
Fast Configurable-Cache Tuning with a Unified Second-Level Cache

Abstract
Tuning a configurable cache subsystem to an application can
greatly reduce memory hierarchy energy consumption.
Previous tuning methods use a level one configurable cache
only, or a second level with separate instruction and data
configurable caches. We instead use a commercially-common
unified second level cache, a seemingly minor difference that
actually expands the configuration space from 500 to about
20,000. We develop additive way tuning for tuning a cache
subsystem with this large space, yielding 62% energy savings
and 35% performance improvements over a non-configurable
cache, greatly outperforming an extension of a previous
method.  
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1. Introduction and Motivation
The memory hierarchy of a microprocessor can consume as
much as 50% of the system power in a microprocessor [2][17].
Such a large contributor to total system power is a good
candidate for optimizations to reduce total system power and
energy. Low power or energy is needed not only in embedded
systems that run on batteries or have limited cooling ability,
but also in desktop and mainframes where chips are requiring
costly cooling methods.

Applications require highly diverse cache configurations
for optimal energy consumption in the memory hierarchy [22].
Even different phases of the same application may benefit from
different cache configurations in each phase [12][18]. For
example, the size of the cache should reflect the working set of
the application. Too large of a cache would result in cache
fetches consuming excessively high energy. Too small of a
cache would result in wasted energy due to thrashing in the
cache, with frequently used items repeatedly swapped in and
out of the cache. Additionally, the cache line size and
associativity should reflect the needs of a particular
application or application phase to achieve the most energy
efficient cache configuration.

Recent technologies have enabled the tuning of cache
parameters to the needs of an application. Core-based
processor technologies allow a designer to designate a specific
cache configuration [2][3][4][13][19]. Additionally,
processors with configurable caches are available that can have
their caches configured during system reset or even during
runtime [1][11][22]. Such configurable caches have been
shown to have very little size or performance overhead
compared to non-configurable caches [11][21].

With the option of cache configuration readily available, a
problem is to determine the best cache configuration for a
particular application. Previous methods use cache hierarchies
with limited configurability, yielding cache configuration
spaces of at most a few hundred possible cache configurations,
making fast exploration relatively straightforward. Most such
methods configure total size, line size, and associativity for
only a single level of cache, having less than 50 possible
configurations, achieving memory hierarchy energy savings of
40% [21]. A few methods also include a second level of
separate instruction and data configurable caches, having a
few hundred possible configurations, achieving increased
memory hierarchy energy savings of 53% [10]. The increased
savings suggest that increasing the configuration space
reveals a greater opportunity for energy savings, by allowing
the cache to be tuned more closely to an application’s needs.
However, a larger configuration space makes exploration
heuristic development more difficult.

Two-level caches are common in desktop systems and are
becoming common in increasingly capable embedded systems.
However, the second level cache is commonly unified, rather
than separate (having one cache for instructions and another
for data). A multi-way unified cache enables tradeoffs between
the number of instruction ways and the number of data ways,
with those tradeoffs known as way management [11]. Each way
may be used for instructions only, data only, or both
instructions and data (or may even be shut down). An example
configuration of a four-way unified cache is 3 instruction ways
and 1 data way; another example is 2 instruction ways, 1 data
way, and one instruction/data way. The interdependence has a
(perhaps surprisingly) large impact on the cache configuration
space that we must explore. With separated level-two caches,
we can effectively explore the instruction cache hierarchy
independently from the data cache hierarchy, because the
configuration of one cache hierarchy doesn’t (significantly)
affect the other cache hierarchy. In contrast, with a unified
second level, the two hierarchies become tightly
interdependent, requiring us to consider (roughly) the cross
product of the two configuration spaces. For example, two
spaces of 200 configurations each, when independent yield
400 configurations to be searched, but when interdependent
yield 40,000. Our results will show that this larger space,
rather than consisting of uninteresting or impractical
configurations, indeed contains useful configurations that
allow for intense specialization of the cache hierarchy to an
application’s needs.

How to adapt existing cache tuning methods to a way-
managed unified second level cache is not obvious, due in part
to the increased tuning interdependency between the caches.
Previous methods limited tuning dependency to limit the
configuration space, thus making heuristic development
easier. Previous tuning methods that address the tuning
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dependency between the level one and separate level two
caches cannot be directly applied to a unified second level of
cache.

In this paper, we present a heuristic cache-tuning method
for a highly configurable two-level cache hierarchy. We
improve upon previous methods by significantly increasing
the search space via a unified second level configurable cache,
resulting in greater energy savings than previous methods and
increased applicability to current and future systems. Our
cache hierarchy allows for approximately 18,000 possible
cache configurations. Our heuristic achieves an average energy
savings of 62%, while requiring explicit examination of a mere
0.2% of the search space on average – approximately 34
configurations. We also examine the effects of increasing
static energy on the fidelity of cache configuration heuristics.
We further describe how our cache tuning heuristic is efficient
enough to be used in simulation environments, while at the
same time being simply enough to be implemented in an on-
chip dynamic tuning approach.

2. Related Work
Commercial systems with tunable caches (e.g., [4][11]) do not
address how to tune those caches, leaving the task to the
designer. Several research efforts therefore focus on providing
automated assistance for such tuning. Most such efforts focus
on single level cache tuning. Platune [8] is a framework for
tuning configurable system-on-a-chip (SOC) platforms.
Platune offers many configurable parameters and prunes the
search space by isolating interdependent parameters from
independent parameters. However, the level one cache
parameters, being interdependent, are explored exhaustively.
Whereas exhaustive exploration was feasible for a level one
cache due to the small number of possible configurations, the
exhaustive method is not feasible with a highly configurable
cache. An exhaustive search of tens of thousands of
configurations could take months or more to fully explore.

To speed up exploration time, heuristic methods have been
developed. Palesi et al. [14] designed an extension to the
Platune tuning environment that used a genetic algorithm to
speed up exploration time and produce comparable results.
Zhang et al. [21] presents a heuristic method for tuning a
configurable cache that searches the cache parameters in their
order of impact on energy consumption. The heuristic
produces a set of Pareto-optimal points trading off energy
consumption and performance. Ghosh et al. [9] presents a
heuristic that, through an analytical model, directly
determines the cache configuration based on the designers
performance constraints.

A few methods exist for tuning two levels of cache, using
reduced configurability to maintain a manageable search
space. Balasubramonian et al. [5] proposes a method for
redistributing the cache size between the level two and level
three caches while maintaining a conventional level one cache.
In previous work [10], we designed an exploration heuristic
for a configurable cache hierarchy that explores separate level
one instruction and data caches and separate level two
instruction and data caches.

3. Configurable Cache Architecture
Our configurable two-level cache architecture, shown in Figure
1(a), consists of separate configurable level one caches and a
unified level two cache. The level one configurable cache
architecture is based on the tunable cache described by Zhang
et al. in [22] and is illustrated in Figure 1(b). Zhang provides
hardware layout verification for the configurable cache and

shows that the configuration circuitry does not increase the
access time of the cache. The tunable parameters consist of
cache size, line size, and associativity. The base cache structure
in an 8 KB cache consisting of four 2 KB banks where each
bank acts as a way. Special way configuration registers allow
for a 2-way set associative and a direct mapped cache using
way concatenation. Additionally, ways may be shut down to
allow for a direct mapped and 2-way set associative 4 KB cache
and a direct mapped 2 KB cache. As a result of the configurable
banks, 2 KB 2-way or 4-way set associative caches and a 4 KB
4-way set associative cache are not possible configurations.
This limitation is only applicable to a hardware based
configurable cache. In a simulation-based exploration, any
cache configuration is possible.

The second level cache is a configurable unified cache
quite different than the first level cache, illustrated in Figure
1(c). For the second level, we utilize way management
implemented in Motorola’s M*CORE processor [11]. Way
management allows for each particular way in a unified cache
to be designated as a unified way, an instruction-only way, a
data-only way, or the way can be shut down entirely.

For the exploration parameters, we chose values to reflect
typical off-the-shelf embedded systems. For the level one
cache, we explore 2, 4, and 8 KB cache sizes, 16, 32, and 64
byte line sizes, and direct-mapped, 2-, and 4-way set
associativities. For the level two cache, we use a 64 KB cache
with four configurable ways and configurable line sizes of 16,
32, and 64 bytes. However, our heuristic is not dependent on
these values, nor on embedded applications – for desktop
applications, larger total-size values would be appropriate.

Our configurable cache architecture offers approximately
18,000 different cache configurations. For each level one
cache, there are 18 different cache configurations (configurable
parameters are size, line size, and associativity, each with three
possible values, minus invalid combinations). The second
cache level has 36 unique combinations of way configuration
for each of the three line sizes, resulting in 108 different level
two configurations. Thus, the maximum number of cache
configurations is 40,000. However, restrictions reduce the
number of configurations. As described above, not all
associativities are possible for each cache size. Further, the
second level line size must greater than or equal to the largest
level one line size. With these restrictions, the design space

Figure 1: Configurable Cache Architecture: (a) the cache
hierarchy used, (b) configurability available for the level one

caches, and (c) configurability available for the level two cache.
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reduces to approximately 18,000 – still a very large number of
configurations.

Due to the huge exploration space, exhaustive exploration
to determine the optimal cache configuration for every
benchmark for comparison with our heuristic is not feasible as
it would take more than a year. Even so, we generated optimal
results for 12 selected benchmarks. For comparison purposes
we also use a common cache configuration to act as a base
cache configuration to show the effectiveness of our cache
tuning heuristic in reducing energy. The base cache
configuration consists of an 8 Kbyte 4-way set associative
cache with a 32 byte line size for the level one cache and a 64
Kbyte fully unified cache with a 64 byte line size for the level
two cache – a reasonably common configuration.

4. Tuning Heuristics
For our configurable cache hierarchy, the full configuration
space consists of 18,000 different configurations. Even if the
time to explore one configuration only took only half a
second, exploring all configurations for a benchmark would
still take half an hour – clearly not feasible for a dynamic
tuning method. If exploring each configuration took five
minutes (a typical runtime for a simulation-based tuning
approach on contemporary workstations), it would take 63
days to exhaustively explore the search space for a single
benchmark. We sought to develop a tuning heuristic to
efficiently explore a small portion of the search space and
produce good energy savings over the base cache
configuration. We considered two possible heuristics, which
we now describe.

4.1 Sequential Exploration with Ratio
Projection
A simple tuning heuristic for two-level caches ignores the
tuning dependency between the level one instruction and data
caches, and sequentially explores the two levels, first tuning
level one, then level two. As previous tuning methods don’t
consider a unified cache, we first developed a sequential
heuristic for two-level caches, providing a close comparison to
current methods, and illustrating the need to fully explore the
tuning dependencies.

For level one exploration, our heuristic explores
parameters in the order of their impact on the energy
consumption, with higher impact parameters explored first
[22]. Cache size is explored first followed by line size and then
associativity. To reduce cache flushing during exploration, the
heuristic explores each parameter starting with the smallest
value and increasing to the largest value. For the level two

cache, the heuristic must also consider that the cache offers
way management. Thus, not only must the heuristic determine
the total size, line size, and ways, but the heuristic must also
determine how many ways will be for data, how many for
instruction, how many for both instruction and data, and how
many will be shut down. For unified level two cache
exploration, we initially developed a method we call ratio
projection.

The ratio projection method, illustrated in Figure 2,
projects the number of necessary instruction and data ways
needed for the best cache configuration. Ratio projection sets
the level two cache to have one instruction way and adds data
ways one at a time. The lowest energy configuration suggests
the ideal number of data ways needed in the level two cache.
The method determines the ideal number of instruction ways
similarly. Way combination then combines the ideal number
of instruction and data ways to determine the ideal level two
way designations.  Simply adding the number of ways could
exceed the available number of ways in the level two cache. In
the situation where the ideal number of ways exceeds the
number of ways in the level two cache, way combination must
carefully combine the instruction and data ways to keep the
ratio  of instruction to data ways as close to the ideal as
possible while meeting the constraints of the level two cache.
Keeping the ratio in mind will allow for the more important
way type (the way designation (instruction or data) with the
larger number of ideal ways) to be allocated more ways in the
final level two configuration.

There are two situations that may occur during way
combination. The first situation occurs when both the
instructions and data are equally important in the level two
cache – the number of ideal ways is equal.  In this case, we use
way reduction and simply remove 1 data and 1 instruction way
at a time until the combined number of ways is less than the
total number of ways available in the level two cache. For
example, the method might determine the ideal number of
instruction and data ways to be 3 and 3, respectively. Given
only four available ways, the ratio projection method would
allocate 2 instruction and 2 data ways, thus maintaining the
same ratio of instruction to data ways.

The second situation occurs when one way designation
(instruction or data) is more important than the other – the
ideal number of ways is different. In this case, we cannot
simply use reduction to remove 1 data and 1 instruction way
until the combined number of ways is less than the total
number of available level two ways. This reduction may lead to
undesignated ways. For example, if the ideal number of
instruction ways is 2 and the ideal number of data ways is 3,
removing 1 way of each type would result in the level two
cache having 1 instruction way, 1 data way, and 1 way shut
down. Additionally, in level two cache configurations offering
more than 4 total ways, this method may cause either
instructions or data not to have any level two designations.
This situation may occur if there were 8 available level two
ways and the ideal number of instruction and data ways are 1
and 8 respectively. We could alternatively only remove 1 data
way or 1 instruction way, but this would not maintain the ideal
ratio of instruction to data ways and choosing which way to
remove becomes arbitrary. To resolve this situation, we use
way reduction with unification (illustrated in Figure 2), to
determine our final level two way designations. Instead of
completely removing 1 instruction and 1 data way, we unify an
instruction way with a data way, reducing the total number of
required ways by 1. We continue to make this reduction withFigure 2: Ratio projection for level two cache way exploration

showing reduction with unification way combination.
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unification until the combined number of ways is less than the
total number of ways available in the level two cache.

Through extensive experimentation, we observed that the
sequential heuristic performed poorly for many benchmarks.
Although the heuristic resulted in a 20-40% decrease in energy
consumption over the base cache configuration for most
examples, poor performance on some benchmarks (as much as
3.6x more energy) resulted in the heuristic yielding an average
energy increase of 24%. Clearly, a simple adaptation of current
methods does not sufficiently explore tuning dependencies.

4.2 Alternating Cache Exploration with
Additive Way Tuning – ACE-AWT
The poor results of the first heuristic substantiate the
hypothesis that precise exploration with regards to tuning
dependencies is necessary. Exploring the level one cache
separately from the level two cache naively ignores the
dependency that exists between the two levels via the level
two unified cache. For example, altering a parameter in the
level one instruction cache changes the effectiveness of the
level two cache by changing the quantity of level two fetches
and the addresses fetched. Also, the change in level two
utilization by instructions affects the level one data cache by
changing the contention among instructions and data in the
shared level two cache.

In [10], we similarly concluded the importance of tuning
both cache levels together (though instruction and data were
separate in that work), and we thus designed the interlaced
exploration method. Instead of fully exploring the level one
cache and then proceeding to the level two cache, the
interlaced method explores one parameter for the level one
cache and then for the level two cache, before proceeding to
explore the next parameter. However, that interlaced method
only addressed dependency between separate level one and
level two caches, and not the dependency between the level
one instruction and data caches. Additionally, the interlaced
method cannot be easily adapted to a unified cache featuring
way management.

For level two exploration, way management makes
interlaced exploration of the cache levels difficult because of
the dependency between size and associativity exploration. To
change the size, either a way is added or removed from the
cache. However, the added or removed way is either a unified,
data, or instruction way, additionally affecting the
associativity. Similarly, when changing the cache’s
associativity, a way is either added or removed which also

changes the size of the cache as well. This dependency
complicates the exploration of the level two cache, since we
can’t just explore either associativity or size alone.

To overcome the difficulty arising in interlaced
exploration and to extend the interlaced heuristic to address
level one instruction and data cache dependencies, we
introduce the alternating cache exploration with additive way
tuning heuristic for level two cache exploration (ACE-AWT).
For each cache parameter, the ACE-AWT heuristic first tunes
the level one instruction cache, then the level one data cache,
followed by additive way tuning for the level two cache. The
first phase of additive way tuning, illustrated in Figure 3(a),
adds ways one at a time and chooses the next way to add based
on what type of added way resulted in the lowest energy cache
configuration. Additive way tuning starts by adding one way
to the level two cache, and then explores three configurations
– a single instruction, data, or unified way. The heuristic
chooses the lowest-energy configuration, and then adds
another way to the level two cache, again trying an instruction,
data, or unified way. This additive method of increasing the
cache size and associativity continues until the level two
cache is full or until there is no longer a decrease in energy
consumption. This phase of additive way tuning is done when
the level two cache size is explored.

Alternating level exploration with a unified second level
of cache increases the difficulty of exploring the line size. The
line size of the level two cache must always be equal or greater
than the line sizes of both of the level one instruction and data
caches. To allow for level one line size exploration, our
heuristic increases the size of the level two line size while
increasing the size of the level one line size. After determining
level one line sizes, the ACE-AWT heuristic explores
remaining larger level two line sizes.

During associativity exploration, Figure 3(b) illustrates
the final tuning step applied to fine tune the cache
configuration. The ACE-AWT heuristic adjusts ways to hone in
on the best cache configuration by attempting to add and/or
remove ways. First, the heuristic tries to increase the number of
ways by adding either an instruction, data, or unified way one
at a time. If the cache size is full, the heuristic skips the
enlargement step. The heuristic then explores decreasing the
size of the cache by removing an instruction, data, or unified
way one at a time. If removing a way causes the cache to be
empty, the heuristic ignores the reduction step. The lowest
energy cache configuration is chosen if it consumes less
energy than the current cache configuration. This tuning step
is continued until there is no improvement in energy

Figure 3: Additive way tuning for level two cache way exploration for the (a) first phase and (b) the fine tuning phase.
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consumption or there is no previously unexplored
configuration to explore.

Since the fine-tuning phase iteratively adds and removes
ways, this results in identical cache configurations being
explored during different iterations of the fine-tuning phase.
To eliminate redundant exploration of previously explored
cache configurations, we store each cache configuration
explored along with the energy for that cache configuration so
that successive explorations of the same configuration require
a simple lookup of the predetermined energy consumption.
However, in the worst case, the ACE-AWT heuristic may
explore 88 cache configurations.

5. Results

5.1 Experimental Setup
We applied each heuristic to 27 benchmarks - sixteen
benchmarks from the EEMBC benchmark suite [7] and eleven
benchmarks from the Powerstone benchmark suite[11]. These
benchmarks are all embedded system benchmarks and thus
suitable for the configurable cache parameter values we
examined. We stress that we could also run desktop
benchmarks using suitable cache parameter values, and we are
doing so for related and future work.

We determine energy consumption for a cache
configuration for both static and dynamic energy using the
following model:

total_energy = static_energy + dynamic_energy
dynamic_energy = cache_hits * hit_energy + cache_misses *

miss_energy
miss_energy = offchip_access_energy +miss_cycles * CPU_stall_energy

+ cache_fill_energy
miss_cycles = cache_misses * miss_latency + (cache_misses *

(linesize/16)  * memory_bandwidth)
static_energy = total_cycles * static_energy_per_cycle

static_energy_per_cycle = energy_per_Kbyte * cache_size_in_Kbytes
energy_per_Kbyte = ((dynamic_energy_of_base_cache * 10%) /

base_cache_size_in_Kbytes)

We used Cacti [16] to determine the dynamic energy
consumed by each cache fetch for each cache configuration
using 0.18-micron technology. We used SimpleScalar [6] to
measure cache hits and cache misses for each cache
configuration. Miss energy determination is quite difficult
because it depends on the off-chip access energy and the CPU
stall energy which are highly dependent on the actual system
configuration used. We could have chosen a particular system
configuration and obtained hard values for the
CPU_stall_energy however, our results would only apply to

one particular system configuration. Instead, we examined the
stall energy for several microprocessors and estimate the
CPU_stall_energy  to be 20% of the active energy of the
microprocessor for this  study. We obtain the
offchip_access_energy from a standard low-power Samsung
memory. To obtain miss cycles, the miss latency and
bandwidth of the system is required. For miss penalties and
throughput for both cache levels, we estimate ratios typical for
an embedded system. We assume a level two fetch is four times
slower than a level one fetch, and a main memory fetch is ten
times slower than a level two fetch. We assume memory
throughput is 50% of latency, meaning blocks fetched after the
first block take 50% of the latency of the first block fetch. In
previous work [10], we showed that cache tuning heuristics
remain valid across different configurations of miss latency
and bandwidth. We determine the static energy per Kbyte as
10% of the dynamic energy of the base cache divided by the
base cache size in Kbytes.

We modified SimpleScalar to simulate way management in
the level two cache and to determine cache hit and miss values
for each cache configuration. We ran exploration scripts that
applied each heuristic to every benchmark.

5.2 Energy Consumption and Performance
Figure 4 shows the energy consumption for all benchmarks for
both tuning heuristics and the optimal cache configuration for
12 randomly chosen benchmarks (we are continuing to
generate optimal cache configurations for the remaining
benchmarks). Energy consumption for each configuration is
normalized to the energy consumption of the base cache for
that benchmark. Figure 4 shows that while the sequential with
ratio projection heuristic performed well on a number of
benchmarks, on average the energy increased  over all
benchmarks with some benchmarks consuming significantly
more energy over the base cache configuration. However, the
ACE-AWT heuristic improves greatly over the sequential with
ratio projection heuristic showing energy savings of 62%
averaged over all benchmarks. For the 12 benchmarks where
the optimal cache configuration is known, the ACE-AWT either
finds the optimal cache configuration or determines a cache
configuration that is very near the optimal. The ACE-AWT
achieves these energy savings by exploring only 34 unique
configurations on average over all benchmarks – a mere 0.2%
of the total search space.

As well as showing good energy savings across all
benchmarks, we examine the performance impact of the ACE-
AWT heuristic. In real time systems, negative performance
impacts are likely unacceptable. Figure 5 shows the execution
time of each benchmark for the ACE-AWT heuristic normalized

Figure 4: Energy consumption normalized to the base cache configuration for both cache exploration heuristics and the optimal
cache configuration.
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to the execution time for the base cache configuration. Each
benchmark shows an improvement in performance with an
average speedup of 35%. We found that this improvement i s
due to tuning the line size to the locality needs of the
application [20].

5.3 Static Energy for Future Technology
For the results presented in section 5.2, we assumed static
energy accounted for 10% of the total energy consumption of
the cache. However, static energy becomes a greater factor in
total energy consumption as technology pushes further in to
deep sub-micron feature sizes, and it is interesting to
investigate the fidelity of cache configuration. We explored
systems where static energy accounted for 15%, 20%, 25%,
and, for possible farther distant technologies, 50% of the total
energy consumption of the cache.

Table 1 shows the average energy consumption normalized
to the base cache configuration averaged across all
benchmarks for the heuristics studied. Energy consumptions
that show energy savings are highlighted in bold. The ACE-
AWT heuristic shows very good fidelity with increasing static
energy consumption.

Both heuristics show the same trend – as the percentage of
static energy consumption increases, the cache tuning
heuristics are revealing greater energy savings. This trend i s
expected since cache tuning improves performance and thus
eliminates costly idle cycles while waiting for fetches from a
higher level of the cache hierarchy. Going from 10% to 50%
static energy contribution, sequential exploration with ratio
projection revealed an additional 34% energy savings and the
ACE-AWT heuristic showed an additional 40% energy savings.

The additional energy savings due to increased static
power consumption can also soften the poor performance of
inadequate tuning heuristics. Table 1 shows that for 50% static
energy consumption, sequential exploration with ratio
projection actually shows an average energy savings of 18% as
opposed to the 24% increase in energy observed with the 10%
static energy consumption. Whereas a tuning heuristic with an
average energy savings of 24% is hardly a good heuristic
compared to the ACE-AWT heuristic, this trend does suggest
that tuning methodologies deemed as unsuccessful with
today’s technology may seem more attractive as new
technologies are revealed.

6.  Tuning Environments
The ACE-AWT heuristic is primarily intended for use as a
runtime optimization method for either desktop environments
or embedded systems. However, the ACE-AWT heuristic i s
quite flexible and is easily applicable to all tuning
environments such as a simulation-based configuration

exploration or a hardware prototyping platform, as described
in this section

The ACE-AWT heuristic is highly suitable for a dynamic
runtime tuning environment for desktop environments or
embedded systems. Zhang et al. [22] shows that level one
cache tuning is feasible during runtime and the level one
tuning in our work is based on Zhang’s tuning heuristic.
Zhang shows that the actual tuning hardware adds very little
area overhead. Zhang also explores the cache parameters such
that cache flushing is minimized. However, for the cache
flushing that does happen, we observe that flushing is very
infrequent compared to the long run time needed to determine
stabilized hit and miss rates for each cache configuration. Our
level two configurable cache is based on the Motorola
M*CORE processor which did not have any overhead [15].

Because the ACE-AWT heuristic is a feasible dynamic
runtime tuning heuristic, the tuning heuristic becomes more
flexible to operating environments. The ACE-AWT heuristic
can be used to determine one low energy cache configuration
to use throughout the entire run of an application by tuning
once during startup. However, phase changes in applications
suggest that different cache configurations are more
appropriate for different execution phases of an application
[12][18]. To better accommodate a single application
environment with multiple phase changes, the tuning hardware
would monitor the miss rates. When the miss rate exceeds a
given threshold, the tuning hardware would reconfigure the
cache for the new execution phase. To reduce tuning time, the
heuristic cache configuration is saved and restored when the
application reaches that execution phase again instead of
rerunning the entire heuristic. Additionally, the ACE-AWT
heuristic is suitable for a multi-application environment with
an operating system. The tuning hardware would run each time
an application swap occurs and, as with the application phase
tuning, cache configurations are saved and restored to
eliminate retuning when returning to a previously executed
application. The minimization of the overhead incurred by
runtime phase-based cache tuning and the implementation
details are the focus of our future work.

In a hardware prototyping environment, two prototyping

Figure 5: Execution time of the benchmarks for alternating cache exploration with additive way tuning heuristic (ACE-AWT)
normalized to the execution time of the benchmark with the base cache configuration

Table 1: Energy consumption normalized to the base cache
configuration averaged across all benchmarks for different
static energy consumption. Energy savings are shown in bold.
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options exist - a full hardware prototyping environment and a
platform assisted hardware prototyping environment. The full
hardware prototyping environment consists of all tuning
hardware implemented in hardware on the prototyping board.
The tuning hardware would apply the ACE-AWT heuristic by
running each cache configuration and measuring the hit and
miss rates. Designer-provided energy annotations guide the
cache tuner to determine the next cache configuration to try.
After completion of the heuristic, the best cache configuration
can be reported to the designer. A platform-assisted hardware
prototyping environment couples a tunable platform with a PC
to drive the tuning heuristic. The PC configures the platform
for the configuration to try and then reads the hit and miss
rates after a sufficiently long run of the application. The PC
uses the cache hit and miss rates to drive the ACE-AWT
heuristic and configure the platform for the next configuration
to try.

In a simulation-based approach, application of the ACE-
AWT heuristic is similar to the experimental environment set
up for the results presented in this paper. Energy consumption
estimates of cache and memory accesses are used to annotate
the exploration heuristic. An exploration script is used in
conjunction with a cache simulator to drive the heuristic. In
addition to using a simulation approach for embedded
systems, the simulation approach could also be used for
profiling desktop computing environments.

Furthermore, the ACE-AWT heuristic is applicable in
environments with other tunable parameters such as bus
configuration and hardware/software partitioning by
specifying a scheduling order for the configuration of the
tunable parameters.

7. Conclusions and Future Work
We have presented an efficient method for cache hierarchy
tuning for a highly configurable cache with a very large design
space. The heuristic is designed to efficiently and accurately
tune the level one and level two caches in a system during
runtime but is also applicable to a hardware prototyping
environment and a desktop simulation cache exploration
environment. Our heuristic determines a cache configuration
that consumes on average 62% less energy than a base cache
configuration while exploring only 0.2% of the design space.
Additionally, our cache tuning results in an average speedup
of 35% due to line size configuration. We also show the
fidelity of our tuning heuristic across future technologies with
increasing static power consumption.

Future work includes recompilation of the application to
the best cache configuration for further energy and
performance benefits. We also plan to examine desktop and
mainframe applications on appropriate cache configurations
for different application execution phases and verify that the
heuristic developed in this work is applicable to desktop
applications exhibiting different access pattern characteristics
than embedded applications. Additionally, we plan to explore
the many details involved with runtime implementation of
application phase-based cache tuning.
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