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Abstract—Partial dynamic reconfiguration is a key feature of
modern reconfigurable architectures such as the Xilinx Virtex
series of devices. However, this capability imposes strict placement
constraints such that even exact system-level partitioning (and
scheduling) formulations are not guaranteed to be physically
realizable due to placement infeasibility. We first present an exact
approach for hardware–software (HW-SW) partitioning that
guarantees correctness of implementation by considering place-
ment implications as an integral aspect of HW-SW partitioning.
Our exact approach is based on integer linear programming (ILP)
and considers key issues such as configuration prefetch for mini-
mizing schedule length on the target single-context device. Next,
we present a physically aware HW-SW partitioning heuristic that
simultaneously partitions, schedules, and does linear placement
of tasks on such devices. With the exact formulation, we confirm
the necessity of physically-aware HW-SW partitioning for the
target architecture. We demonstrate that our heuristic generates
high-quality schedules by comparing the results with the exact
formulation for small tests and with a popular, but placement-ua-
naware scheduling heuristic for a large set of over a hundred tests.
Our final set of experiments is a case study of JPEG encoding—we
demonstrate that our focus on physical considerations along with
our consideration of multiple task implementation points enables
our approach to be easily extended to handle heterogenous archi-
tectures (with specialized resources distributed between general
purpose programmable logic columns). The execution time of our
heuristic is very reasonable—task graphs with hundreds of nodes
are processed (partitioned, scheduled, and placed) in a couple of
minutes.

Index Terms—Hardware–software (HW-SW) partitioning,
linear placement, partial dynamic reconfiguration.

I. INTRODUCTION

DYNAMIC reconfiguration, often referred to as run-time
reconfiguration (RTR) provides the ability to change hard-

ware configuration during application execution. This enables
a larger percentage of the application to be accelerated in hard-
ware, hence, reducing overall application execution time [19].
Modern-day SRAM-based field-programmable gate arrays
(FPGAs) are examples of such hardware devices. Additionally,
some FPGAs such as the Virtex devices from Xilinx1 allow
modification of only a part of the configuration (partial RTR).
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This is a very powerful feature specially for single-context
FPGAs, by enabling the possibility of overlapping computation
with reconfiguration to reduce the significant reconfiguration
time overhead. Multicontext devices such as Morphosys [11]
incur a lower overhead by paying a very significant area penalty
to simultaneously store multiple contexts. Our work focuses
on single-context devices where the dynamic reconfiguration
overhead is very significant.

In this work, we consider the problem of task level hard-
ware–software (HW-SW) partitioning for a resource-con-
strained system, where the HW unit has partial RTR capability.
Given an application represented as a task directed acyclic
graph (DAG), our goal is to maximize application performance
(minimize schedule length) when there exists a hard resource
constraint on the amount of available configurable logic.

In a traditional codesign flow, HW-SW partitioning opti-
mizes the design latency and is followed by the physical design
stage that places the tasks scheduled to HW on the underlying
device. However, for tasks mapped onto our target architecture,
partial RTR capability imposes strict linear placement con-
straints. Under such constraints, an optimal schedule generated
by a HW-SW partitioning approach that does not consider the
exact physical location of the task during scheduling [13], may
be physically unrealizable because of placement infeasibility.

Another key aspect of modern reconfigurable architectures
like the Virtex-II is heterogeneity. Such architectures contain
dedicated resource columns of multipliers, block memories,
etc., distributed between general purpose programmable logic
columns. Such dedicated resources often lead to more efficient
implementations that operate at a higher frequency. It is impor-
tant to consider the area-execution time tradeoffs arising from
heterogeneity during HW-SW partitioning—for our problem,
the placement restrictions due to heterogeneity pose an addi-
tional challenge.

• Feasibility issue, exact approach: With the previous two
factors in mind, we first demonstrate that existing parti-
tioning (and scheduling) approaches that do not consider
physical task layout can result in unrealizable (infeasible)
designs. This motivates us to present an exact approach
to study the solution space. Our exact approach is an in-
teger linear programming (ILP) formulation that incorpo-
rates physical layout into the HW-SW partitioning (and
scheduling) problem. Our approach additionally integrates
the key feature of configuration prefetch [16]—given the
significant reconfiguration overhead of our target architec-
ture, this feature is critical for minimizing schedule length.
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• Heuristic approach: While the ILP formulation is a key
first step in exploring the problem space, the significant run-
time makes it impractical for all but the simplest problems.
So, we next present a Kernighan–Lin/Fiduccia–Matheyses
(KLFM)-based heuristic that considers detailed linear
placement as an integral part of scheduling. Our heuristic
additionally considers the existence of multiple task im-
plementation points, potentially arising from compiler
optimizations. We compare our approach with the exact
approach as well as with an approach that is insensitive
to placement implications during scheduling—the exper-
imental data over a large set of benchmarks (more than a
hundred data points) confirms the necessity of considering
placement implications as an integral part of scheduling
on our target architecture. The runtime of our heuristic is
very reasonable—task graphs with hundreds of nodes are
partitioned, scheduled, and placed in a couple of minutes.

• Heterogeneity: A key benefit of considering placement
and multiple task implementations is the ability to extend
our approach to consider heterogeneity with relatively
minor modifications. In a detailed case study of mapping
a JPEG encoder task graph under resource constraints,
we explore the benefits and issues with dynamic task
implementations using heterogenous resources on such
architectures.

II. RELATED WORK

HW-SW partitioning is an extensively studied problem with
a plethora of approaches. This includes ILP-based exact ap-
proaches [20], genetic algorithm (GA)-based approaches [8],
evolutionary algorithms (EA)-based approaches [3], and mul-
tiple KLFM-based ([24], [25]) approaches such as [14] and [18].
Of course, most of the existing work does not consider the spe-
cial challenges posed by dynamic reconfiguration—the tradi-
tional HW-SW partitioning formulations implicitly assume that
HW is static, i.e., the HW functionality cannot be modified
during application execution. Partial RTR imposes additional
placement constraints that need to be explicitly incorporated
into the problem formulation.

Recently, approaches have been proposed for simultaneous
scheduling and placement for partially reconfigurable devices
[5], [10]. However, they do not consider key issues in runtime re-
configuration such as prefetch to overcome latency, the resource
contention due to single reconfiguration controller, etc. In such
work, the task reconfiguration is bundled along with task execu-
tion and treated as a single process—while such simplifications
make the problem closer to rectangle packing [21], the proposed
strategies are not applicable to single-context architectures with
resource contention for reconfiguration and significant reconfig-
uration overheads.

There have been different proposals such as configuration
compression, configuration caching [7], etc., to reduce the effect
of large reconfiguration delays on such architectures. One of the
popular approaches is configuration reuse, where the work often
considers all tasks to be of equal area and focuses on exploiting
similarity between a given set of scheduled tasks [6]. In our
paper, we currently do not exploit such resource-sharing across
tasks. We focus on integrating key architectural constraints and

Fig. 1. System architecture.

Fig. 2. Dependency task graph.

placement considerations into the scheduling formulation for
the more realistic scenario of varying task sizes.

Our work is closely related to [12] and [13]. Mei et al.
[12] present a genetic algorithm for partial RTR that considers
columnar task placement. However, their approach does not
consider prefetch or the single reconfiguration controller bot-
tleneck. Jeong et al. [13] present an exact algorithm (ILP)
and a KLFM-based approach. Their ILP considers prefetch
and the single reconfiguration controller bottleneck, however,
while scheduling, they do not consider the critical issue of
physical task placement. We will demonstrate that an optimal
formulation that does not simultaneously consider placement
during scheduling can generate schedules which can not be
placed and, hence, are not physically realizable.

Last but not the least, a distinctive feature of our work com-
pared to existing work is our consideration of heterogeneity in
resources, a key feature of modern reconfigurable architectures.

III. PROBLEM DESCRIPTION

We consider the problem of HW-SW partitioning of an ap-
plication on the target system architecture shown in Fig. 1—the
application is specified as a task dependency graph extracted
from a functional specification in a high-level language like C,
VHDL, etc. In a task dependency graph (Fig. 2), each vertex
represents a task. Each edge represents data that needs to be
communicated from a parent task to a child task. Each task in
the task graph can start execution only when all its immediate
parents have completed and it has received all its input data from
its parents.

A. Target System Architecture

Our target system architecture, as shown in Fig. 1, consists
of two processing units: an SW processor and a dynamically re-
configurable FPGA with partial reconfiguration capability. The
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Fig. 3. Heterogenous FPGA with partial RTR.

processor and the FPGA communicate by a system bus. We as-
sume concurrent execution of the processor and the FPGA. We
assume that the dynamically reconfigurable tasks on the FPGA
communicate via a shared memory mechanism—this shared
memory can be physically mapped to local on-chip memory
and/or off-chip memory depending upon memory requirements
of the application.2 Under our abstraction, communication time
between two tasks mapped to the FPGA is independent of their
physical placement.

We also assume that all memory accesses by tasks executing
on the processor are restricted to its local memory subsystem.
When a task executes on the processor, but one of its parent
tasks executes on the FPGA, the output data for (input for

) needs to be transferred from the FPGA shared memory to the
processor local memory incurring a communication overhead.
Similarly, for a task executing on the FPGA, if one of its parent
tasks executed on the processor, there is a communication delay
for transferring data from the processor memory to the FPGA
shared memory. Of course, for a task executing on the processor
if all its parents executed on the processor, there is no penalty
for data transfer. Thus, we need to consider HW-SW commu-
nication delay only for adjacent tasks mapped to different pro-
cessing units.

B. Dynamically Reconfigurable FPGA

Our target dynamically reconfigurable HW unit as shown
in Fig. 3 consists of a set of configurable logic blocks (CLB)
arranged in a 2-D matrix. Additionally, a limited number of
specialized resource columns are distributed between CLB
columns. The basic unit of configuration for such a device is a
frame spanning the height of the device. A column of resources
consists of multiple frames. A task occupies a contiguous set
of columns. Such a device is configured through a bit-serial
configuration port like JTAG or a byte-parallel port. However,
only one reconfiguration can be active at any time instant. The
reconfiguration time of a task is directly proportional to the

2In this work, we assume the shared memory mechanism provides sufficient
bandwidth for a set of tasks concurrently executing on the FPGA. Also, de-
tailed consideration of specialized inter-module communication structures such
as those considered for the Erlangen Slot Machine [1] is beyond the scope of
this work.

number of columns (frames) occupied by the task implemen-
tation.

An example of such a dynamically reconfigurable HW unit
is the Xilinx Virtex-II architecture. Reconfiguration delay for
one column on a typical device (XC2V2000) is approximately
0.19 ms. In the Virtex-II architecture, there are dedicated
columns of embedded multipliers (MULTX18), and block
memories (BRAM) always placed adjacent to each other. In
the rest of this paper, we consider the (MULTX18, BRAM)
column pair as a single resource column for the purpose of gen-
erating sample numerical data on a representative architecture.
Some of the Virtex devices (such as the Virtex-II Pro), have
hard SW processors such as the PowerPC. However, all the
Virtex devices are capable of instantiating the soft MicroBlaze
processor.

C. Problem Parameters

On the target system architecture, a task can have multiple
implementations: as a simple example, compiler optimizations
like loop unrolling often result in a faster implementation with
more HW area. Another example is the possibility of area-effi-
cient implementations using dedicated resources like embedded
memory. Thus, each implementation point of a task can be sum-
marized by the following set of parameters:

• execution time;
• area occupied in columns

(for HW implementation points only);
• reconfiguration delay

(for HW implementation points only);
and the device-related constraints can be summarized as
follows:

• columnar implementations of dynamic tasks;
• single reconfiguration process;
• location of specialized resource columns

(for heterogenous devices only).

D. HW-SW Partitioning Objective

Our objective for HW-SW partitioning is to minimize the ex-
ecution time of the application while respecting the architec-
tural and resource constraints imposed by the system architec-
ture. Thus, our desired solution is a task schedule where each
task is bound to the HW unit or the SW processor, along with a
suitable implementation point for each task.

Before presenting our proposed approach to solve this
problem, in the next section, we take a detailed look at key
issues such as implementation feasibility that are addressed by
our proposed approach.

IV. KEY ISSUES IN SCHEDULING ON TARGET ARCHITECTURE

In this section, we present a detailed discussion on the key
issues we have addressed in our formulation. First, we consider
the criticality of considering physical constraints in a HW-SW
partitioning formulation for a system with partial RTR.

A. Criticality of Linear Task Placement

In the target architecture, each dynamic task is implemented
on a set of adjacent columns on the FPGA. Inter-task commu-
nication is realized through a shared memory accessible from
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each task with the same latency and cost. Since this latency
is identical for all the HW tasks and negligible compared to
runtime reconfiguration overhead and HW-SW communication
delay, inter-task communication delay for tasks mapped to the
FPGA is not considered during HW-SW partitioning. This sim-
plifies the placement of the tasks on the device to simple linear
placement. Of course, since physical connectivity between tasks
is not relevant under a shared memory abstraction, this linear
placement problem is simpler compared to the linear placement
problem in physical design where the objective is to minimize
the total connectivity between the modules [27].

The linear task placement problem is formulated as follows:
• given a scheduled task graph under resource constraint and

the size of the implementation for each task (in terms of the
number of columns on a FPGA);

• find a feasible placement on reconfigurable hardware.
We look at this problem for two different cases. In the first

case, we assume that each task occupies an identical number of
columns. This assumption has been considered in previous work
in dynamic reconfiguration such as [6]. In this case, feasible
placement is guaranteed after tasks are scheduled on the FPGA
under a total resource constraint.

Lemma 1: For a given scheduled task graph with inter-task
communication via shared memory and equal size tasks, a fea-
sible and optimal placement is guaranteed and can be generated
in polynomial time.

Proof: The problem is the same as track assignment on a
set of intervals and graph coloring on interval graphs (which
are perfect graphs) [9]. Each scheduled task represents an in-
terval and each set of columns (equal to the size of tasks) repre-
sents a track. Since the graph is scheduled under a total number
of columns, the number of resources available at each time is
equal to the density of the tasks. Hence, by applying efficient
algorithms for graph coloring on interval graphs (e.g., left-edge
algorithm), a feasible placement can be found.

Thus, task placement is trivial for tasks with identical size and
can follow HW-SW partitioning. So, there is no need to integrate
placement with HW-SW partitioning.

In the other case, we assume that tasks can occupy a different
number of columns during implementation. After the tasks are
scheduled, the feasibility of placement is not guaranteed even if
it is checked with an exact algorithm. Similar to the first case,
the placement problem is a track assignment problem for a set
of intervals under the constraint that each interval gets assigned
to a certain number of adjacent tracks. We can extend the afore-
mentioned algorithm for track assignment based on a dynamic
programming approach. While sweeping the time steps, we add
the current interval to all existing feasible arrangements of al-
ready visited intervals. Due to adjacency constraint, some of
those are not acceptable and the feasible assignments are pruned
further. We continue until the end of the tracks. All the feasible
combinations are examples of feasible placement. If no feasible
combination is found, it implies that the current scheduled tasks
do not have a feasible placement. The algorithm is linear in
terms of the number of intervals but has a factorial growth on
the number of tracks. The complexity of this problem is still an
open problem. However, the exact solution can be obtained by
the proposed extension to track assignment or using ILP solvers

Fig. 4. Simple infeasible.

to check the feasibility of the placement. In this paper, our focus
is on feasibility of placement after scheduling. We, thus, apply
an exact solver to check the feasibility of the placement in order
to show that the infeasibility in the placement comes from ap-
plying distinct consecutive stages of partitioning and placement
rather than using suboptimal placement algorithms. Thus, for
tasks that occupy a different number of columns in the imple-
mentation, linear placement feasibility is not guaranteed even
with an exact algorithm on a scheduled graph.

In Fig. 4, we demonstrate an instance of such infeasibility
using an exact approach for partitioning and scheduling fol-
lowed by linear placement for such multicolumn tasks. This is a
2-D view of the task schedule where the -axis (length) corre-
sponds to time, the -axis (width) corresponds to the number of
columns. The FPGA has four columns and three tasks mapped
onto it. Tasks , , and occupy columns , ( , ),
and , respectively. At time , a model that does not con-
sider placement information would indicate that two units of
area were available. So a new task, say , that requires two
columns, could be scheduled at time . However, this would be
incorrect as two adjacent columns are not available at .

In Fig. 4, of course there is the opportunity for better place-
ment by initially placing task into columns ( , )—then,
at time , two adjacent columns ( , ) would be available to
place a two column task. However, the more detailed example
in Fig. 5 demonstrates that there are schedules that cannot be
placed by an optimal placement tool. At time step 9, task
needs four columns for execution—even though there are six
columns available in the FPGA, four contiguous columns are
not available. Note that changing the task placement at prior
timesteps (for example, swapping physical location of task
with task ) would only lead to placement failure at a previous
timestep. To achieve a feasible placement, the task schedule it-
self needs to change. Therefore, it is critical to integrate linear
placement of the tasks into the scheduling formulation in order
to generate feasible solutions.

B. Heterogeneity Considerations in Scheduling

Modern FPGAs (such as the Xilinx Virtex-II) have heteroge-
nous architectures containing columns of dedicated resources
like embedded multipliers, embedded memory blocks. Usage
of such specialized resources usually leads to more area-effi-
cient and faster implementations. As an example, we consider
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Fig. 5. Detailed infeasible.

post-routing timing data obtained from synthesizing a 2-D dis-
crete cosine transform (DCT) under columnar placement and
routing constraints on the Virtex-II chip XC2V2000. While the
heterogenous implementation with three CLB columns and one
resource column has an operating frequency of 88 MHz, the ho-
mogenous implementation with four CLB columns is able to op-
erate at only 64 MHz [we consider the adjacent column pair of
BRAM (embedded memory) and MULTX18 (embedded mul-
tiplier) as a single resource column for generating numerical
data].

However, these heterogenous resources are typically limited
in number and present in specific locations. For instance,
XC2V2000 has 48 CLB columns, but only four heterogenous
resource columns. Since these resource columns are available
only at fixed locations, they impose stricter placement con-
straints. Depending on where a task is placed, the HW execution
time and area may vary significantly. This provides further
motivation for considering linear placement as an integral
aspect of HW-SW partitioning on reconfigurable architectures.

C. Scheduling for Configuration Prefetch

Configuration prefetch [16] is a powerful technique that at-
tempts to overcome the significant reconfiguration penalty in
single-context dynamically reconfigurable architectures by sep-
arating a task into reconfiguration and execution components.
While the execution component is scheduled after data depen-
dencies from parent tasks in the task graph are satisfied, the re-
configuration component is not constrained by such dependen-
cies. This poses a significant challenge to any scheduling for-
mulation that incorporates prefetch.

V. APPROACH

First, we modify the problem description to address the pre-
vious issues: We have a task graph with tasks, where each task
has multiple possible implementations. Each HW implementa-
tion of a task occupies a certain number of columns. We have
one available SW processor and an HW resource constraint of
HW columns for application mapping. Our objective is to find
an optimal schedule where each task is bound to HW or SW,
the task implementation is fixed, and, for HW tasks, the phys-
ical task location is determined. In the rest of this section, we

present an exact (ILP) formulation that solves this problem and
follow up with a KLFM-based heuristic.

A. Notation

The problem input is a directed acyclic task dependency
graph . is the set of graph vertices and the set
of edges. Each edge has one weight . represents the
HW-SW communication time, i.e., if is mapped to SW and
its child is mapped to HW (or vice versa), represents the
time taken to transfer data between the SW and the HW unit.
Each task corresponding to vertex has four weights ( , ,

, and ). is the execution time of the task corresponding to
on the SW unit (processor). , , and are the execution

time, area requirement in columns, and the reconfiguration
overhead, respectively, for task on the FPGA.

Our problem objective is to obtain an optimal mapping with
minimal latency when the FPGA has at most columns
available for application execution.

B. ILP Formulation

In this section, we present an ILP that provides an exact so-
lution to our problem. For ease of understanding, we restrict the
ILP formulation to homogenous devices with single HW task
implementation points only. As mentioned earlier, our work dif-
fers from existing ILPs in HW-SW partitioning, such as [20], in
that we consider linear task placement as a key aspect—thus,
our underlying model is essentially a 2-D grid where task place-
ment is modeled along one axis while time is represented on the
other axis. While this model is similar to existing ILP formula-
tions for rectangular packing problems [23], issues such as con-
figuration prefetch and the reconfiguration controller are unique
to our problem and have not been considered in previous work
on rectangular packing.

1) ILP Variables: We introduce the following set of 0–1 (de-
cision) variables.

• , if task starts execution on FPGA at time-step
, and is leftmost column occupied by ;

, otherwise.
• , if starts execution on processor in time-step ;

, otherwise.
• , if reconfiguration for task starts at time-step

, and is leftmost column occupied by ;
, otherwise.

• , if tasks and are mapped to different
computing units and, thus, incur a HW-SW communica-
tion delay;

, otherwise.
Some of the constraints necessitate the introduction of addi-

tional binary variables to represent logical conditions. All such
variables are represented as .

The ranges of the variable indices are of course determined
by the problem input, i.e.,

number of tasks

upper bound on schedule length

number of FPGA columns
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2) Constraints:
1) Uniqueness constraint:

Each task can start (is executed) exactly once

(1)

2) Processor resource constraint:
Processor executes, at most, one task at a time

(2)

3) Partial dynamic reconfiguration constraints:
a) Every task needs, at most, one reconfiguration; and

reconfiguration is not needed if task executes on pro-
cessor3

(3)

b) Resource constraints on FPGA: total number of
columns being used for task executions and number
of columns being reconfigured is limited by the total
number of FPGA columns

(4)

Note that in this constraint we do not explicitly con-
sider the effect of configuration prefetch, where there
are columns that have been reconfigured, but not yet
executed. Subsequent constraints e) and f) ensure cor-
rectness for columns used in configuration prefetch.

c) At every timestep , at most single task is being re-
configured

(5)

Note that in this equation we do not need to consider
the number of columns required for this task.

d) At every timestep , mutual exclusion of execution
and reconfiguration for every column

(6)

3Additional clarification for this constraint is included in the explanation of
(7).

Note that this is a key step that enforces contiguity.
The inner term ensures that if a
task requires columns for reconfiguration (exe-
cution), it can proceed only when a contiguous set of

columns are available.
e) If reconfiguration is needed for task , execution

of task must start in the same column. Addition-
ally, execution can start only after the reconfiguration
delay

(7)

We can rewrite the previous constraint as the fol-
lowing set of constraints:

if then

This enables us to apply the if–then transformation as
in [26].4

Note that in this equation and (3), we do not include
the reconfiguration time for the initial set of tasks
placed on the device. This enables us to accurately
compare results with a traditional HW-SW parti-
tioning formulation where execution time does not
include system setup time of reconfiguration for the
set of tasks placed on the device.

f) For every column, there must be a reconfiguration be-
tween two task executions using this column. This
key clause is necessary to account for the potential
(gap) between reconfiguration and execution caused
by configuration prefetch, discussed in the previous
section.
We solve this problem by computing the difference
between the execution start times and reconfiguration
start times for all tasks that have used this column till
a particular timestep. If a task execution is using this
column at this timestep, this difference must neces-
sarily be less than the execution start time of this task.
For potentially better visual understanding, we focus
on a specific column and consider the start times (re-
configuration and execution) of all tasks that use this
column to be arranged in a linear sequence. The re-
configuration start times are assigned negative sign,

4If–then transform for the constraint if (f(X) > 0), then g(X) � 0

�g(X) �Mb

f(X) �M(1� b)

b 2 (0; 1)

where M is a large number such that f(X) � M , �g(X) � M for X satis-
fying all other constraints.
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and the execution start times are assigned positive
sign. The numbers in the sequence are obviously in-
creasing in magnitude, but of differing signs. The con-
straints e) and f) together ensure that positive and
negative numbers alternate, i.e., a task is reconfig-
ured before execution. Additionally, they ensure that
a column reconfigured but not yet executed does not
get overwritten by another reconfiguration

(8)

Similar to (7), we can rewrite (8), and apply the
if–then transform.

g) Simple placement constraint: a task can start execu-
tion only if there are sufficient available columns to
the right

(9)
4) Interface (communication) constraints:

For each directed edge , communication (interface)
overhead is incurred if tasks and are mapped to dif-
ferent computing units, i.e., one is mapped to the processor
and the other is mapped to the FPGA.
If task is mapped to the processor, .
Thus, the communication overhead corresponding to the
edge is incurred under the following set of condi-
tions:

Either, and

Or and

That is, if we introduce a new variable

can only belong to the set .
Thus, the communication constraint is simply

edges (10)

where is a binary 0–1 variable.
5) Precedence constraints:

For each directed edge , the start time for task is
necessarily at least the sum of the start time of task , the

execution time of task , and the HW-SW communica-
tion time if any, i.e., edges

(11)

6) Objective function to minimize schedule length:
This is equivalent to minimizing the start time of the sink
task

minimize

Of course, by introducing simple additional constraints that
force the sink task to execute on the processor and all
tasks to have 0 communication delay with the sink task, the
objective function can be simply written as

minimize

Along with the necessary constraints, we also introduce
additional constraints that help significantly in reducing
the time the ILP solver needs to find a solution.

7) Tighter placement constraints:
For every column , at every time instant , total number
of executions using this column so far is at most 1 less than
the total number of reconfigurations

(12)

8) Tighter timing constraints:
ASAP, ALAP constraints.

3) Extending the ILP for Multiple, Heterogenous Imple-
mentations: While our ILP formulation is based on single
homogenous task implementations, we believe that it can be
easily extended for single heterogenous task implementations
by a simple preprocessing step that adds extra placement
constraints to the homogenous formulation. Extensions for
handling multiple task implementation points is more chal-
lenging. One crude but effective way would be to represent
each as a linear sum of a set of 0–1 variables representing
the different possible task implementations. Then all product
terms of the form obtained by substituting the
terms in the homogenous implementation can be linearized by
using Fortet’s linearization method [22].

C. Heuristic Approach

While our ILP formulation enabled us to study the problem
space, its implementation using a commercial ILP solver
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Fig. 6. Moves in HW-SW partitioning with multiple implementation points.

(CPLEX) required a very significant amount of computation
time to obtain an optimal solution even for relatively small
problem instances. This motivated us to develop a heuristic
approach that generates reasonably good-quality solutions with
a computation effort many orders of magnitude lower. We
obtain quality solutions to problems with hundreds of tasks in
a couple of minutes with our heuristic.

1) Heuristic Outline: Our approach is based on the well-
known KLFM heuristic [24], [25] that iteratively improves so-
lutions to “hard” problems by simple moves. At each step of the
KLFM heuristic, the quality of a move needs to be evaluated.
Similar to previous work in HW-SW partitioning, such as [14],
we evaluate the quality of a move by a scheduler. However, our
target platform requires that our scheduler is aware of the phys-
ical and architectural constraints of the underlying device.

Code Segment 1: KLFM loop

while (more unlocked tasks)
for each unlocked task

for each noncurrent implementation point
calculate makespan by physically aware
list-scheduling

select and lock best (unlocked task, implementation point)
tuple
update best partition if new partition is better

In Code Segment 1, we present our adaptation of the KLFM
kernel. Essentially this is the outer loop of the heuristic: while
there are more unlocked tasks, the “best” task is chosen in every
iteration of the loop. The kernel is itself repeatedly executed
times, where is a small constant around 5–6. As can be seen
in Code Segment 1, our kernel considers multiple task imple-
mentation points. In simple cases where each task has a single
HW and a single SW implementation, a “move” in HW-SW par-
titioning implies moving the task to the other partition. In task
implementations on FPGAs, multiple area time tradeoff points
are very common. Restricting a move to only HW-SW, or vice
versa would restrict the solution space. Thus, we define a move
as generic, possible between any two implementation points of
a task, including HW-HW, HW-SW. In Fig. 6(a) we see an ex-
ample of a traditional HW-SW partitioning move, where a move
consists of selecting the SW implementation of the task in-
stead of selecting the HW implementation of the task . How-
ever, in Fig. 6(b), we see a move that consists of selecting an al-

ternate HW implementation point instead of because
this leads to the most improvement in the objective function.

For the scheduler, we choose a simple list-scheduling algo-
rithm as shown in Code Segment 2. In a list-scheduler, at each
stage there is a set of “ready” nodes whose parents have been
scheduled. The scheduler chooses the “best” node based on
some priority measure—the schedule quality depends strongly
on priority assignment of nodes. Note that the scheduler is em-
bedded inside the partitioner; thus, the scheduler always sees
a bound graph where each task is assigned to HW or SW and,
hence, the HW-SW communication on each edge is known.

We do simultaneous scheduling and placement—once a node
is selected for scheduling, it is immediately placed onto the
device. This ensures that all generated schedules are correct
by construction. Thus, at every KLFM step, along with task
binding, we also have the placed schedule available.

Code segment 2: Choose best schedulable task

For each schedulable task,
compute (EST), earliest start time of computation

(EFT), earliest finish time of computation
Choose task that maximizes (EST, longest path, area, EFT)

In traditional resource-constrained scheduling, priority func-
tions like “nodes on critical path first” are applied uniformly
to all nodes. But, given the special characteristics of our target
HW, it is undesirable to use the same priority assignment func-
tion uniformly for nodes. Factors that affect placement, such as
configuration prefetch, play a key role in scheduling. So, we
propose that during task selection, processor tasks are compared
between themselves on the simple basis of longest path, while
FPGA tasks are compared using a more complex function. Key
parameters of any such function are earliest computation start
time of task (EST), earliest finish time (EFT), task area, and the
longest path through the task, i.e., the function can be described
as

EST, longest path, area, EFT

The EST computation embeds physical issues related to
placement, resource bottleneck of single reconfiguration con-
troller in the configuration prefetch process, etc., as described
in more detail later.

Our observations indicate that it is usually more beneficial
to, first, place tasks with narrower width (fewer columns): this
leads to the possibility of being able to accomodate more tasks
without needing dynamic reconfiguration. Similar considera-
tions for other key parameters lead us to define as a linear
priority assignment function:

columns EST pathlength EFT

Note that components for which it is preferable to have
smaller magnitude, such as earlier start time (EST) or fewer
columns, have a negative weightage while pathlength has a
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Fig. 7. Task parameters.

Fig. 8. Optimally placed.

positive weightage. Pathlength is of course the classical “crit-
ical path” priority function that is often used as the single node
selection criterion in list scheduling.

2) Placement and EST Computation: To illustrate the effec-
tiveness as well as the challenge posed by configuration prefetch
to placement and scheduling, consider the task graph shown in
Fig. 2, and its associated parameters in Fig. 7. The HW area is
specified as the number of homogenous (CLB) columns. The ex-
ecution times (for HW and SW), and the reconfiguration delay
are suitably normalized such that each timestep corresponds to
the reconfiguration delay for one column. Thus, the (normal-
ized) reconfiguration delay of a task is identical to the HW area
of the task. Additionally, for this example, we assume that any
HW-SW communication incurs one unit of (normalized) delay.

Under a resource constraint of six homogenous columns, the
optimal solution to our problem of minimizing latency is given
by the task schedule and physical task location as shown in
Fig. 8. In this schedule, each execution (and reconfiguration if
needed) component of a task is represented as a rectangle of
fixed size, such that the length is the execution (or reconfigu-
ration) time of the task implementation while the width is the
number of columns required.

In Fig. 8, and represent the execution start time and
reconfiguration start time, respectively, for vertex . repre-
sents HW-SW communication between task and . rep-
resents execution of task on the processor. For this example,

with static HW-SW partitioning, the schedule length would be
26 with vertices , , and mapped to HW and the remaining
vertices mapped to SW. Since partial dynamic reconfiguration
capability with prefetch improves the schedule length to 10,
prefetch is a key consideration.

However, a key challenge is posed by the gap between and
illustrating the idle time interval of columns and re-

quired for an optimal schedule: in this interval the FPGA column
has been reconfigured, but the task cannot start execution as its
dependencies have not been satisfied yet. Note that the earliest

can start is at time step 6. So, if we forced to start at time
step 4 and contiguous to , then either would need to be
separated from or the schedule length would increase.

This idle time interval is part of scheduling in that we would
prefer to have a schedule with minimum idle time where re-
sources are underutilized. Since the extent of the interval can
not be determined a priori, placement is complicated: if we con-
sider the aggregate time area rectangle occupied by a task
in the 2-D view, where the aggregate rectangle consists of both
the execution and reconfiguration component of a task, this is a
rectangle of unknown length. Thus, with prefetch, we are unable
to directly apply rectangular packing algorithms from work like
[21].

Another key issue in EST computation is the resource bottle-
neck of a single reconfiguration controller. The reconfiguration
for a task can start only when enough area is available and the
reconfiguration controller is free. The goal is to complete re-
configuration before task dependencies are satisfied, leading to
minimization of schedule length. However, realistically, it is not
possible to hide the overhead for all tasks that need reconfigu-
ration—in such cases, task execution is scheduled as soon as its
reconfiguration ends.

In Code Segment 3, we present our approach to EST com-
putation that addresses the issues we previously discussed.

Code Segment 3: Compute EST for task bound to FPGA

find earliest time slot where task can be placed
reconfig start = earliest time instant space and reconfig

controller are simultaneously available.
if ((reconfig start + reconfig time) < dependency time)

// reconfiguration latency hidden completely: possibility
// of timing gap between reconfig end and execution start

EST = earliest time parent dependencies satisfied
else // not possible to completely hide latency

EST = end of reconfiguration

Our goal is to find the earliest time slot when the task can
be scheduled, subject to the various constraints. We proceed by
first searching for the earliest instant when we can have a fea-
sible task placement, i.e., enough adjacent columns are avail-
able for the task. Once we have obtained a feasible placement,
we proceed to satisfy the other constraints. If the reconfiguration
controller was available at the instant the space becomes avail-
able, then the reconfiguration component of the task can proceed
immediately. Otherwise, the reconfiguration component of the
task has to wait till the reconfiguration controller becomes free.
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TABLE I
BASIS FOR NUMERICAL DATA

Once the reconfiguration component is scheduled, we check to
see if the execution component can be immediately scheduled
subject to dependency constraints. As an example, we consider
EST computation of task in Fig. 8 when tasks and have
been scheduled and placed. The initial search shows a feasible
placement starting at time 3 and the reconfiguration controller is
free, so reconfiguration for can start immediately and finishes
at time 4. However, the execution component can be scheduled
only at time 6 when its dependency is satisfied. In this case, EST
computation indicates that it is possible to completely hide the
reconfiguration overhead for the task.

The EST computation, thus, embeds the placement issues
and resource constraints related to reconfiguration. As discussed
earlier, the scheduler assigns task priorities based on this infor-
mation, leading to high-quality schedules, as shown in our ex-
perimental section.

3) Comments on Current Implementation: The first search
for the earliest feasible time instant is currently implemented as
a simple sweep through all active time instants (when an event
has been scheduled).5 At each time instant, we represent the
resource constraint as a simple array with each array entry in
one of two states—free or used. (Note that the number of active
time instants is , where is the number of tasks.) Thus,
the search for space to fit a task is equivalent to bin-packing,
where we choose the best bin (array location) to place an item
(a task). We implemented various bin-packing algorithms such
as first-fit, best-fit, etc. Our initial set of experiments indicated
that first-fit worked well, so all our results in the experimental
section are based on first-fit packing. A subsequent detailed
set of experiments (also presented in the experimental section)
confirmed that the difference between first-fit and best-fit was
negligible. However, best-fit needs significantly more expensive
computation during the space-search confirming that our choice
of first-fit is reasonable.

4) Heterogeneity: One key benefit of considering linear
placement and multiple task implementations in our heuristic
is the ease with which we were able to extend our approach to
consider scheduling onto heterogenous devices.

To adapt our approach for heterogeneity, the primary change
required is in the search for space to fit a task. We achieve this by
simply adding a type descriptor for each column in our resource
description. Thus, all resource queries at a time instant check the
type descriptor of a column while looking for available space
at that instant. Since the key implication of a heterogenous re-

5An event refers to start (end) of task execution/reconfiguration.

source is to constrain placement, we did some simple initial pre-
processing to make our searches more efficient.

5) Worst Case Complexity: Consideration of placement as an
integral part of HW-SW partitioning guarantees correctness of
implementation. However, it does increase the worst case com-
plexity of HW-SW partitioning.

For an area constraint of columns, our current simplistic
implementation of the EST computation has a worstcase com-
plexity (for a single task) of , where is the number of
tasks. In the list scheduler, at each step, the best task is chosen
based on this computation, i.e., such EST computations
are required to select the next task to be scheduled. Since the
list scheduler has “ ” such steps, the worstcase complexity of
each list scheduler invocation is . For the simple case of
one HW and one SW implementation of a task, the list scheduler
is called times in the main KLFM loop shown in Code
Segment 1. Thus, the overall worstcase complexity is .
While this seems to be a polynomial of a significantly high
degree, execution time measurements presented in our experi-
mental section indicate a runtime of a couple of minutes for our
largest experiments on graphs with hundreds of nodes.

VI. EXPERIMENTS

We conducted a wide range of experiments to demonstrate
the validity of our formulation and the schedule quality gener-
ated by our heuristic. We also conducted a detailed case study
of the JPEG encoding algorithm, where we explored hetero-
geneity in the context of multiple task implementation points.
Note that we are concerned with statically determining the best
runtime schedule for a HW-SW system under resource con-
straints, where the HW has partial dynamic reconfiguration ca-
pability. Thus, while it is possible for the example to fit all our
JPEG tasks in a suitably sized device, for our experimental pur-
poses, we assume a resource constraint less than the aggregate
HW size of all tasks leading to the necessity of HW-SW parti-
tioning.

A. Experimental Setup

The following assumptions in Table I form the basis of our
numerical data.

Area and timing data for key tasks like DCT and IDCT, was
obtained by synthesizing tasks under columnar placement and
routing constraints on the XC2V2000, similar to the method-
ology suggested for “reconfigurable modules.” Software task
execution time on the PowerPC processor is typically 3–5 times
slower than the HW implementation of the task. HW-SW com-
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TABLE II
FEASIBILITY RESULTS AND HEURISTIC QUALITY FOR SMALL TESTS

munication time was estimated by simply dividing the aggregate
amount of data transfer by the bus speed. As an example, data
transfer time for a 256 256 block of 8-bit pixels in a typical
image processing application is estimated as

cycles at MHz ms

Note that HW-SW communication time for even this significant
volume of data transfer is only around 30% of the reconfigu-
ration overhead for a single CLB column; thus, for generating
synthetic experiments, we assumed that HW-SW communica-
tion time was quite low compared to task reconfiguration time.

B. Experiments on Feasibility

Table II shows experimental results on feasibility for a set of
synthetic task-graphs and well-known graph structures like fast
Fourier transform (FFT), meanval, etc. These test cases were
reasonably small graphs with between 10–15 vertices such that
we could generate optimal results with the ILP. For each test,
we assumed that the number of columns available for task map-
ping was approximately 20%–30% of the aggregate area of all
tasks mapped to hardware. For these tests, one unit of time is
the reconfiguration time for a single column.

In Table II, denotes the schedule length obtained with
our ILP formulation, denotes the schedule length obtained
from an exact formulation that considers available HW area in-
stead of exact task placement (i.e., placement unaware) [13].
As Table II shows, in some cases, is shorter than ,
but in these cases, the schedules were physically unrealizable
with exact placement, while our ILP guarantees place-
ment through correct by construction.

C. Experiments on Heuristic Quality

For each of the initial set of experiments, we also gener-
ated results with our proposed heuristic, as denoted by in
Table II. The data indicates that for the small cases, corre-
sponds to schedules that are reasonably close in quality to the
exact solution.

For analysis of schedule quality generated by our heuristic on
larger test cases, we generated a set of problem instances with
suitable modifications to task graphs for free (TGFF) [17]. In
these tests, each task had a single homogenous implementation
point. In subsequent discussions, , , etc., denote sets of

Fig. 9. Synthetic experiments.

Fig. 10. Sample experiments for v60.

graphs that have approximately 20 nodes, 80 nodes, etc. These
sets were generated by varying the graph parameters such as
indegree, outdegree. For each individual test case belonging to
a set like , we varied the area constraint from 8 to 20 columns
in steps of 4 to generate a problem instance. The resulting space
of over a hundred experiments is shown in Fig. 9.

For each generated problem instance, we compared the
schedule length generated by our placement-aware heuristic
with that generated by the placement unaware “longest path
first” (LPF) heuristic. The LPF heuristic is widely used in
resource-constrained scheduling to assign higher priorities to
tasks on critical paths. Note that LPF is used only for priority
assignment at each scheduling step—once a task is selected,
the same linear placement approach ensures correct schedules
and hides the reconfiguration latency, if possible.

In Fig. 10, we present a sample of the tests we conducted.
For two test graphs in set , we show schedule length data
corresponding to a total of eight problem instances. To present
the aggregate data for the complete set of experiments, we de-
fine as the schedule length generated by LPF for a
problem instance, and the quality criterion indicating improve-
ment (decrease) in schedule length for each problem instance
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TABLE III
AGGREGATE IMPROVEMENTS IN SCHEDULE LENGTH

TABLE IV
COMPARISON OF FIRST-FIT VERSUS BEST-FIT

when our placement-aware priority function is used compared
to placement-unaware LPF as

Gain

Fig. 10 shows that our placement-aware priority function con-
sistently generates better schedules. Table III summarizes the
result for 120 problem instances. Each entry in the table repre-
sents data from a set of instances. As an example, the entry cor-
responding to the row labelled and column labelled “More
Cols (16,20)” is 10.56%. This implies that for a set of problem
instances where the graph size is approximately 60 nodes and
the resource constraint was set at 16 and 20 columns, the average
improvement in schedule length generated by our heuristic over
LPF was 10.56%.

As is clear from Table III, while a simple longest path
heuristic works reasonably well with small graphs and few
columns, our heuristic clearly generates superior (shorter)
schedules, both with increasing problem size. The key dif-
ference is that LPF also tries to improve schedule length by
prefetch, but only after selecting the task to be scheduled, while
our heuristic considers placement implications in task selection.

1) First-Fit Versus Best-Fit: Similar to our previous table, we
compare the quality difference between first-fit placement and
best-fit placement by the measure

Gain

Table IV indicates that the quality difference between using a
first-fit placement policy and a best-fit placement policy is neg-
ligible. However, the best-fit placement incurs additional com-
putational overhead in the EST computation. This confirms our
choice of the first-fit placement policy as suitable.

2) Runtime of Heuristic: Table V shows the average runtime
of our approach (in seconds) for the experiments with an area-
constraint of 20 columns. The measurements were done on a
502-MHz Sparcv9 processor (SunOS 5.8). While the runtime
of our placement-aware approach grows with increase in area

TABLE V
RUNTIME OF PROPOSED APPROACH

Fig. 11. Task graph for JPEG encoder.

constraint, we believe that the data, corresponding to our largest
experiments, is a fair representation of the expected runtime in
reasonable scenarios.

D. Case Study of JPEG Encoder

We, next, conducted a detailed analysis for the JPEG en-
coding algorithm shown in Fig. 11 under resource constraints.
We obtained data for tasks like quantize and Huffman, by syn-
thesizing the tasks under placement and routing constraints. For
each task, we obtained implementation points with only ho-
mogenous resources and with heterogenous resources. We as-
sumed that the SW implementation for each task was approx-
imately four times slower than the HW implementation using
only homogenous resources. With only homogenous implemen-
tations, the total area occupied by the tasks in the coarse grain
task graph in Fig. 11 was 11 columns. We assumed a resource
constraint of 8 columns was available for mapping the task set.

Numerical data on the significant reconfiguration time for a
CLB column confirms observations from previous researchers
[4] that execution time for a task operating on a 8 8 block of
8-bit data is orders of magnitude lower than the reconfiguration
overhead of such tasks. So, all our schedule length data is for
processing a larger block corresponding to a 256 256 color
image.

Table VI presents a summary of schedule length estimates (in
milliseconds) we generated from various experiments. The first
row (16.74 ms) represents our initial experiment of HW-SW
partitioning of the coarse-grain graph—in this experiment the
HW does not have dynamic reconfiguration capability. The next
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TABLE VI
SCHEDULE LENGTH FOR DIFFERENT HW-SW PARTITIONING

OF JPEG ENCODER

row (9.9 ms) represents the experiment where we consider the
HW to have partial RTR capability. It clearly demonstrates the
potential for performance improvement with partial RTR. For
this experiment, we assumed that there was no configuration
prefetch, i.e., reconfiguration for a task was done exactly be-
fore its execution. In the third experiment (9.04 ms), where we
add configuration prefetch to partial RTR capability, there is ad-
ditional performance improvement.

We subsequently exposed more parallelism by making mul-
tiple copies of tasks like DCT based on our knowledge that data
blocks can be independently processed by such tasks. The re-
maining results from the fourth row onwards corresponds to ex-
perimental data for the finer-grain task graph. The fourth row
(7.51 ms) represents the results generated by our heuristic on
the finer-grain graph—this is optimal for this representation.

1) Experiment on Heterogeneity: For the next experiment in
the fifth row (6.82 ms), we considered that the resource con-
straint of eight columns now included one specialized resource
(heterogenous) column, i.e., the new resource constraint was a
set of seven CLB columns and one resource column. Each task
was allowed to have either a homogenous implementation or a
heterogenous implementation.

In the schedule generated by our heuristic, some of the tasks
are bound to their faster heterogenous implementations while
others are bound to slower homogenous implementations. This
experiment demonstrates the exploration capability of our
heuristic in considering multiple task implementations while
mapping onto a heterogenous device with partial dynamic
reconfiguration.

One important observation from our experiment with hetero-
geneity was that the relative location of the specialized resource
column strongly affects the schedule length. Specifically for our
first-fit placement policy, we observed that specialized resource
columns located near the left edge of the device (where the
first fit algorithm initially tries to place tasks) lead to inferior
schedule lengths.

2) Best Implementation Points Only: For the final experiment
in row 6 (9.58 ms), we restricted tasks to only their best imple-
mentation points. Since the best implementation points are often
heterogenous, the schedule length showed significant degrada-
tion because of contention for the dedicated resources.

Overall, our case study confirms the importance of consid-
ering physical and architectural (heterogenous) constraints in
an HW-SW partitioning algorithm for a partially reconfigurable
device. It additionally confirms that partitioning (and sched-
uling) algorithms targeted towards such devices need to have

the capability of selecting between multiple task implementa-
tions, some of which might be using specialized resources.

VII. CONCLUSION

In this paper, we focussed on physical and architectural con-
straints imposed on dynamically reconfigurable architectures by
partial reconfiguration feature. We first formulated an exact ap-
proach based on ILP. With the help of this exact approach, we
demonstrated that ignoring linear task placement constraints im-
posed by partial dynamic reconfiguration can result in sched-
ules that are optimal but physically unrealizable. Unlike existing
ILP-based approaches to HW-SW partitioning, our formulation
simultaneously places tasks while scheduling—it also considers
the key feature of configuration prefetch for maximizing perfor-
mance along with the resource contention due to a single recon-
figuration mechanism.

Next, we proposed a placement-aware HW-SW partitioning
heuristic based on the well-known KLFM paradigm for par-
titioning. Our proposed heuristic simultaneously partitions,
schedules, and does linear placement of tasks on the target
device. As a key step of partitioning, our approach selects
among multiple task implementation points. A wide range
of synthetic experiments and a detailed case study of JPEG
encoding validates the quality of solutions generated by our
proposed heuristic.

Placement and consideration of multiple implementations
in partitioning make it easy to extend our approach to hetero-
geneity, a key feature in modern FPGAs. The case study on
JPEG encoding demonstrates the capability of our approach
in selecting between heterogenous and homogenous task
implementations while mapping a given application onto a
heterogenous device. Finally, the runtime of our approach is
reasonable: task graphs with hundreds of nodes are processed
(partitioned, scheduled, placed) in a couple of minutes.

Our approach has powerful capabilities, but there is scope
for improvement in our current implementation in both solu-
tion quality and in the theoretic algorithmic complexity by in-
vestigating sophisticated placement techniques and data struc-
tures. Next, our approach currently assumes that sufficient band-
width is available for concurrently executing tasks—we realize
this may not hold in all possible situations and adding band-
width considerations would make our work more complete. Fi-
nally, our heuristic currently is focused on homogenous imple-
mentations. In the future, we will focus on issues leading to
high-quality solutions in heterogenous scenarios.
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