
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2008, Article ID 901328, 10 pages
doi:10.1155/2008/901328

Research Article

Dynamic Hardware Development

Stephen Craven1 and Peter Athanas2

1 Department of Electrical Engineering, The University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
2 Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic and State University,
Blacksburg, VA 24061, USA

Correspondence should be addressed to Stephen Craven, stephen-craven@utc.edu

Received 31 March 2008; Accepted 12 August 2008

Recommended by Michael Hubner

Applications that leverage the dynamic partial reconfigurability of modern FPGAs are few, owing in large part to the lack of suitable
tools and techniques to create them. While the trend in digital design is towards higher levels of design abstractions, forgoing
hardware description languages in some cases for high-level languages, the development of a reconfigurable design requires
developers to work at a low level and contend with many poorly documented architecture-specific aspects. This paper discusses the
creation of a high-level development environment for reconfigurable designs that leverage an existing high-level synthesis tool to
enable the design, simulation, and implementation of dynamically reconfigurable hardware solely from a specification written in
C. Unlike previous attempts, this approach encompasses the entirety of design and implementation, enables self-re-configuration
through an embedded controller, and inherently handles partial reconfiguration. Benchmarking numbers are provided, which
validate the productivity enhancements this approach provides.
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1. Introduction

Field-programmable gate arrays (FPGAs) are a class of
integrated circuits that can be reprogrammed numerous
times after manufacture to implement arbitrary digital
circuits. While FPGAs always lag custom application-specific
ICs (ASICs) in performance, the significantly reduced non-
re-occurring engineering costs make FPGAs attractive for a
variety of applications. However, with very few exceptions, an
FPGA in a deployed design implements a single static design,
behaving exactly as if it were a fixed-function ASIC.

The ability to reconfigure itself in a deployed product
offers FPGAs a distinct advantage over ASICs. Whereas an
ASIC must allocate area to implement every digital circuit
the application requires, regardless of how infrequently it
is actually exercised, an FPGA only need be sized large
enough to support the circuits being active at any one
time. The research community has demonstrated the benefits
of swapping circuits in and out of an FPGA in such
diverse applications as image detection [1], gene sequencing
[2], video processing [3], network applications [4], and
instruction set extension [5].

Vendor and tool support for the dynamic partial recon-
figuration (PR) of an FPGA has suffered from severe limi-
tations in the past. PR design flows were poorly supported
and frequently broken. Device configuration architectures
required that an entire configuration column be loaded just
to change a single bit in the FPGA configuration. Self-re-
configuration, through an internal configuration access port
(ICAP), was limited to high-end devices, raising the cost of
PR designs.

Recently, the PR landscape has experienced a change,
driven in part by the growing importance of software defined
radio (SDR), with its dynamic creation of radio waveforms.
As the throughput requirements of SDR are impossible to
meet with a processor and the configurability to implement
arbitrary waveforms is beyond the capabilities of ASICs,
the PR abilities of FPGAs are finally gaining tool support
[6, 7]. The newer device families feature a configuration
architecture that is more granular, increasing the speed and
flexibility of PR [8]. Furthermore, PR capabilities have been
extended to low-cost device families [9].

In spite of these trends, much work remains before
PR design becomes an accepted practice. To develop
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a PR application using current tools, a designer must learn
the intricacies of the target architecture and nuances of
unfamiliar design flows. Lacking models and tools to abstract
away the low-level specifics of each different architecture,
every porting of a PR application to a different device
requires that the design process start anew. Simulation of a
PR design before implementation must be forgone, owing
to a lack of simulator support, complicating verification and
debugging.

Concurrent with the changes in the PR landscape has
been a push towards electronic system-level (ESL) design.
ESL design involves raising the level of abstraction that a
designer sees from the register transfer level (RTL) to some-
thing higher than what traditional hardware description
languages (HDLs) provide [10]. The research community has
experimented with high-level languages (HLLs) to lift the
abstraction level [11], and their results are paying off with
a variety of commercial ESL tools now available [12]. Design
specifications can now be captured in a multitude of formats
from graphical [13] to C [14], and automatically converted to
synthesizable HDL by commercial high-level synthesis (HLS)
tools.

Recognizing the potential for HLS to drastically reduce
the complexity of PR design, several researchers have
described development environments utilizing some form
of high-level design capture specifically tailored to PR
design [15–17]. Notable limitations in these projects, though,
hinder their ability to take advantage of recent trends in con-
figurable computing. The reliance of many of these projects
on an external host hinders development of embedded
applications and ignores embedded processor capabilities
of modern FPGAs. The use of outdated design entry
techniques, such as JBits [18], shackles several projects to
older architectures.

This paper describes a new approach to PR applica-
tion development that leverages a commercial HLS tool,
integrates embedded processors, and provides models of
communication and reconfiguration. Previous publications
have described the methodology [19] and the language
extensions to an HLS toolset [20]. This paper focuses on
the implementation and testing of the development flow,
providing design and productivity results that validate this
approach.

Section 2 provides an overview of previous attempts to
raise the level of abstraction in PR design. An overview
of the approach of this paper is presented in Section 3,
with Section 4 detailing the implementation of applications
and providing benchmarking results. Finally, conclusions are
discussed in Section 5.

2. Background

To address the difficulties in applying traditional design
methodologies to PR applications, several researchers have
proposed or implemented new methodologies targeting the
requirements of PR hardware.

Janus [16] was an early effort at a unified PR appli-
cation development environment centered around Java.
Software for the host PC was written in Java, while the

hardware for the multi-FPGA system was created in the
same environment from JHDL, a Java-based structural
hardware description language. Janus was developed under
the coprocessor paradigm where the FPGA is essentially a
slave to an external host processor. Partial reconfiguration
and dynamic scheduling are not supported.

The PaDReH framework [21] focuses solely on hardware
development, defining an open development flow permit-
ting multiple methods of design capture, simulation, and
partitioning to be used. Partial bitstream generation occurs
within the Xilinx modular design flow, which is the only
fully specified step in the framework. Little is provided to the
designer in terms of tools or abstractions.

Synthesis and partitioning for adaptive reconfigurable
computing systems (SPARCSs) [22] start with a behav-
ioral VHDL description of the application separated into
tasks communicating through shared memory or direct
connections. Temporal and spatial scheduling occurs across
multiple FPGAs. A high-level synthesis tool converts the
behavioral description to RTL that is then processed with
traditional tools.

The Institute for Software Integrated Systems (ISIS)
describes a prototype model-integrated design environment
for dataflow applications [23]. ISIS focuses on constraint-
driven development and verification from a model-based
approach. Tools automatically apply user-specified con-
straints to prune the design space. The development envi-
ronment targets board-level designs comprised of heteroge-
neous computing elements (FPGAs, DSPs, processors, etc.),
limiting the utility for FPGA-centric applications.

Recent work from Imperial College London defines
abstractions of low-level details with an HLL-based approach
to PR application development [15]. A modified form of C
(RT-C) captures the design behavior at a high level, including
configuration control. The RT-C is then translated into
Handel-C [24], a commercial C-to-gates synthesis tool. An
implementation flow generates the required configuration
files, with configuration management handled by a host
processor. The implementation flow, however, is based on
JBits and therefore is limited to older architectures. Also, a
manual translation is required to go from the Handel-C-
generated HDL to JBits, and the resulting design is shackled
to a host processor.

Brigham Young University developed a JHDL-based
reconfigurable computing application framework (RCAF)
with the distinguishing feature that the framework, con-
sisting of control, communication, and debugging aids,
is deployed in the finished product [25]. The framework
assumes a tight integration of the FPGA with a host processor
running a controlling Java programme. This framework does
little to facilitate the capture of configuration management or
the incorporation of embedded processors.

The Caronte PR framework defines a high-level develop-
ment environment targeting coprocessor applications [26].
Simulation of PR is possible via SystemC, with design entry
via HDLs or Impulse C [27]. Caronte’s use of Impulse C
differs from the work presented in this paper in that Caronte
merely uses Impulse C to produce HDL and not to capture
the totality of the application including the configuration
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control. The bus-based communication of Caronte limits its
applicability to streaming applications.

In addition to the projects described above, several
researchers have explored the problem without producing
a prototype design environment. Eisenring and Platzner’s
PR framework [28] describes a tool-independent design and
implementation methodology in generic terms. Berkley’s
Stream Computations Organized for Reconfigurable Exe-
cution (SCORE) project [29] proposes a new FPGA-like
architecture leveraging hardware pages to permit location-
independent reconfiguration. While promising, no hardware
has been produced.

These previous projects, summarized in Table 1, are
each limited in important ways. Most assume a model
of external configuration control, mandating the use of a
host processor. For embedded application, this requirement
is generally prohibitive. Many do not enable the use of
partial reconfiguration. It is also interesting to note that no
project has been extended, by its authors or others, since its
initial implementation. This is perhaps in part due to the
tight coupling of many of these frameworks to a specific
architecture or design capture tool.

3. Approach

The goal of this project is to significantly reduce the effort
required to deploy PR designs. To this end, a high-level
development flow has been implemented that permits PR
designs to be specified in C. Models of communication,
computation, and reconfiguration have been defined that
simplify design of streaming applications.

The development flow consists of a frontend, archi-
tecture-agnostic design flow, and a backend architecture-
specific implementation flow. The design flow leverages an
existing commercial HLS tool, modified to enable the capture
and simulation of PR designs. By utilizing a commercial
ESL tool, this work avoids the pitfalls of previous projects
that relied heavily on outdated and unsupported tools such
as JBits. The implementation flow is completely automated,
encompassing floorplanning of the PR regions, insertion of a
configuration controller, creation of the partial configuration
bitstreams, and packaging of the configuration bitstreams for
deployment.

Figure 1 presents the complete development flow, high-
lighting the exchange between the frontend and backend
flows. To facilitate porting of designs to different archi-
tectures, the output of the frontend flow is completely
architecture-agnostic. Due to variations in the configuration
and clocking structure of different FPGA families, the
backend flow may vary across architectures.

As conventional HDLs are not capable of capturing all
aspects of PR designs, a reconfigurable computing specifica-
tion format (RCSF) has been defined. The RCSF, expressed in
XML, contains a list of reconfigurable modules, information
concerning design connectivity, and the links to the HDL
or SW that implements each module. A sample RCSF file is
presented in Section 4.1. By editing this file, the designer can
easily link to existing IP. A common use would be to replace a
software test bench with the HDL that implements the actual

High level
specification

Design entryFrontend
design

Architecture-
specific

implementation

Reconfigurable
computing

specification
HDL SW

Backend
implementation

Partial
configuration

bitstreams

Initial
configuration
bitstream +
controller

Figure 1: Combined design and implementation flow.

interface to the application. Under this use model, a C model
of the hardware IP could be leveraged to permit high-level
simulation of the entire design early in the design cycle. This
model would have to match the behavior of the hardware IP,
but not the timing, as the high-level simulation is not cycle-
accurate.

3.1. Abstractions

The models of computation and communication were
selected to favor the traditional strengths of FPGAs, namely,
streaming applications. Consisting of a repeatable schedule
of computations operating on a steady flow of data, stream-
ing applications are typically found in networking, signal
processing, and cryptographic domains, all being strong
suits of configurable logic. Multiple computational and
communication models can accurately describe streaming
applications, including several dataflow models and the
communicating sequential processes (CSP) model [30]. In
selecting an appropriate model, it was imperative that
the actual functionality of hardware be captured and that
commercial development tools support the model.

In CSP, an application is decomposed into a set
of independently running processes, communicating only
through unidirectional channels. Synchronization occurs
during communication, with both the sender and receiver
blocking until the transaction has completed. In contrast
to some other dataflow paradigms, such as Kahn process
networks [31] where communication occurs via infinitely
deep FIFOs, CSP is directly implementable in hardware or
software. Furthermore, tools and development environments
exist supporting CSP design and implementation [14, 32,
33].

The implementation of an application using the CSP
model of computation is straightforward. Communication
channels can be created out of asynchronous FIFO buffers
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Table 1: Previous PR development environments.

Project Design entry Model of computation Architecture Limitations

Janus JHDL Unspecified Host + FPGA
No partial reconfiguration

Requires host

SPARCS Behavioral HDL Dataflow Host + FPGA
Requires macro library

No partial reconfiguration

PaDReH Multiple Undefined Standalone Few defined tools

Model-Integrated Dataflow graph Dataflow Independent
No partial reconfiguration

Requires model library

RCAF JHDL Unspecified Host + FPGA
No partial reconfiguration

Requires host

Few abstractions

Imperial College RT-C Dataflow Limited by JBits
Requires host

Manual translation

Caronte Various Coprocessor Embedded proc Limited automation

with minimal communication overhead. The FIFO-based
communication permits easy integration with embedded
processors as many Xilinx embedded processors feature
fast simplex link (FSL) interfaces that are nothing more
than asynchronous FIFO buffers linking the processor to
peripherals [34].

To describe reconfiguration within a CSP model, the
designer identifies a set of processes that are mutually
exclusive in that only one of the set members is active in
hardware at any one time. Figure 2 describes a cryptographic
application where multiple decryption algorithms may be
required, but never at the same time. Any process within the
set of decryption cores may be selected for implementation,
at which time the configuration manager reconfigures the
FPGA to swap in the selected process. During reconfigura-
tion, modules reading from or writing to the set undergoing
reconfiguration will block until configuration is complete.
This abstraction is similar to the swappable logic unit of
Brebner [35] and the dynamic hardware modeling scheme
of Luk [36].

This reconfiguration model enables the designer to
utilize PR to extend an application breadth, by adding new
functionality at runtime, or to extend an application depth,
by swapping pipelined application stages in and out of the
device. It is left to the designer to properly buffer results
between the application stages.

3.2. Frontend Design and Simulation

The language chosen for design entry is Impulse C, a
commercial product of Impulse Accelerated Technologies,
Inc. Impulse C [14] is an ANSI C-based language utilizing
the same stream and process abstractions as Los Alamos
National Lab’s Streams-C work [11]. Based on the CSP
model, Impulse C permits the application developer to
describe hardware using a large subset of standard C. The
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Figure 2: Set of mutually exclusive processes.

CoDeveloper toolset performs high-level synthesis, translat-
ing Impulse C to synthesizable HDL.

Through an agreement with Impulse Accelerated Tech-
nologies, Inc., the CoDeveloper Impulse C application
development environment has been obtained, along with
the source code to the Impulse C simulation library.
Modifications to the simulation library and corresponding
extensions to the Impulse C language have been made
permitting dynamic hardware to be simulated at a high level
[20]. This modified language is referred to as DR Impulse C,
highlighting its dynamic reconfiguration (DR) ability.

To describe PR applications in DR Impulse C, the
programmer defines sets of mutually exclusive Impulse C
processes. New Impulse C functions are utilized to create
a set of reconfigurable processes and select a new dynamic
process to execute in hardware. Applications described in DR
Impulse C can be simulated by compiling the code in any C
development environment. Each CSP process is spun off as a
separate software thread communicating over shared buffers.
PR is simulated by cleanly killing the executing thread and
spinning off the new thread.

The frontend flow, shown in detail in Figure 3, consists
of the CoDeveloper toolset for generating HDL from an
Impulse C description, a preprocessor script for creating the
RSCF file, and the GCC compiler for creating a simulation
executable. Processes described in Impulse C can be marked
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for hardware implementation, in which the CoDeveloper
tools convert the corresponding code to an HDL, or can
be targeted to an embedded processor. The implementation
flow handles the mapping of software processes to specific
processors available on the target platform.

3.3. Backend Implementation

The architecture-specific implementation flow accepts the
RCSF file, HDL modules, and C code from the frontend. In
addition, a board support package (BSP) must be specified,
supplying all the platform-specific information required to
produce a deployable design. The implementation tool flow,
shown in Figure 4, integrates tools automating placement,
HDL generation, and clock creation.

The postprocess tool parses the RCSF and BSP, generat-
ing a top-level Verilog wrapper that instantiates each module
in the design, along with the PR control modules, MicroBlaze
controller, and clocking structure. The Floorplanner utility
is responsible for creating area constraints for each recon-
figurable region of the FPGA. This tool accepts as input a
list of the resource requirements of each set and a list of
keep-out regions. The keep-out regions correspond to areas
of the FPGA that must be available for peripherals or soft
processors, such as regions near critical I/Os. In keeping with
other FPGA floorplanning projects [37–39], Floorplanner
uses a simulated annealing algorithm to find a near optimal
minimum of a cost function.

Unlike most previous works, Floorplanner is knowledge-
able of the device configuration architecture, and attempts to
find placements that minimize reconfiguration overhead. For
the Xilinx Virtex-II and Virtex-II Pro architectures, where
configuration frames run the entire height of the device, this
involves finding a solution that has a high aspect ratio (height
versus width) to use as much of the configuration frame
as possible for the reconfigurable module. In the Virtex-
4 architectures, where configuration frames are 16 CLBs
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Figure 4: Backend tool flow.

tall, Floorplanner places all modules on configuration frame
edges.

Floorplanner starts by first populating a list of module
placements, called realizations. All possible realizations are
considered in the creation of this list, with placements that
are overly wasteful of resources being removed. Once a list of
acceptable placements has been created, simulated annealing
is performed to minimize the cost function:

cost = 10, 000∗overlap + 10∗aspectError
+ waste + distance.

(1)

Module overlap, contained in overlap as the sum of all
overlapping CLBs, is weighted orders of magnitude higher
in the cost function to ensure that no two PR regions will
overlap. aspectError penalizes the placements for having a
poor aspect ratio with the ideal aspect ratio being dependent
on the architecture. Higher ideal aspect ratios are used for
the Virtex-II families to minimize reconfiguration overhead.
waste is a measure of extra resources within the placement
that will not be utilized on the device. The distance
variable represents the total distance between reconfigurable
regions, and it is used to minimize routing delays between
reconfigurable regions.

Producing partial configuration bitstreams currently
requires an Xilinx-supplied patch to the standard Xilinx
ISE toolset. Among other changes, this patch constrains
the router to keep routes inside a reconfigurable region.
These modified tools make up the Xilinx early access PR
(EAPR) flow. The EAPR flow requires that special connection
points, called bus macros, surround reconfigurable modules,
providing a stable connection point to the static hardware.
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BusMacroHelper is a tool created for a related project that
automatically inserts and places bus macros.

The CreateLUT tool creates a binary look-up table
(LUT) that lists the size and location in memory of each
partial bitstream enabling the configuration controller to
find the desired partial bitstream. Additionally, the script
concatenates the LUT and the partial bitstreams together into
a single memory image to facilitate the automated download
of the application to an FPGA.

Figure 5 presents an example implementation of a simple
SDR application that may switch demodulation schemes.
Several important aspects of this project are evident in the
figure. The PR module AM Demod has been area-constrained
to a specific location of the FPGA by the Floorplanner tool.
All non-re-configurable modules are unconstrained, permit-
ting the Xilinx tools to choose their optimum locations.
All nonclock signals crossing the boundary between the
static and PR regions must pass through a bus macro. As
reconfiguration leaves the logic internal to a PR region in
an undefined state, to stop the internal logic from producing
random outputs that affect the rest of the system, the bus
macro on the output of a PR region can be disabled. The tool
flow automatically creates a PR control module for each PR
region that disables the bus macros before reconfiguration
and places any newly reconfigured module into a known
good state by toggling the module reset line. Control of
partial reconfiguration is handled by a MicroBlaze-based
system running the user control code.

The CSP model permits each process to run at its own
speed. To replicate this in hardware, each process receives its
own clock, subject to resource availability. The FSL connec-
tions between processes are implemented as asynchronous
FIFOs to enable cross-clock domain communication. The
clocking structure is automatically generated using timing
estimates from the synthesis tool.

4. Results

A video processing application, representative of streaming
applications that benefit from PR, is described in this section
followed by a comparison of the results obtained with
this development flow and the results obtained manually
following the Xilinx EAPR flow [40].

4.1. Application development

A video processing demonstration has been implemented
using this development flow in which a video stream is
filtered in real time with one of several filters. A separate
filter acts on each of the three colors (red, green, and blue)
and each can be independently reconfigured to implement
an edge detector, a median image filter, or a pass-through.
The edge detector and median image filter operate on a 5× 5
window of pixels. The application forgoes a full frame buffer,
using a separate columns process to buffer five lines of pixels,
presenting a column of five pixels to the filters.

The filters and control logic are all described in DR
Impulse C. For high-level simulation, separate test processes
are defined that load an input image from a Windows Bitmap
(BMP) file and translate filters’ outputs into a BMP, as shown
in Figure 6. The filtered output images in Figure 6 were
produced by this Impulse C simulation.

Before implementation, the application RCSF is edited
to replace these Impulse C test benches with the interface
logic for the video card and video DAC, which are a part of
the BSP of the Xilinx Virtex-II Pro XUP development board.
This edit involves the modification of only eight lines of XML
code. The original RCSF file is shown in Figure 7. Each CSP
process is linked to an implementation folder containing the
HDL description. Connectivity is expressed by associating
each port to a stream.

The implemented design (the layout of which is seen in
Figure 8) encompasses 63% of an Xilinx xc2vp30. The filters
operate at 57 MHz, sufficiently fast to support the incoming
640 × 480 video stream at 60 Hz. If implemented as a static
design, the hardware would have to include nine separate
filters, that is, three filters for each of the three colors.
The total area required by all nine filters would be 1707
slices. Partial reconfiguration reduces the area requirements
to three instances of the largest filter, consuming 1328 slices
across three reconfigurable regions, thus resulting in an area
saving of 379 slices due to using PR. Any additional filters
added to the system would increase this area saving.

4.2. Benchmarks

To quantify the advantages and disadvantages of the high-
level development environment, a set of applications was
implemented in this environment and compared to imple-
mentations made following the Xilinx EAPR flow. To more
accurately simulate real-world design practices, the Xilinx
EAPR flow was scripted following the PR documentation
[40]. All designs were created by an experienced hardware
designer familiar with the Xilinx configuration architecture
and EAPR flow. Note that the results presented below do
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not take into account the reduced skill set required by the
high-level development environment. While some level of
hardware experience is still required to create an application
in DR Impulse C, it is significantly less than the low-level
architecture-specific knowledge needed to follow the Xilinx
EAPR flow.

The first application involved a reconfigurable coproces-
sor for an embedded MicroBlaze processor. This coprocessor,
attached via an FSL interface, can be reconfigured to
implement either a 32-bit integer divider or an integer
square-root function. The descriptions for both functions
were obtained from existing IP using the Xilinx Coregen
tool and the OpenCores internet IP repository, in the case
of the EAPR flow, and using example code provided with
the Impulse C tools, in the case of this project’s development
environment.

The development time for both environments, from ini-
tial design description to working hardware implementation,
was recorded. The PR region of the Xilinx EAPR flow was
hand-placed, and it is 36% smaller than the Impulse C-based
approach, owing to inefficiencies in HLS and automated
floorplanning. Table 2 presents area and performance results
at the module level. The Impulse C-generated divider com-
pares well with the OpenCores divider, while the Coregen
square-root function is significantly smaller than the Impulse
C-generated module. The Impulse C-generated square-root
function has a latency that is data-dependent. It should be
noted that this high-level development environment can use
existing IP and is not limited to Impulse C-created hardware
though currently the implementation flow only supports IP
with an FSL interface.

As presented in Table 3 for the integrated coproces-
sor application, the high-level development environment
incurred a 71% penalty in average throughput and an
8% overall area penalty when compared to a manual
implementation in the Xilinx EAPR flow. This throughput
metric averages the best- and worst-case throughputs for
the divider and square-root modules. The manual EAPR
implementation ran the coprocessor at the system 100 MHz
clock rate. The high-level development environment ran the
coprocessor at 80% of the synthesis tool estimated clock
rate for the slowest coprocess module. The performance
penalty could be reduced by leveraging existing IP instead
of using Impulse C-generated HDL. Additional gains are
possible by dynamically modifying the clock rate of the
coprocessor instead of running all coprocessors at the speed
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Table 2: Coprocessor module performance benchmarks in an Xilinx xc2vp30.

Module
Area Speed Throughput

(slices/BRAMs/BMults) (MHz) (ops/sec)

Divider (Impulse C) 258/0/0 134 3.8 (106)

Divider (OpenCores) 159/0/0 123 3.4 (106)

Square root (Impulse C) 760/1/9 56 0.7 (106)–4.7 (106)

Square root (CoreGen) 266/0/0 114 9.5 (106)

Table 3: Coprocessor application performance benchmarks.

Environment
Area Average Throughput

(slices) (ops/sec)

High level (Impulse C) 3118 1.6 (106)

Xilinx EAPR 2883 5.6 (106)

Table 4: Coprocessor application productivity benchmarks.

Environment
Frontend Backend Total

(h) (h) (h)

High level (Impulse C) 0.8 5 5.8

Xilinx EAPR 6.2 7.4 13.6

of the slowest. The small area penalty is due to the superiority
of hand-placed designs.

The high-level development approach netted a 57%
reduction in overall development time, seen in Table 4. The
frontend number indicates the time required to create the
design description, whether in DR Impulse C or Verilog. The
backend number represents the time required to take the
design description through implementation, and includes
any hardware debugging. While the DR Impulse C design
bested the Verilog design for each metric, the majority of the
productivity improvement came from the frontend design.
Even with the EAPR flow leveraging existing IP, the time
required to integrate this IP into a design was significantly
greater than the time required to describe the application in
Impulse C.

Cryptographic hash functions were used as a second
benchmarking application. A reconfigurable region on the
FPGA could be configured for either the MD5 or the SHA-
1 standard. The hash functions were created from scratch
using both Impulse C and Verilog. Area and performance
numbers for each function are shown in Table 5. The
Verilog-described SHA-1 consumed 12% more slices than
the Impulse C design owing to the use of five independent
memories to permit simultaneous access to the message data.
This approach increases throughput at the expense of area.
Had area been of primary concern, a Verilog design would
have been smaller than the Impulse C-created hardware.
The Impulse C MD5 and SHA-1 cores underperformed the
Verilog cores by 39% and 63%, respectively.

Table 6 presents the performance results with the crypto-
graphic modules integrating into the reconfiguration appli-
cation. The high-level development environment imparts a

Table 5: Cryptographic module performance benchmarks in an
Xilinx xc2vp30.

Module
Area Speed Throughput

(slices/BRAMs) (MHz) (blocks/sec)

MD5 (Impulse C) 1305/2 66 0.43 (106)

MD5 (Verilog) 613/0 61 0.71 (106)

SHA-1 (Impulse C) 1080/1 73 0.17 (106)

SHA-1 (Verilog) 1214/0 76 0.46 (106)

Table 6: Cryptographic application performance benchmarks.

Environment
Area Throughput

(slices) (blocks/sec)

High level (Impulse C) 2016 0.30 (106)

Xilinx EAPR 1632 0.58 (106)

Table 7: Cryptographic application productivity benchmarks.

Environment
Frontend Backend Total

(h) (w/o MD5) (h) (h) (w/o MD5)

High level 8.1 1 3.3 11.3 4.3

Xilinx EAPR 6.3 2.2 6.3 12.5 8.5

24% area penalty and a 48% performance penalty, compared
to the conventional Verilog design.

The productivity advantage of the high-level develop-
ment environment was hampered in this application by a
bug in the Impulse C-generated hardware, as seen in Table 7.
The time spent resolving this issue resulted in a 28% greater
frontend design time for the high-level development envi-
ronment than that for a Verilog-created design. If the MD5
design time was removed from consideration, the frontend
design times for the high-level and conventional approaches
are 1 and 2.2 hours, respectively. This 120% frontend design
time improvement is more in line with the coprocessor
productivity results. If the MD5 design and debug time
are considered, the total development improvement of the
high-level approach is 10%, while if the MD5 design time
is excluded from both designs, the high-level productivity
improvement increases to 49%, approximating the results for
the coprocessor application.

While the performance and area results obtained from
the HLS tool may limit its applicability to high-performance
applications, this does not negate the utility of the presented
dynamic hardware development environment. For designs
with timing or area constraints that cannot easily be met
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with current HLS tools, the user is free to leverage HDL from
other sources. This project’s design and implementation
flows offer many benefits even in the case of hand-coded
HDL. The design flow permits high-level simulation of the
entire design from a simple C model of each module. The
implementation flow automates the creation of placement
and area constraints, a configuration controller, and partial
bitstreams.

It should be noted that the performance and productivity
results would likely improve under a model-based high-
level design environment. While Impulse C is currently
used for design capture, other development tools that
support a dataflow model may be leveraged with only slight
modifications to the simulation mechanism of the tools. One
advantage of Impulse C is its ability to synthesize random
control logic. However, for straight signal processing appli-
cations, graphical high-level design tools, such as the Xilinx
system generator, may be more appropriate. The defined
interface between this project’s design and implementation
flows facilitates the use of multiple design entry methods.

5. Conclusion

The introduction of HLS techniques into the design of
partially reconfigurable hardware for FPGAs can significantly
reduce development time. The observed reductions in devel-
opment time of approximately 50% would likely be greater
for larger designs and for designers not being intimately
familiar with an FPGA low-level configuration architecture.
The resulting performance penalty may be acceptable for a
variety of applications given the development time improve-
ments and the significantly reduced skill set required to
implement reconfigurable applications. By leveraging high-
level development techniques, the full potential of FPGAs can
be made easily available to the designer.
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