
Analytical Modeling of Partially Shared Caches in Embedded CMPs

Wei Zang and Ann Gordon-Ross*
 Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA

weizang@ufl.edu & ann@ece.ufl.edu
*Also with the NSF Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida

Abstract—In modern ubiquitous devices, optimizing shared last-
level caches (LLCs) in embedded chip multi-processor systems
(CMPs) is critical due to the increased contention for limited
cache space from multiple cores. We propose cache partitioning
with partial sharing (CaPPS) to reduce LLC contention and
improve utilization. CaPPS can reduce the average LLC miss
rate by 25% and 17% as compared to baseline configurations
and private partitioning, respectively. To facilitate fast design
space exploration, we develop an analytical model to quickly
estimate the miss rates of all CaPPS configurations with an
average error of only 0.73% and with an average speedup of
3,966X as compared to a cycle-accurate simulator.

Keywords—cache partitioning; analytical modeling

I. INTRODUCTION
Many chip multi-processor systems (CMPs) leverage

shared last-level caches (LLCs) (e.g., second-/third-level),
such as the ARM Cortex-A, Intel Xeon, and Sun T2
[1][10][11]. To improve cache utilization, LLCs should be
large enough to accommodate all sharing cores’ data, but
long access latencies and high power consumption typically
precludes large LLCs from embedded systems with strict
area/energy/power constraints. Since battery-operated
devices (e.g., cell phones, tablets, laptops, etc.) have limited
energy reserves and satisfying the applications’ quality-of-
services (QoSs) is typically required, optimizing small
LLCs’ performance is significantly more challenging due to
contention for limited cache space.

Shared LLCs afford high cache utilization and no
coherence overhead, however, high contention and unfair
cache utilization degrades performance. A core’s LLC
occupancy (utilized space) is flexible and dictated by the
core’s application’s demands. Cores with high LLC
requirements occupy a large LLC area and cause high,
potentially unfair, contention. For example, streaming
multimedia applications occupy the LLC with a large
amount of single-accessed data and unfairly evict the other
cores’ data, thus increasing LLC miss rates. For example,
this unfair cache utilization is common in mobile systems
when a local music/movie player and other web-service
applications are co-executed.

 To eliminate shared LLC contention, cache partitioning
[5][15][18] partitions the cache, allocates quotas (a subset of
partitions) to the cores, and optionally configures the
partitions/quotas (e.g., size and/or associativity [15][18]) to
the allocated core’s requirements. Each core’s cache
occupancy is constrained to the core’s quota to ensure fair
utilization. Set partitioning partitions and allocates quotas at

the cache set granularity and is typically implemented using
operating system (OS)-based page coloring [12]. However,
due to this OS modification requirement, hardware-based
way partitioning is more widely used. Way partitioning
partitions and allocates quotas at the cache way granularity
[15][18]. However, way partitioning for shared LLCs
typically uses private partitioning, which restricts quotas for
exclusive use by the allocated core only and can lead to poor
cache utilization if a core does not occupy the core’s entire
allocated quota.

In this paper, we propose to improve way partitioning’s
cache utilization using cache partitioning with partial sharing
(CaPPS). CaPPS improves cache utilization via sharing
configuration, which enables a core’s quota to be configured
as private, partially shared with a subset of cores, or fully
shared with all other cores. Whereas sharing configuration
increases the design space and thus increases optimization
potential, this large design space significantly increases
design space exploration time. To facilitate design space
exploration, we develop an offline analytical model to
quickly estimate cache miss rates for all partitioning and
sharing configurations, which enables determining LLC
configurations for any optimization that evaluates cache miss
rates (e.g., performance, energy, energy delay product,
power, etc.). The analytical model probabilistically predicts
the miss rates when multiple applications are co-executing
using the isolated cache access distribution for each
application (i.e., the application is run in isolation with no
co-executing applications). Although several previous works
[3][4][6] have developed analytical models to predict shared
LLC contention offline, these works’ caches where
completely shared by all cores and did not consider partial
sharing, which vastly increases the design space and thus
optimization potential. Due to CaPPS’s extensive design
space, experiments reveal that CaPPS can reduce the average
LLC miss rates by as much as 25% and 17% as compared to
baseline configurations and private partitioning, respectively.
The analytical model estimates cache miss rates with an
average error of only 0.73% and is 3,966X faster on average
than a cycle-accurate simulator.

II. RELATED WORK
Since CaPPS uses way partitioning and we developed an

analytical model to predict the shared ways’ cache
contention, we compare our work with prior work in these
areas.

For way partitioning, Qureshi and Patt [15] developed
utility-based cache partitioning (UCP) that used an online
monitor to track the cache misses for all possible numbers of

ways assigned to each core. Greedy and refined heuristics
determined the cores’ quotas. Varadarajan et al. [18]
partitioned the cache into small direct-mapped cache units,
which were privately assigned to the cores and the cache
partitions had configurable size, block size, and associativity.
Kim et al. [13] developed static and dynamic cache
partitioning for fairness optimization. Static cache
partitioning used the cache access’s stack distance profile to
determine the cores’ requirements. Dynamic cache
partitioning increased/decreased the cores’ quotas in
accordance with the miss rate changes between evaluation
intervals. Private LLCs also benefit from way partitioning. In
CloudCache [14], the private caches were partitioned, but a
core could share nearby cores’ (limited access latencies)
private caches. MorphCache [17] partitioned the level two
and level three caches and allowed subsets of cores’ private
caches to be merged and fully shared by the subset. Although
some of these prior works in private LLC partitioning
[14][17] enabled a core to share other cores’ quotas, CaPPS
is more flexible than these works by enabling a portion/all of
a core’s quota to be shared with any subset of cores.

Prior works on analytical modeling to determine cache
miss rates targeted only fully shared caches. Chandra et al.
[3] proposed a model using access traces for isolated threads
to predict inter-thread contention for a shared cache. Reuse
distance profiles were analyzed to predict the extra cache
misses for each thread due to cache sharing, but the model
did not consider the interaction between cycles per
instruction (CPI) variations and cache contention. Eklov et
al. [6] proposed a simpler model that calculated the CPI
considering the cache misses caused by contention by
predicting the reuse distance distribution of an application
when co-executed with other applications based on the
isolated reuse distance distribution of each application. Chen
and Aamodt [4] proposed a Markov model to estimate the
cache miss rates for multi-threaded applications with inter-
thread communication.

Analytically predicting the cache miss rate for CaPPS is
more challenging than prior works, since in CaPPS, only the
interleaved LLC accesses of other cores that pollute the
partially shared ways affect the core’s miss rate. Determining
the effects of these interleaved accesses on the miss rate
introduces extensive complexity.

III. CACHE PARTITIONING WITH PARTIAL SHARING
To accommodate the LLC requirements for multiple

applications co-executing on different cores, CaPPS
partitions the shared LLC at the way granularity and
leverages sharing configuration to allocate the partitions to

each core’s quota. To facilitate fast design space exploration,
an analytical model estimates the cache miss rates for the
CaPPS configurations using the applications’ isolated LLC
access traces. We assume that the cores execute different
applications in independent address spaces, thus there is no
shared instruction/data address or coherence management,
which is a common case in mobile systems running disparate
applications and is similar to assumptions made in prior
works [3][6].

A. Architecture and Sharing Configurations
CaPPS’s sharing configurations enable a core’s quota to

be configured as private, partially shared with a subset of
cores, or fully shared with all other cores. Fig. 1 (a)-(c)
illustrates sample configurations, respectively, for a 4-core
CMP (C1 to C4

CaPPS uses the least recently used (LRU) replacement
policy, but we note that the analytical model can be extended
to approximate estimations for other replacement policies,
such as pseudo-LRU. To reduce the sharing configurability
with no effect on cache performance and to minimize
contention, cores share an arbitrary number of ways starting
with the LRU way, then second LRU way, and so on since
these ways are least likely to be accessed. For example, in

) and an 8-way LLC: (a) each core’s quota
has a configurable number of private ways; (b) the cores’
quotas are partially shared with subsets of cores; and (c) all
of the four cores fully share all of the ways.

Fig. 1 (b) two of C1’s ways are shared with C2., therefore,
C1’s two most recently used (MRU) blocks are cached in
C1’s two private ways, and the two LRU blocks are cached
in the two ways shared with C2 and these two LRU blocks
are the only replacement candidates for C2

[7]

’s accesses.
Maintaining this LRU ordering and determining replacement
candidate can be easily implemented using a linked list or
systolic array implementation for conventional LRU
caches with the integration of column caching [5] to achieve
low hardware overhead and without increasing the cache
access time. Since the hardware implementation is
straightforward and is not the focus of this paper, we omit
the implementation details for brevity.

B. Analytical Modeling Overview
For applications with fully/partially shared ways, the

analytical model probabilistically determines the miss rates
using the isolated cache access distributions for the co-
executing applications. These distributions are recorded
during isolated access trace processing. The isolated LLC
access traces can be generated with a simulator/profiler by
running each application in isolation on a single core with all
other cores idle. For applications with only private ways,
there is no cache contention and the miss rate can be directly
determined from the isolated LLC access trace distribution.

Fig. 2 illustrates the contention in the shared ways using
sample time-ordered isolated (C1, C2) and interleaved/co-
executed (C1&C2) access traces to an arbitrary cache set
from cores C1 and C2. C1’s and C2’s accesses are denoted as
X i and Yi, respectively, where i differentiates accesses to
unique cache blocks. The first access to X3 and the second
access to X1 occurred at times 𝑡1 and 𝑡2, respectively. C1

8-way LLC 8-way LLC 8-way LLC

Shared by all of
the four cores

(a) (b) (c)

P
rivate

for C
1

P
rivate

for C
2

P
rivate

for C
3

P
rivate for C

4

P
rivate

for C
1

P
rivate for C

2

S
hared by
C

1 &
 C

2

P
rivate for C

3

S
hared by
C

3 &
 C

4

’s

Figure 1. Three sample sharing configurations: (a) the cores’ quotas are
private; (b) some ways are partially shared with a subset of cores; and (c) the
entire LLC is fully shared with all cores.

second access to X1 will be a cache hit if C1’s number of
private ways is greater than or equal to five because four
unique blocks are accessed between the two accesses to X1.
Alternatively, if C1’s number of private ways is smaller than
five and C1 shares ways with C2, X1’s hit/miss is dictated by
the interleaved accesses from C2. For example, if C1 has six
allocated ways and two of the LRU ways are shared with C2,
X3 evicts X1 from C1’s private way into a shared way.
Therefore, C2’s accesses between 𝑡1 and 𝑡2 dictates whether
X1 has been evicted from the cache or not. If C2’s accesses
between 𝑡1 and 𝑡2 evict two or more blocks into the shared
ways, X1

In order to determine the contention effects to C
’s second access will be a cache miss.

1’s miss
rate, C1 and C2 III’s number of accesses 𝑛1 (Section .D.a)
and 𝑛2 (Section III.D.b), respectively, during the time period
(𝑡1, 𝑡2) must be estimated. Since the number of blocks 𝑅
from 𝑛2 evicted into the shared ways dictates whether C1’s
blocks (e.g., X1 Fig. 4 in) are still in the shared ways, we
calculate the probability 𝑝(𝑛2,𝑅) that 𝑅 number of blocks
are evicted into the shared ways (Section III.D.c) to estimate
C1 III’s miss rate (Section .D.d).

C. Isolated Access Trace Processing
To accumulate the isolated cache access distribution, we

record the reuse distance and stack distance for each access
in the isolated LLC access trace, which can be obtained
using a stack-based trace-driven simulator [9]. For an
accessed address T that maps to a cache set, the reuse
distance 𝑟 is the number of accesses to that set between this
access to T and the previous access to any address in the
same block as T. The stack distance 𝑑 is the number of
unique block addresses, or conflicts, in this set of accesses.
For example, in Fig. 2, C1’s second access to X1

In each cache set, we accumulate the number of accesses
𝑁𝑑 for each stack distance 𝑑 (𝑑 ∈ [0,𝐴]), where 𝐴 is the LLC
associativity. We accumulate the number of accesses with
𝑑 > 𝐴 in 𝑁𝐴 together with the number of accesses with 𝑑 = 𝐴,
since all accesses with 𝑑 ≥ 𝐴 are cache misses in any
configuration. Given this information, for any access, the
probabilistic information for the access’ stack distance is
𝑝(𝑑 < 𝑑𝑖) = (∑ 𝑁𝑑

𝑑=𝑑𝑖−1
𝑑=0) (∑𝑁𝑑)� and 𝑝(𝑑 ≥ 𝑑𝑖) = 1 −

𝑝(𝑑 < 𝑑𝑖), (∀𝑑𝑖 ∈ [1, A]). For all of the accesses for each 𝑑,
we accumulate a histogram of different 𝑟 and calculate the
average �̅� over all 𝑟.

 has 𝑟 = 7
and 𝑑 = 4.

The analytical model uses the base (best case) CPU
cycles 𝐶𝑦𝑐𝑙𝑒𝑠𝑏𝑎𝑠𝑒 to calculate the CPU cycles required to

complete the application when co-executed with other
applications. 𝐶𝑦𝑐𝑙𝑒𝑠𝑏𝑎𝑠𝑒 assumes that all LLC accesses are
hits. An application’s total number of CPU cycles 𝐶𝑦𝑐𝑙𝑒𝑠𝑒𝑥𝑒
are recorded in the isolated execution to calculate 𝐶𝑦𝑐𝑙𝑒𝑠𝑏𝑎𝑠𝑒
using 𝐶𝑦𝑐𝑙𝑒𝑠𝑏𝑎𝑠𝑒 = 𝐶𝑦𝑐𝑙𝑒𝑠𝑒𝑥𝑒 − 𝑚𝑒𝑥𝑒 · 𝐿𝐿𝐶𝑙𝑎𝑡𝑒𝑛𝑐𝑦, where 𝑚𝑒𝑥𝑒
is the number of LLC misses in the application’s isolated
execution and 𝐿𝐿𝐶𝑙𝑎𝑡𝑒𝑛𝑐𝑦 is the delay cycles incurred by an
LLC miss.

Since the access distributions across the cache sets are
different, the distributions are individually accumulated and
recorded for each set to estimate the number of misses in
each set’s accesses. Since the analysis is the same for all
cache sets, we present the analytical model for one arbitrary
cache set.

D. Analysis of the Shared Ways’ Contention
First, we describe the analytical model to analyze the

shared ways’ contention for a sample CMP with two cores
C1 and C2 and then generalize the analytical model to any
number of cores. A sharing configuration allocates 𝐾C1
number of ways to core C1, where 𝐾𝑃,C1 ways are private and
the remaining 𝐾𝑆 (𝐾𝑆 = 𝐾C1 − 𝐾𝑃,C1) ways are shared with
core C2. 𝐾C2 and 𝐾𝑃,C2 similarly denote these values for C2.
For C1, all accesses with a stack distance 𝑑 ≤ 𝐾𝑃,C1 − 1 result
in cache hits and all accesses with 𝑑 ≥ 𝐾C1 are cache misses.
The cache hit/miss determination of the accesses where
𝐾𝑃,C1 ≤ 𝑑 ≤ 𝐾C1 − 1 depends on the interleaved accesses from
C2, and the following subsections elaborate on the estimation
method for these accesses. If C1 only has private ways, then
𝐾𝑃,C1 = 𝐾C1, and these estimations are not required since the
number of misses for C1

a. Calculation of 𝑛1

 can be directly calculated using
∑ 𝑁𝑑,C1
𝑑=𝐾C1−1
𝑑=0 .

For an arbitrary stack distance 𝐷 in [𝐾𝑃,C1 ,𝐾C1 − 1], the
associated �̅� was determined during isolated access trace
processing. This subsection presents the calculation of 𝑛1 for
C1

Fig. 3
’s accesses with stack distance 𝐷 based on 𝑟.

 depicts C1’s isolated access trace to an arbitrary
cache set, where the second access to X1 has a stack distance
𝐷 and reuse distance �̅�. X3’s access evicts X1 from C1’s
private ways, therefore, the numbers of conflicts before and
after X3 are (𝐾𝑃,C1 − 1) and (𝐷 − (𝐾𝑃,C1 − 1)), respectively.
Confi denotes the first access of the i-th conflict with X1. We
denote the number of accesses before X3

time

Access trace in one cache set

 X1 X2 X3 X3 X2 X4 X5 X1C1

 Y1 Y2 Y3 Y4 Y5 Y1C2

X1 Y1 X2 Y2 X3 Y3 X3 X2 X4 Y4 Y5 X5 Y1 X1C1&C2

t1t2

as 𝑛0, which can be
any integer in [𝐾𝑃,C1 − 1, �̅� − (𝐷 − 𝐾𝑃,C1) − 2]. After

Figure 2. Two cores’ isolated (C1, C2) and interleaved (C1&C2

X1 …... X3 ... Conf(Kp,C1-1) …... Conf3 ... Conf2 ... Conf1 X1

time

d≥1d≥2d≥3d≥Kp,C1-1

d<1d<2d<Kp,C1-1
...

...

n0 n1

C1

t1t2

Access trace in one cache set

n accesses, D conflicts

) access
traces for an arbitrary cache set.

Figure 3. C1’s isolated access trace to an arbitrary cache set for calculating 𝒏𝟏.

determining the probability 𝑝(𝑛0, (𝐾𝑃,C1 − 1)) for each 𝑛0
(where 𝐾𝑃,C1 − 1 indicates the number of conflicts in the 𝑛0
accesses), we can calculate 𝑛0’s expected value 𝑛�0 for the
evaluated configuration’s associated 𝐾𝑃,C1 using 𝑛�0 =
∑(𝑛0 ⋅ 𝑝(𝑛0, (𝐾𝑃,C1 − 1))), and 𝑛1’s expected value is:
𝑛�1 = �̅� − 𝑛�0 − 1.

For a particular 𝑛0 ∈ [𝐾𝑃,C1 − 1, �̅� − (𝐷 − 𝐾𝑃,C1) − 2], the
probability is:

𝑝 �𝑛0, �𝐾𝑃,C1 − 1�� = 𝑝(𝐸𝐴,𝐸𝐵|𝐸𝐶) =
𝑝𝑏𝑒𝑓𝑜𝑟𝑒(𝐸𝐴) ⋅ 𝑝𝑎𝑓𝑡𝑒𝑟(𝐸𝐵)

𝑝𝑡𝑜𝑡𝑎𝑙(𝐸𝐶) (1)

where 𝐸𝐴 is the event that the 𝑛0 accesses have exactly
(𝐾𝑃,C1 − 1) conflicts and 𝐸𝐵 is the event that the 𝑛1 accesses
have exactly (𝐷 − (𝐾𝑃,C1 − 1)) conflicts. 𝑝𝑏𝑒𝑓𝑜𝑟𝑒(𝐸𝐴) and
𝑝𝑎𝑓𝑡𝑒𝑟(𝐸𝐵) are the occurrence probabilities of 𝐸𝐴 and 𝐸𝐵,
respectively. 𝐸𝐶 is the event that the 𝑟 accesses have exactly
𝐷 conflicts and 𝑝𝑡𝑜𝑡𝑎𝑙(𝐸𝐶) is the probability of 𝐸𝐶’s
occurrence, which is the summation of (𝑝𝑎𝑓𝑡𝑒𝑟(𝐸𝐵) ⋅
𝑝𝑏𝑒𝑓𝑜𝑟𝑒(𝐸𝐴)) for all 𝑛0. To calculate 𝑝𝑏𝑒𝑓𝑜𝑟𝑒(𝐸𝐴) and
𝑝𝑎𝑓𝑡𝑒𝑟(𝐸𝐵), we examine the sufficient conditions that 𝐸𝐴 and
𝐸𝐵 occur. In Fig. 3, the first access following X1 must be
different from X1 (for 𝐷 > 0), which is Conf1 satisfying
𝑑 ≥ 1, since Conf1 has at least one conflict: X1. The second
conflict Conf2 satisfies 𝑑 ≥ 2, since Conf2 has at least two
conflicts: Conf1 and X1. The accesses between Conf1 and
Conf2 satisfy 𝑑 < 1 since these accesses can only be Conf1.
Conf3 satisfies 𝑑 ≥ 3 since Conf3 has at least three conflicts:
Conf2, Conf1, and X1. The accesses between Conf2 and
Conf3 satisfy 𝑑 < 2, since these conflicts can only be Conf2
or Conf1, etc. Similarly, ConfKp,C1-1 satisfies 𝑑 ≥ (𝐾𝑃,C1 − 1)
and the accesses between X3 and ConfKp,C1-1

where 𝑆𝑎 is a set including all �⃗� satisfying ∑𝑎𝑖 = 𝑛0 −
(𝐾𝑃,C1 − 1). Similarly, defining 𝑏�⃗ = (𝑏0, 𝑏1, … , 𝑏𝐷−𝐾𝑝,C1

) where
𝑏𝑖 ∈ [0,𝑛1 − (𝐷 − 𝐾𝑃,C1 + 1)], 𝑝𝑎𝑓𝑡𝑒𝑟(𝐸𝐵) is:

𝑝𝑎𝑓𝑡𝑒𝑟(𝐸𝐵) = � � 𝑝�𝑑 ≥ 𝑖 + 𝐾𝑃,C1�

𝑖=𝐷−𝐾𝑃,C1

𝑖=0

�

⋅ � � � � 𝑝�𝑑 < 𝑖 +𝐾𝑃,C1�
𝑏𝑖

𝑖=𝐷−𝐾𝑃,C1

𝑖=0

�
∀𝑏�⃗ ∈𝑆𝑏

� (3)

 satisfy 𝑑 <
(𝐾𝑃,C1 − 1). Thus, defining �⃗� = (𝑎1,𝑎2, … , 𝑎𝐾𝑝,C1−1) where
𝑎𝑖 ∈ [0,𝑛0 − (𝐾𝑃,C1 − 1)], 𝑝𝑏𝑒𝑓𝑜𝑟𝑒(𝐸𝐴) is:

𝑝𝑏𝑒𝑓𝑜𝑟𝑒(𝐸𝐴) = � � 𝑝(𝑑 ≥ 𝑖)

𝑖=𝐾𝑃,C1−1

𝑖=1

� ⋅ � � � � 𝑝(𝑑 < 𝑖)𝑎𝑖
𝑖=𝐾𝑃,C1−1

𝑖=1

�
∀𝑎�⃗ ∈𝑆𝑎

� (2)

where 𝑆𝑏 is a set including all 𝑏�⃗ satisfying ∑𝑏𝑖 = 𝑛1 − (𝐷 −
𝐾𝑃,C1 + 1).

b. Calculation of 𝑛2
To determine the contention effect from C2, the expected

number of accesses 𝑛�2 from C2 is estimated based on the
ratio of the number of cache set accesses from C1 and C2

where ∑𝑁𝑑,C1and ∑𝑁𝑑,𝐂2 are the total number of LLC
accesses from C

per
cycle:

𝑛�1
𝑛�2

=
∑𝑁𝑑,𝐶1 𝐶𝑦𝑐𝑙𝑒𝑠� 𝐶1⁄
∑𝑁𝑑,𝐶2 𝐶𝑦𝑐𝑙𝑒𝑠� 𝐶2⁄

 (4)

1 and C2, respectively. 𝐶𝑦𝑐𝑙𝑒𝑠� C1is the
number of CPU cycles required to execute the application on
C1 when C2

where 𝑑𝑒𝑙𝑎𝑦𝑏𝑢𝑠_𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is the delay imposed by the shared
bus contention from the higher level caches (closer to the
CPU) of each core to the shared LLC. 𝑑𝑒𝑙𝑎𝑦𝑏𝑢𝑠_𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is
derived by calculating the bus contention probability that
another core is sending a read/write request to the LLC and
the LLC is returning that core’s requested block
simultaneously with the evaluated core’s bus request. The
bus contention probability is dictated by each core’s bus
request probability, which is equal to the total number of bus
requests generated from the core’s higher level cache misses
divided by 𝐶𝑦𝑐𝑙𝑒𝑠C𝚤� .

 is co-executing another application, and
𝐶𝑦𝑐𝑙𝑒𝑠� C2 is similarly defined. 𝐶𝑦𝑐𝑙𝑒𝑠C𝚤� can be calculated
using 𝐶𝑦𝑐𝑙𝑒𝑠𝑏𝑎𝑠𝑒 and the number of LLC misses 𝑚� estimated
with the contention:

𝐶𝑦𝑐𝑙𝑒𝑠C𝚤� = 𝐶𝑦𝑐𝑙𝑒𝑠𝑏𝑎𝑠𝑒 + 𝑚� · 𝐿𝐿𝐶𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 𝑑𝑒𝑙𝑎𝑦𝑏𝑢𝑠_𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (5)

c. Calculation of 𝑝(𝑛2,𝑅)
𝑝(𝑛2,𝑅) is the probability that 𝑅 number of blocks are

evicted from C2

(4)

’s private ways in the 𝑛2 accesses. Directly
using the expected 𝑛2 to calculate 𝑝(𝑛�2 ,𝑅) will introduce a
large bias (approximate 10% error) in the estimated LLC
miss rate, since different values of 𝑛2 result in different
hit/miss determinations and using one expected value 𝑛�2 will
estimate all 𝑛2 as hits/misses. Thus, we model 𝑛2 using a
Poisson distribution 𝑝(𝑛2) = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛2, 𝜆), where 𝜆 is 𝑛�2 if
the LLC is accessed randomly. However, since the LLC’s
accesses are generally not random and not uniformly
distributed in time (which makes valid), we use an
empirical variable 𝑒 to adjust 𝜆 to 𝜆 = 𝑛�2/𝑒. Our experiments
indicated that 𝑒 = 5 was appropriate for our training
benchmark suite, which contains a wide variety of typical
CMP applications, and is thus generally applicable. Since the
range of 𝑛2 is infinite in the Poisson distribution, and 𝑛2 with
very small 𝑝(𝑛2) has minimal effect on the miss rate
estimation, we only consider the 𝑛2 with 𝑝(𝑛2) > 0.01 and
calculate the associated 𝑝(𝑛2,𝑅).

To calculate 𝑝(𝑛2,𝑅) for an arbitrary 𝑛2, 𝑅 is determined
by evaluating the 𝑛2 accesses in chronological order with an
initial value of 𝑅 = 0. If there is one access with 𝑑 > 𝐾𝑃,C2 +
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑅, fetching this address into C2

with the initial case 𝑝(𝑛2 = 0,𝑅 = 0) = 1.

’s private ways will
evict one block into the shared ways and thus 𝑅 is
incremented by 1. Therefore, we can calculate 𝑝(𝑛2,𝑅)
inductively:

𝑝(𝑛2,𝑅) =

⎩
⎪
⎨

⎪
⎧𝑝(𝑛2 − 1,𝑅 − 1) ⋅ 𝑝 �𝑑 ≥ 𝐾𝑃,C2 + (𝑅 − 1)� , 𝑅 = 𝑛2

𝑝(𝑛2 − 1,𝑅) ⋅ 𝑝�𝑑 < 𝐾𝑃,C2 + 𝑅�

 +𝑝(𝑛2 − 1,𝑅 − 1) ⋅ 𝑝 �𝑑 ≥ 𝐾𝑃,C2 + (𝑅 − 1)� ,𝑅 < 𝑛2
𝑝(𝑛2 − 1,𝑅) ⋅ 𝑝�𝑑 < 𝐾𝑃,C2 + 𝑅�, 𝑅 = 0

�

d. Calculation of the LLC Miss Rates
Considering the impact of 𝑅 to the accesses with stack

distance 𝑑 ∈ [𝐾𝑃,C1 ,𝐾C1 − 1], the number of cache hits for C1
is:

ℎC1� = � 𝑁𝑑,C1

𝑑=𝐾𝑝,C1−1

𝑑=0

+ � �𝑁𝑑,C1

𝑑=𝐾C1−1

𝑑=𝐾𝑝,C1

⋅ � �� � 𝑝(𝑛2,𝑅)

𝑅=𝐾C1−𝑑−1

𝑅=0

� ⋅ 𝑝(𝑛2)�
∀𝑛2: 𝑝(𝑛2)>0.01

� (7)

After accumulating ℎC1� for all cache sets, the number of LLC
misses 𝑚C1� and the LLC miss rates can be determined.

Finally, we generalize the analytical model to estimate
the LLC miss rate for any core C i when j additional cores
(denoted as C j) share cache ways with C i by calculating the
expected number of accesses 𝑛�C𝑗 from the additional cores
during the time (𝑡1, 𝑡2) and then estimating 𝑝(𝑛C𝑗 ,𝑅C𝑗)
similarly as estimating 𝑛�2 and 𝑝(𝑛2,𝑅) for C2

(6)
. The

generalized expression of is:

ℎC𝚤� = � 𝑁𝑑,C𝑖

𝑑=𝐾𝑝,C𝑖−1

𝑑=0

+ � �𝑁𝑑,C𝑖 ⋅ 𝑝ℎ�

𝑑=𝐾C𝑖−1

𝑑=𝐾𝑝,C𝑖

 (8)

where:

𝑝ℎ = � ���𝑝(𝑛C𝑗) ⋅ 𝑝(𝑛C𝑗 ,𝑅C𝑗)�
C𝑗∈C��⃗

�
∀C��⃗ ∈𝑆C

 (9)

where C�⃗ = (𝑛C1 ,𝑛C2 , … ,𝑛𝑗) with 𝑝(𝑛C𝑗) > 0.01 and 𝑆C is a set
including all C�⃗ satisfying ∑𝑅C𝑗 ≤ 𝐾C𝑖 − 𝑑 − 1.

 According to (5), a circular dependency exists where
𝐶𝑦𝑐𝑙𝑒𝑠� is used to estimate 𝑚� and 𝑚� is used to calculate
𝐶𝑦𝑐𝑙𝑒𝑠� . The solution cannot be represented using a closed
form, thus we iteratively solve for 𝑚� . The initial value of 𝑚�
is acquired assuming there is no contention (i.e., all 𝐾C𝑖
number of ways are privately used by C i
(5)

), and 𝑚� is used in
 to calculate the initial value of 𝐶𝑦𝑐𝑙𝑒𝑠� . 𝐶𝑦𝑐𝑙𝑒𝑠� is provided

back into the analytical model to update 𝑚� and the new 𝑚� is
used to update 𝐶𝑦𝑐𝑙𝑒𝑠� . This iterative process continues until a
stable 𝑚� (with a precision of 0.001%) is achieved.
Experimental results indicated that only four iterations were
required for the results to converge.

The analytical model’s runtime complexity depends on
the evaluated sharing configuration and the isolated cache
access distribution for each application. Due to the large
number of complex and interdependent variables and
unknowns, the complexity of the model is intractable, thus in
our experiments, we evaluate the analytical model’s

measured execution time.

IV. EXPERIMENT RESULTS
We verified the advantages of CaPPS as compared to two

baseline configurations and private partitioning. We also
verified the accuracy of our estimated LLC miss rates
obtained via the analytical model and evaluated the
analytical model’s ability to determine the optimal
(minimum LLC miss rate) configuration in the CaPPS design
space. Additionally, we illustrate the analytical model’s
efficiency by comparing the time required to calculate the
LLC miss rates as compared to using a cycle-accurate
simulator that generates the exact cache miss rates for all
configurations.

A. Experiment Setup
We used twelve benchmarks from the SPEC CPU2006

suite [16], which were compiled to Alpha_OSF binaries and
executed using “ref” input data sets. Due to incorrect
execution, we could not evaluate the complete suite. Even
though our work is targeted towards embedded systems, we
did not use embedded system benchmark suites since these
suites contain only small kernels, which do not sufficiently
access the LLC, and do not represent our targeted embedded
CMP domain. Since complete execution of the large SPEC
benchmarks prohibits exhaustive examination of the entire
CaPPS design space, and since most embedded benchmarks
have stable behavior during execution, for each SPEC
benchmark, we performed phase classification using
SimPoint [8] to select 500 million consecutive instructions
with similar behavior as the simulation interval to mimic an
embedded application with high LLC occupancy.

We generated the exact cache miss rates for comparison
purposes using gem5 [2] and modeled four in-order cores
with the TimingSimple CPU model, which stalls the CPU
when fetching from the caches and memory. Each core had
private level-one (L1) instruction and data caches. The
unified level-two (L2) cache and all lower level memory
hierarchy components were shared among all cores. We
modified the L2 cache replacement operation in gem5 to
model CaPPS. TABLE I shows the parameters used for each
system component. Since four cores shared the eight-way
LLC (i.e., L2 cache), CaPPS’s design space had 3,347
configurations.

Before CaPPS simulation, we executed each benchmark
in isolation during the benchmark’s simulation interval and
recorded the isolated LLC access traces and the CPU cycles
𝐶𝑦𝑐𝑙𝑒𝑠𝑒𝑥𝑒. For CaPPS simulation, we arbitrarily selected four
benchmarks to be co-executed, which formed a benchmark
set, and we evaluated sixteen benchmark sets. Since the four
benchmarks’ simulation intervals were at different execution
points, we forced the four cores to simultaneously begin
executing at each benchmark’s associated simulation
interval’s starting instruction using a full-system checkpoint.
The full-system checkpoint was created by aggregating the
isolated-benchmark checkpoints, which were generated by
fast-forwarding the benchmark to the starting instruction of
the benchmark’s associated simulation interval when the
benchmark was executed in isolation.

TABLE I. CMP SYSTEM PARAMETERS

CPU 2 GHz clock, single thread
L1 instruction
cache

Private, total size of 8 KB, block size of 64 B, 2-way
associativity, LRU replacement, access latency of 2
CPU cycles

L1 data cache Private, total size of 8 KB, block size of 64 B, 2-way
associativity, LRU replacement, access latency of 2
CPU cycles

L2 unified
cache

Shared, total size of 1 MB, block size of 64 B, 8-way
associativity, LRU replacement, access latency of 20
CPU cycles, non-inclusive

Memory Total size of 3 GB, access latency of 200 CPU cycles
L1 caches to
L2 cache bus

Shared, width of 64 B, 1 GHz clock, first come first
serve (FCFS) scheduling

Memory bus Width of 64 B, 1 GHz clock

For each simulation, the system execution was
terminated when any core reached 500 million instructions.
Due to varying CPU stall cycles across the benchmarks, at
the termination point, not all cores had completed executing
the simulation interval. However, this termination approach
guaranteed that the cache miss rates reflected a fully-loaded
system (i.e., full LLC contention since all cores were running
during the entire system execution). Since we focused on the
cache miss rates rather than the absolute number of cache
misses, the incomplete benchmarks’ execution had no impact
on the evaluation. Similarly, due to statistical predictions, the
applications are not required to begin execution
simultaneously to garner accurate results.

Although our experiments used only four cores and the
LLC was a shared 8-way L2 cache, the analytical model
itself does not include any limitations on the number of
cores, the hierarchical level of the LLC, or the cache
parameters (e.g., total size, block size, and associativity for
our experiments).

B. CaPPS Evaluation
To validate the advantages of CaPPS, we compared

CaPPS’s ability to reduce the LLC miss rate as compared to
two baseline configurations and private partitioning, since
shared LLC partitioning in previous works [13][15][18] only
provided private partitioning.

Fig. 4 depicts the average LLC miss rate reductions for
CaPPS’s optimal configurations (the configurations with
minimum average LLC miss rate in CaPPS’s design space)
as compared to two baseline configurations: 1) even-private-
partitioning: the LLC is evenly partitioned using private
partitioning (first bar); and 2) fully-shared: the LLC is fully
shared by all cores (second bar). Across all benchmark sets,
the average and maximum average LLC miss rate reductions
were 25.58% and 50.15%, respectively, as compared to
even-private-partitioning, and 19.39% and 41.10%,
respectively, as compared to fully-shared.

The third bar in Fig. 4 depicts the average LLC miss rate
reductions for CaPPS’s optimal configuration as compared to
private partitioning’s optimal configuration, which is the
configuration with minimum LLC miss rate in the private
partitioning’s design space consisting of 35 configurations—
approximately 1% of CaPPS’s design space. Across all
benchmark sets, the average and maximum reductions in

CaPPS’s average LLC miss rates as compared to private
partitioning were 16.92% and 43.02%, respectively.

C. Analytical Model’s Accuracy Evaluation
For each benchmark set, we compared the average LLC

miss rate for the four cores determined by the analytical
model with the exact miss rate determined by gem5 for each
configuration in CaPPS’s design space. We calculated the
average and standard deviation of the miss rate errors across
the 3,347 configurations. Fig. 5 depicts the results for each
benchmark set. The black markers indicate the average miss
rate errors and the gray-shaded upper and lower ranges are
the corresponding standard deviations. Averaged over all
sixteen benchmark sets, the average miss rate error and
standard deviation are -0.73% and 1.30%, respectively.

Since the analytical model’s cache miss rates are
inaccurate, we compared the absolute difference between the
LLC miss rates of the analytical model’s minimum LLC
miss rate configuration and the actual minimum LLC miss
rate configuration as determined via exhaustive search.
Comparing with an exhaustive search is appropriate for
evaluating the analytical model’s efficacy, which is only
affected by the estimated miss rate errors in determining the
optimal configuration. The results indicate that fourteen out
of sixteen benchmark sets’ differences were less than 1% and
the maximum and average differences over all benchmark
sets was negligible, 1.3% and 0.36%, respectively.

D. Analytical Model’s Time Evaluation
To evaluate the execution time efficiency of the

analytical model, we compared the time required to estimate
the LLC miss rates (including the time for isolated trace
access generation) for all configurations in the CaPPS design
space as compared to using gem5. We implemented the
analytical model in C++ compiled with O3 optimizations.
We tabulated the user time reported from the Linux time
command for the simulations running on a Red Hat Linux
Server v5.2 with a 2.66 GHz processor and 4 gigabytes of
RAM. Fig. 6 depicts the speedup of the analytical model for
each benchmark set as compared to gem5. Over all
benchmark sets, the average speedup is 3,966X, with
maximum and minimum speedups of 13,554X and 1,277X,
respectively. For one benchmark set, the time for simulating
all 3,347 configurations using gem5 was approximately three
months, and comparatively, the analytical model took only

Figure 4. Average LLC miss rate reductions for CaPPS’s optimal
configurations compared to even-private-partitioning, fully-shared, and
private partitioning.

Figure 5. The average and standard deviation of the average LLC miss rate
error determined by the analytical model.

0%

10%

20%

30%

40%

50%

60%

A
ve

ra
ge

 L
LC

 m
iss

 r
at

e
re

du
ct

io
n

Compared to even-private-partitioning
Compared to fully-shared
Compared with private partitioning

-4%

-3%

-2%

-1%

0%

1%

2%

A
ve

ra
ge

 a
nd

 s
ta

an
da

rd
 d

ev
ia

tio
n

of

es
tim

at
ed

 a
ve

ra
ge

 L
2

m
iss

 r
at

e
er

ro
r

two to three hours.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we presented cache partitioning with partial

sharing (CaPPS)—a novel cache partitioning and sharing
architecture that improves shared last-level cache (LLC)
performance with low hardware overhead for chip multi-
processor systems (CMPs). Since CaPPS affords an
extensive design space for increased optimization potential,
CaPPS can reduce the average LLC miss rate by as much as
25% and 17% as compared to baseline configurations and
private partitioning, respectively. To quickly estimate the
miss rates of CaPPS’s sharing configurations, we developed
an offline, analytical model that achieved an average miss
rate estimation error of only 0.73%. As compared to
exhaustive exploration (since no heuristics exist) of the
CaPPS design space to determine the lowest energy cache
configuration, the analytical model affords an average
speedup of 3,966X. Finally, CaPPS and the analytical model
are applicable to CMPs with any number of cores and place
no limitations on the cache parameters.

Future work includes extending the analytical model to
optimize for any design goal, such as performance or energy
delay product, leveraging the offline analytical results to
guide online scheduling for performance optimizations in
real-time embedded systems, including accesses to shared
address space, incorporating cache prefetching in our
analytical model, and extending CaPPS to proximity-aware
cache partitioning for caches with non-uniform accesses.

ACKNOWLEDGEMENTS
This work was supported by the National Science

Foundation (CNS-0953447). Any opinions, findings, and

conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES
[1] ARM Cortex-A Series,

http://www.arm.com/products/processors/cortex-a/index.php.
[2] N. Binkert, et. al. The gem5 Simulator, http://gem5.org [retrieved:

Feb., 2013].
[3] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting Inter-Thread

Cache Contention on a Chip Multi-Processor Architecture”, In
Proceedings of HPCA, Feb. 2005, pp. 340-351.

[4] X. E. Chen and T. M. Aamodt, “A first-order fine-grained
multithreaded throughput model”, In Proceedings of HPCA, Feb.
2009, pp. 329-340.

[5] D. Chiou, D. Chiouy, L. Rudolph, S. Devadas, and B. S. Ang,
“Dynamic Cache Partitioning via Columnization”, Computation
Structures Group Memo 430. M.I.T. 2000.

[6] D. Eklov, D. Black-schaffer, and E. Hagersten, “Fast Modeling of
Shared Cache in Multicore Systems”, In Proceedings of HiPEAC, Jan.
2011, pp. 147-157.

[7] J. P. Grossman, “A Systolic Array for Implementing LRU
Replacement,” Project Aries Technical Memo ARIES-TM-18, AI Lab,
M.I.T., Cambridge, MA, 2002.

[8] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “SimPoint 3.0: Faster
and More Flexible Program Analysis”, Journal of Instruction-level
Parallelism, 2005, pp. 1-28.

[9] M. D. Hill and A. J. Smith, “Evaluating Associativity in CPU Caches,”
IEEE Trans. on Computers, Vol. 38, No. 12, 1989, pp. 1612-1630.

[10] Intel Core Duo Processor, http://ark.intel.com/products/family/22731.
[11] K. Johnson and M. Rathbone, “Sun’s Niagara Processor”, NYU

Multicore Programming, 2010.
[12] R. E. Kessler and M. D. Hill, “Page Placement Algorithms for Large

Real-indexed Caches”, ACM Trans. on Computer Systems, Vol. 10,
No. 4, 1992, pp. 338-359.

[13] S. Kim, D. Chandra, and Y. Solihin, “Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture”, In Proceedings of
PACT, Sep.-Oct. 2004, pp. 111-122.

[14] H. Lee, S. Cho, and B. Childers, “CloudCache: Expanding and
Shrinking Private Caches”, In Proceedings of HPCA, Feb. 2011, pp.
219-230.

[15] M. Qureshi and Y. Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches”, In Proceedings of MICRO, Nov. 2006, pp. 423-432.

[16] SPEC CPU2006. http://www.spec.org/cpu2006 [retrieved: Sep., 2011].
[17] S. Srikantaiah, E., T. Zhang, M. Kandemir, M. Irwin, and Y. Xie,

“MorphCache: a Reconfigurable Adaptive Multi-level Cache
Hierarchy for CMPs”, In Proceedings of HPCA, Feb. 2011, pp. 231-
242.

[18] K. Varadarajan, et al., “Molecular Caches: A Caching Structure for
Dynamic Creation of Application-specific Heterogeneous Cache
Regions”, In Proceedings of MICRO, Nov. 2006, pp. 433-442.

Figure 6. The analytical model’s simulation time speedup compared to
gem5.

0
2000
4000
6000
8000

10000
12000
14000

Sp
ee

du
p

http://www.spec.org/cpu2006�

	I. Introduction
	II. Related Work
	III. Cache Partitioning With Partial Sharing
	A. Architecture and Sharing Configurations
	B. Analytical Modeling Overview
	C. Isolated Access Trace Processing
	D. Analysis of the Shared Ways’ Contention
	a. Calculation of ,𝑛-1.
	b. Calculation of ,𝑛-2.
	c. Calculation of 𝑝(,𝑛-2.,𝑅)
	d. Calculation of the LLC Miss Rates

	IV. Experiment Results
	A. Experiment Setup
	B. CaPPS Evaluation
	C. Analytical Model’s Accuracy Evaluation
	D. Analytical Model’s Time Evaluation

	V. Conclusions and Future Work
	Acknowledgements
	References

