fig. 12. Energy consumption of various heuristic configurations normalized to the base cache configuration for each heuristics base cache hierarchy.

Benchmark SERP ACE-AWT Optimal Energy
A2TIME01 il1_8k1w64_dl1_4k1w16_ul2_32k4w64_DIUU il1_8k1w32_dl1_2k1w16_ul2_32k4w32_DDEI il1_8k1w64_dl1_4k1w16_ul2_24k3w64_DDEU
CACHEB01 il1_8k1w64_dl1_8k1w16_ul2_32k4w64_DIUU il1_8k1w16_dl1_8k1w16_ul2_32k4w16_DDEU il1_8k1w16_dl1_8k1w16_ul2_24k3w16_DDEU
CANRDR01 il1_4k1w64_dl1_8k1w16_ul2_32k4w64_DIUU il1_4k1w32_dl1_8k1w16_ul2_32k4w32_DDEU il1_4k1w32_dl1_8k1w16_ul2_24k3w32_DDEU
IIRFLT01 il1_2k1w64_dl1_4k1w32_ul2_32k4w64_DDDI il1_8k1w16_dl1_4k1w16_ul2_32k4w16_EEEU
MATRIX01 il1_2k1w32_dl1_8k1w16_ul2_32k4w32_DIUU il1_2k1w16_dl1_8k1w16_ul2_32k4w16_DEUU il1_2k1w16_dl1_8k1w16_ul2_24k3w16_DEUU
PUWMOD01 il1_4k1w64_dl1_2k1w16_ul2_32k4w64_DIUU il1_4k1w32_dl1_8k1w16_ul2_32k4w32_DDEU il1_4k1w64_dl1_8k1w64_ul2_24k3w64_DDEU
RSPEED01 il1_4k1w64_dl1_4k1w16_ul2_32k4w64_DIUU il1_4k1w32_dl1_4k1w16_ul2_32k4w32_DDEU il1_4k1w32_dl1_4k1w16_ul2_24k3w32_DDEU
TBLOOK01 il1_4k1w64_dl1_8k1w16_ul2_32k4w64_DIUU il1_4k1w32_dl1_8k1w16_ul2_32k4w32_DDEU il1_4k1w32_dl1_8k1w16_ul2_24k3w32_DDEU
AIFFTR01 il1_2k1w32_dl1_8k1w16_ul2_32k4w32_DIUU il1_2k1w16_dl1_8k1w16_ul2_32k4w16_DEUU il1_2k1w16_dl1_8k1w16_ul2_24k3w16_DEUU
AIIFFT01 il1_2k1w32_dl1_8k1w16_ul2_32k4w32_DIUU il1_2k1w16_dl1_8k1w16_ul2_32k4w16_DEIU
AIFIRF01 il1_4k1w64_dl1_4k1w32_ul2_32k4w64_DIUU il1_4k1w64_dl1_2k1w16_ul2_32k4w64_DDEI
BITMNP01 il1_8k1w64_dl1_4k1w16_ul2_32k4w64_DIUU il1_8k1w16_dl1_4k1w16_ul2_32k4w16_DEII
IDCTRN01 il1_2k1w32_dl1_4k1w16_ul2_32k4w32_DIIU il1_2k1w32_dl1_4k1w16_ul2_32k4w32_DEIU
PNTRCH01 il1_2k1w32_dl1_8k1w16_ul2_32k4w32_DIUU il1_2k1w32_dl1_4k1w16_ul2_32k4w32_DDEU
TTSPRK01 il1_8k1w32_dl1_8k1w16_ul2_32k4w32_DIUU il1_8k1w16_dl1_8k1w16_ul2_32k4w16_DDEU
BaseFP01 il1_4k1w64_dl1_2k1w16_ul2_32k4w64_DIUU il1_4k1w32_dl1_2k1w16_ul2_32k4w32_DDEU
bcnt il1_2k1w64_dl1_2k1w64_ul2_32k4w64_DIUU il1_2k1w32_dl1_2k1w64_ul2_32k4w64_DDEU il1_2k1w32_dl1_2k1w64_ul2_24k3w64_DDEU
bilv il1_4k1w64_dl1_2k1w64_ul2_32k4w64_DIUU il1_4k1w64_dl1_2k1w64_ul2_32k4w64_DDEU il1_4k1w64_dl1_2k1w64_ul2_24k3w64_DDEU
binary il1_2k1w32_dl1_2k1w64_ul2_32k4w64_DIUU il1_2k1w32_dl1_8k1w32_ul2_32k4w32_DEIU il1_2k1w16_dl1_2k1w16_ul2_24k3w16_DDEI
blit il1_2k1w64_dl1_2k1w16_ul2_32k4w64_DIUU il1_2k1w32_dl1_8k1w16_ul2_32k4w64_DDEU il1_2k1w32_dl1_8k1w16_ul2_24k3w32_DDEU
brev il1_4k1w64_dl1_2k1w64_ul2_32k4w64_DIUU il1_4k1w64_dl1_2k1w32_ul2_32k4w64_DDEI il1_4k1w64_dl1_2k1w64_ul2_24k3w64_DDEU
epic il1_2k1w16_dl1_8k1w16_ul2_32k4w16_DIUU il1_2k1w16_dl1_8k1w16_ul2_32k4w16_DDEU
fir il1_4k1w32_dl1_2k1w64_ul2_32k4w64_DDDI il1_8k1w16_dl1_8k1w16_ul2_32k4w16_DDEU
g3fax il1_4k1w64_dl1_2k1w16_ul2_32k4w64_DIUU il1_4k1w64_dl1_2k1w16_ul2_32k4w64_DDEI
jpeg il1_8k1w32_dl1_8k1w16_ul2_32k4w32_DDDI il1_8k1w16_dl1_8k1w16_ul2_32k4w16_DDEU
matmul il1_2k1w16_dl1_2k1w64_ul2_32k4w64_DEEI il1_2k1w16_dl1_8k2w16_ul2_32k4w16_DDEU
mpeg2 il1_4k1w32_dl1_4k1w16_ul2_32k4w32_DIUU il1_4k1w16_dl1_4k2w16_ul2_32k4w16_DDEU
pocsag il1_8k1w64_dl1_4k1w64_ul2_32k4w64_DIUU il1_8k1w16_dl1_8k1w16_ul2_32k4w16_DEIU
ps-jpeg il1_4k1w64_dl1_2k1w16_ul2_32k4w64_DIIU il1_4k1w16_dl1_2k1w16_ul2_32k4w16_DEIU
ucbqsort il1_4k1w64_dl1_4k1w64_ul2_32k4w64_DIUU il1_2k1w16_dl1_2k1w16_ul2_32k4w16_DEIU
v42 il1_8k1w64_dl1_8k1w16_ul2_32k4w64_DIUU il1_8k1w32_dl1_4k1w16_ul2_32k4w32_DDEU
pegwit il1_8k1w64_dl1_8k1w16_ul2_32k4w64_DDDI il1_8k1w16_dl1_4k2w16_ul2_32k4w16_EEEU
g721 il1_8k1w16_dl1_2k1w16_ul2_32k4w16_DDDI il1_8k1w16_dl1_2k1w16_ul2_32k4w16_EEEU
rawcaudio il1_2k1w64_dl1_2k1w16_ul2_32k4w64_DIUU il1_2k1w16_dl1_2k1w16_ul2_32k4w16_DDEI

0.00

0.20

0.40

0.60

0.80

1.00

1.20

A2
TI

M
E0

1

C
AC

H
EB

01

C
AN

R
D
R
01

II
R
FL

T0
1

M
AT

R
IX

01

PU
W
M
O
D
01

R
SP

EE
D
01

TB
LO

O
K
01

AI
FF

TR
01

AI
IF
FT

01

AI
FI
R
F0

1

BI
TM

N
P0

1

ID
C
TR

N
01

PN
TR

C
H
01

TT
SP

R
K
01

Ba
se

FP
01

bc
nt

bi
lv

bi
na

ry bl
it

br
ev

ep
ic fir

g3
fa
x

jp
eg

m
at
m
ul

m
pe

g2

po
cs

ag

ps
-j
pe

g

uc
bq

so
rt

v4
2

pe
gw

it

g7
21

ra
w
ca

ud
io

av
g

E
n

e
r
g

y
 c

o
n

s
u

m
p

ti
o

n
 n

o
r
m

a
li

z
e
d

 t
o

th

e
 b

a
s
e
 c

a
c
h

e
 c

o
n

fi
g

u
r
a
ti

o
n

Single level/Separate Two level/Separate SERP ACE-AWT

TVLSI-00200-2006.R1

outperforming both previous cache tuning heuristics in half
of the benchmarks. However, ACE-AWT consistently
outperforms both previous heuristics in all benchmarks.

TABLE II compares the number of cache configurations
explored by SERP and ACE-AWT to previous methods. The
heuristic for a single level of cache only explores 9.8
configurations on average and results in the same average
energy savings as both the two level/separate and SERP
heuristics. When comparing SERP with two-level/separate,
SERP achieves the same average energy savings and
explores four fewer cache configurations. ACE-AWT
explores 33.7 configurations on average, 3.4 times that of the
single level cache, but achieves 61% energy savings as
compared to only 40% energy savings.

F. Static Energy for Future Trends
For the results presented in section B, we assumed static

energy accounted for 10% of the total energy consumption of
the cache. However, static energy becomes a greater factor in
total energy consumption as technology pushes further in to
deep sub-micron feature sizes, and it is interesting to
investigate the fidelity of cache configuration. We explored
systems where static energy accounted for 15%, 20%, 25%,
and, for possible farther distant technologies, 50% of the total
energy consumption of the cache.

TABLE III shows the average energy consumption
normalized to the base cache configuration averaged across
all benchmarks for the heuristics studied. Energy
consumptions that show energy savings are highlighted in
bold. The ACE-AWT heuristic shows very good fidelity with
increasing static energy consumption.

Both heuristics show the same trend – as the percentage of
static energy consumption increases, the cache tuning
heuristics are revealing greater energy savings. This trend is
expected since cache tuning improves performance and thus
eliminates costly idle cycles while waiting for fetches from a
higher level of the cache hierarchy. Going from 10% to 50%
static energy contribution, SERP revealed an additional 34%
energy savings and the ACE-AWT heuristic showed an
additional 40% energy savings.

The additional energy savings due to increased static
power consumption can also soften the poor performance of
inadequate tuning heuristics. TABLE III shows that for 50%
static energy consumption, sequential exploration with ratio
projection actually shows an average energy savings of 18%
as opposed to the 24% increase in energy observed with the
10% static energy consumption. Whereas a tuning heuristic
with an average energy savings of 24% is hardly a good
heuristic compared to the ACE-AWT heuristic, this trend
does suggest that tuning methodologies deemed as
unsuccessful with today’s technology may seem more

attractive as new technologies are revealed.

VI. TUNING ENVIRONMENTS
The ACE-AWT heuristic is primarily intended for use as a

runtime optimization method for either desktop environments
or embedded systems. However, the ACE-AWT heuristic is
quite flexible and is easily applicable to all tuning
environments such as a simulation-based configuration
exploration or a hardware prototyping platform, as described
in this section

The ACE-AWT heuristic is highly suitable for a dynamic
runtime tuning environment for desktop environments or
embedded systems. Zhang et al. [26] shows that level one
cache tuning is feasible during runtime and the level one
tuning in our work is based on Zhang’s tuning heuristic.
Zhang shows that the actual tuning hardware adds very little
area overhead. Zhang also explores the cache parameters
such that cache flushing is minimized. However, for the
cache flushing that does happen, we observe that flushing is
very infrequent compared to the long run time needed to
determine stabilized hit and miss rates for each cache
configuration. Our level two configurable cache is based on
the Motorola M*CORE processor which did not have any
overhead.

Because the ACE-AWT heuristic is a feasible dynamic
runtime tuning heuristic, the tuning heuristic becomes more
flexible to operating environments. The ACE-AWT heuristic
can be used to determine one low energy cache configuration
to use throughout the entire run of an application by tuning
once during startup. However, phase changes in applications
suggest that different cache configurations are more
appropriate for different execution phases of an application
[16][21]. To better accommodate a single application
environment with multiple phase changes, the tuning
hardware could monitor the miss rates. When the miss rate
exceeds a given threshold, the tuning hardware would
reconfigure the cache for the new execution phase. To reduce
tuning time, the heuristic cache configuration is saved and
restored when the application reaches that execution phase
again instead of rerunning the entire heuristic. Additionally,
the ACE-AWT heuristic is suitable for a multi-application
environment with an operating system. The tuning hardware
would run each time an application swap occurs and, as with
the application phase tuning, cache configurations are saved
and restored to eliminate retuning when returning to a
previously executed application. The minimization of the
overhead incurred by runtime phase-based cache tuning and

TABLE II
NUMBER OF CONFIGURATIONS EXPLORED FOR VARIOUS CACHE TUNING

HEURISTICS.

TABLE III
ENERGY CONSUMPTION NORMALIZED TO THE BASE CACHE CONFIGURATION

AVERAGED ACROSS ALL BENCHMARKS FOR DIFFERENT STATIC ENERGY
CONSUMPTION. ENERGY SAVINGS ARE SHOWN IN BOLD.

 SERP ACE-AWT
10% Static Energy 1.24 0.38
15% Static Energy 1.18 0.37
20% Static Energy 1.10 0.33
25% Static Energy 1.05 0.32
50% Static Energy 0.82 0.23

 Single
level/Separate

Two
level/Separate

SERP ACE-AWT

range 7-13 28-28 22-24 23-41
average 9.8 28 23.8 33.7

TVLSI-00200-2006.R1

the implementation details are the focus of our future work.
In a hardware prototyping environment, two prototyping

options exist - a full hardware prototyping environment and a
platform assisted hardware prototyping environment. The full
hardware prototyping environment consists of all tuning
components implemented in hardware on the prototyping
board. The tuning hardware would apply the ACE-AWT
heuristic by running each cache configuration and measuring
the hit and miss rates. Designer-provided energy annotations
would guide the cache tuner to determine the next cache
configuration to try. After completion of the heuristic, the
best cache configuration can be reported to the designer. A
platform-assisted hardware prototyping environment couples
a tunable platform with a PC to drive the tuning heuristic.
The PC configures the platform for the configuration to try
and then reads the hit and miss rates after a sufficiently long
run of the application. The PC uses the cache hit and miss
rates to drive the ACE-AWT heuristic and configure the
platform for the next configuration to try.

In a simulation-based approach, application of the ACE-
AWT heuristic is similar to the experimental environment set
up for the results presented in this paper. Energy
consumption estimates of cache and memory accesses are
used to annotate the exploration heuristic. An exploration
script is used in conjunction with a cache simulator to drive
the heuristic. In addition to using a simulation approach for
embedded systems, the simulation approach could also be
used for profiling desktop computing environments.

Furthermore, the ACE-AWT heuristic is applicable in
environments with other tunable parameters such as bus
configuration and hardware/software partitioning by
specifying a scheduling order for the configuration of the
tunable parameters.

VII. CONCLUSIONS AND FUTURE WORK
We have presented an efficient method for cache hierarchy

tuning for a highly configurable cache with a very large
design space. The heuristic is designed to efficiently and
accurately tune the level one and level two caches in a
system during runtime but is also applicable to a hardware
prototyping environment and a desktop simulation cache
exploration environment. Our heuristic determines a cache
configuration that consumes on average 61% less energy than
a base cache configuration while exploring only 0.2% of the
design space. Additionally, our cache tuning results in an
average speedup of 9% due to line size configuration.

Future work includes recompilation of the application to
the best cache configuration for further energy and
performance benefits. We also plan to examine desktop and
mainframe applications on appropriate cache configurations
for different application execution phases and verify that the
heuristic developed in this work is applicable to desktop
applications exhibiting different access pattern characteristics
than embedded applications. Additionally, we plan to explore
the many details involved with runtime implementation of
application phase-based cache tuning. Furthermore, we plan

to generalize our tuning heuristic so that it is amenable to
future platforms with an unknown number of levels within
the cache hierarchy.

REFERENCES
[1] D.H. Albonesi, “Selective cache ways: on demand cache resource

allocation.” Journal of Instruction Level Parallelism, May 2002.
[2] Altera, Nios Embedded Processor System Development,

http://www.altera.com/corporate/news_room/releases/products/nr-
nios_delivers_goods.html.

[3] Arc International, http://www.arccores.com.
[4] ARM, http://www.arm.com.
[5] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S.

Dwarkadas, “Memory heirarchy reconfiguration for energy and
performance in general-purpose processor architecture.” 33rd
International Symposium on Microarchitecture, December 2000.

[6] D. Burger, T. Austin, and S. Bennet, “Evaluating future
microprocessors: the simplescalar toolset.” University of Wisconsin-
Madison Computer Science Department Tech. Report CS-TR-1308,
July 2000.

[7] A. S. Dhodapkar and J. E. Smith, “Timing reconfigurable
microarchitectures for power efficiency.” International Symposium on
Parallel and Distributed Processing, 2004

[8] EEMBC, The Embedded Microprocessor Benchmark Consortium,
http://www.eembc.org.

[9] Z. Ge, H. B. Lim, and W. F. Wong, “A reconfigurable instruction
memory hierarchy for embedded systems.” International Conference
on Field Programmable Logic and Applications, 2005.

[10] T. Givargis and F. Vahid, “Platune: a tuning framework for system-on-
a-chip platforms.” IEEE Transactions on Computer Aided Design,
November 2002

[11] A. Ghosh and T. Givargis, “Cache optimization for embedded
processor cores: an analytical approach.” International Conference on
Computer Aided Design, November 2003.

[12] A. Gordon-Ross, F. Vahid, and N. Dutt, “Automatic tuning of two-
level caches to embedded applications.” Design, Automation and Test
Conference in Europe (DATE), 2004.

[13] A. Gordon-Ross, F. Vahid, and N. Dutt, “Fast configurable cache
tuning with a unified second level cache.” International Symposium on
Low Power Electronic Design, August 2005.

[14] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: a
tool for evaluating and synthesizing multimedia and communications
systems.” International Symposium on Microarchitecture, 1997.

[15] A. Malik, W. Moyer, and D. Cermak, “A low power unified cache
architecture providing power and performance flexibility.”
International Symposium on Low Power Electronics and Design, 2000.

[16] M.C. Merten, A.R. Trick, C.N. George, J. Gyllenhaal, and W.W. Hwu,
“A hardware-driven profiling scheme for identifying program hot spots
to support runtime optimization.” In Proceedings of the 26th Annual
International Symposium on Computer Architecture, 1999.

[17] MIPS Technologies, http://www.mips.com.
[18] M. Palesi and T. Givargis, “Multi-objective design space exploration

using genetic algorithms.” International Workshop on
Hardware/Software Codesign, May 2002.

[19] G. Reinman and N.P. Jouppi, “Cacti2.0: an integraded cache timing
and power model.” COMPAQ Western Research Lab, 1999.

[20] S. Segars, “Low power design techniques for microprocessors.”
International Solid State Circuit Conference, February 2001.

[21] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder,
“Discovering and exploiting program phases.” IEEE Micro: Micro's
Top Picks from Computer Architecture Conferences, December 2003

[22] Tensilica, Xtensa Processor Generator, http://www.tensilica.com/.
[23] A. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji, “Adapting

cache line size to application behavior.” International Conference on
Supercomputing, June 1999.

[24] C. Zhang, F. Vahid, and W. Najjar, “A highly-configurable cache
architecture for embedded systems.” 30th Annual International
Symposium on Computer Architecture, June 2003.

[25] C. Zhang, F. Vahid, and R. Lysecky, “A self-tuning cache architecture
for embedded systems.” Special Issue on Dynamically Adaptable

TVLSI-00200-2006.R1

Embedded System, ACM Transactions on Embedded Computing
Systems Vol 3, No 2, May 2004, Pages 1-19.

[26] C. Zhang and F. Vahid, “A self-tuning cache architecture for
embedded systems.” Design, Automation and Test Conference in
Europe (DATE), 2004

Ann Gordon-Ross is an Assistant Professor of
Electrical and Computer Engineering at the University
of Florida. She received her B.S. and Ph.D. in Computer
Science from the University of California, Riverside in
2000 and 2006, respectively. She is a member of the
NSF Center for High-Performance Reconfigurable
Computing (CHREC) at the University of Florida.

Her research interests include embedded systems,
computer engineering, low-power design, reconfigurable computing,
platform design, dynamic optimizations, hardware design, real-time systems,
computer architecture, and multi-core platforms

Frank Vahid is a Professor of Computer Science and
Engineering at the University of California, Riverside,
and Associate Director of the Center for Embedded
Computer Systems at UC Irvine. He received a B.S. in
Computer Engineering from the University of Illinois in
1988, and M.S. and Ph.D. degrees from the University of

California, Irvine in 1990 and 1994, respectively.

He is author of the textbooks Digital Design (John Wiley and Sons,
2006), VHDL for Digital Design (John Wiley and Sons, 2007), Verilog for
Digital Design (John Wiley and Sons, 2007), and Embedded System Design
(John Wiley and Sons, 2001).

Nikil D. Dutt received a Ph.D. in Computer Science from
the University of Illinois at Urbana-Champaign in 1989,
and is currently a Chancellor's Professor at the University
of California, Irvine, with academic appointments in the
CS and EECS departments.

His research interests are in embedded systems,
electronic design automation, computer architecture,
optimizing compilers, system specification techniques,
and distributed embedded systems.

He received best paper awards at CHDL89, CHDL91, VLSIDesign2003,
CODES+ISSS 2003, CNCC 2006, and ASPDAC-2006. Professor Dutt
currently serves as Editor-in-Chief of ACM Transactions on Design
Automation of Electronic Systems (TODAES) and as Associate Editor of
ACM Transactions on Embedded Computer Systems (TECS) and of IEEE
Transactions on VLSI Systems (IEEE T-VLSI). He was an ACM SIGDA
Distinguished Lecturer during 2001-2002 and an IEEE Computer Society
Distinguished Visitor for 2003-2005. He has served on the steering,
organizing, and program committees of several premier CAD and Embedded
System Design conferences and workshops, including ASPDAC, CASES,
CODES+ISSS, DATE, ICCAD, ISLPED and LCTES. He serves or has
served on the advisory boards of ACM SIGBED and ACM SIGDA, and
previously served as Vice-Chair of ACM SIGDA and of IFIP WG 10.5.
Professor Dutt is a Fellow of the IEEE, an ACM Distinguished Scientist, and
an IFIP Silver Core Awardee.

